
Reference Documentation

3.1

Copyright © 2004-2011 Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob
Harrop, Alef Arendsen, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack,
Thierry Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin
Leau, Mark Fisher, Sam Brannen, Ramnivas Laddad, Arjen Poutsma, Chris Beams, Tareq

Abedrabbo, Andy Clement, Dave Syer, Oliver Gierke, Rossen Stoyanchev

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this

Copyright Notice, whether distributed in print or electronically.

Table of Contents
I. Overview of Spring Framework ..1

1. Introduction to Spring Framework ..2
1.1. Dependency Injection and Inversion of Control ..2
1.2. Modules ..3

Core Container ...3
Data Access/Integration ..4
Web ...4
AOP and Instrumentation ..5
Test ...5

1.3. Usage scenarios ...5
Dependency Management and Naming Conventions ...9

Spring Dependencies and Depending on Spring ..11
Maven Dependency Management ..12
Ivy Dependency Management ...13

Logging ...14
Not Using Commons Logging ...14
Using SLF4J ..15
Using Log4J ...16

II. What's New in Spring 3 ..18
2. New Features and Enhancements in Spring 3.0 ...19

2.1. Java 5 ..19
2.2. Improved documentation ..19
2.3. New articles and tutorials ..19
2.4. New module organization and build system ...20
2.5. Overview of new features ...21

Core APIs updated for Java 5 ..22
Spring Expression Language ...22
The Inversion of Control (IoC) container ..23

Java based bean metadata ..23
Defining bean metadata within components ..24

General purpose type conversion system and field formatting system24
The Data Tier ...24
The Web Tier ...25

Comprehensive REST support ...25
@MVC additions ...25

Declarative model validation ...25
Early support for Java EE 6 ...25
Support for embedded databases ..25

3. New Features and Enhancements in Spring 3.1 ...26
3.1. Overview of new features ...26

Spring Framework

3.1 Reference Documentation ii

Cache Abstraction ..26
Bean Definition Profiles ..26
Environment Abstraction ..26
PropertySource Abstraction ...26
Code equivalents for Spring's XML namespaces ...27
Support for Hibernate 4.x ..27
TestContext framework support for @Configuration classes and bean definition
profiles ..27
c: namespace for more concise constructor injection ...28
Support for injection against non-standard JavaBeans setters28
Support for Servlet 3 code-based configuration of Servlet Container28
Support for Servlet 3 MultipartResolver ...28
JPA EntityManagerFactory bootstrapping without persistence.xml28
New HandlerMethod-based Support Classes For Annotated Controller Processing
...29
"consumes" and "produces" conditions in @RequestMapping30
Flash Attributes and RedirectAttributes ..30
URI Template Variable Enhancements ...30
@Valid On @RequestBody Controller Method Arguments30
@RequestPart Annotation On Controller Method Arguments30
UriComponentsBuilder and UriComponents ...31

III. Core Technologies ..32
4. The IoC container ...33

4.1. Introduction to the Spring IoC container and beans ...33
4.2. Container overview ..33

Configuration metadata ...34
Instantiating a container ..36

Composing XML-based configuration metadata37
Using the container ...38

4.3. Bean overview ...38
Naming beans ...40

Aliasing a bean outside the bean definition ...40
Instantiating beans ..41

Instantiation with a constructor ..42
Instantiation with a static factory method ...42
Instantiation using an instance factory method ..43

4.4. Dependencies ...44
Dependency injection ..44

Constructor-based dependency injection ...44
Setter-based dependency injection ...47
Dependency resolution process ..48
Examples of dependency injection ...49

Dependencies and configuration in detail ...51
Straight values (primitives, Strings, and so on) ...51
References to other beans (collaborators) ...53

Spring Framework

3.1 Reference Documentation iii

Inner beans ...54
Collections ...54
Null and empty string values ...57
XML shortcut with the p-namespace ..57
XML shortcut with the c-namespace ..58
Compound property names ..59

Using depends-on ...59
Lazy-initialized beans ...60
Autowiring collaborators ...61

Limitations and disadvantages of autowiring ..62
Excluding a bean from autowiring ...63

Method injection ..63
Lookup method injection ...64
Arbitrary method replacement ...66

4.5. Bean scopes ...67
The singleton scope ..68
The prototype scope ..69
Singleton beans with prototype-bean dependencies ...70
Request, session, and global session scopes ..70

Initial web configuration ...70
Request scope ...71
Session scope ...72
Global session scope ...72
Scoped beans as dependencies ...72

Custom scopes ...74
Creating a custom scope ..75
Using a custom scope ..75

4.6. Customizing the nature of a bean ...77
Lifecycle callbacks ...77

Initialization callbacks ..77
Destruction callbacks ..78
Default initialization and destroy methods ..79
Combining lifecycle mechanisms ..80
Startup and shutdown callbacks ...80
Shutting down the Spring IoC container gracefully in non-web applications 82

ApplicationContextAware and BeanNameAware ..83
Other Aware interfaces ...84

4.7. Bean definition inheritance ...86
4.8. Container Extension Points ...87

Customizing beans using a BeanPostProcessor ...87
Example: Hello World, BeanPostProcessor-style89
Example: The RequiredAnnotationBeanPostProcessor90

Customizing configuration metadata with a BeanFactoryPostProcessor90
Example: the PropertyPlaceholderConfigurer ...91
Example: the PropertyOverrideConfigurer ...93

Spring Framework

3.1 Reference Documentation iv

Customizing instantiation logic with a FactoryBean ..94
4.9. Annotation-based container configuration ..95

@Required ...96
@Autowired ...97
Fine-tuning annotation-based autowiring with qualifiers99
CustomAutowireConfigurer .. 104
@Resource ... 105
@PostConstruct and @PreDestroy ... 106

4.10. Classpath scanning and managed components .. 107
@Component and further stereotype annotations .. 107
Automatically detecting classes and registering bean definitions 107
Using filters to customize scanning .. 109
Defining bean metadata within components .. 110
Naming autodetected components .. 111
Providing a scope for autodetected components .. 112
Providing qualifier metadata with annotations .. 112

4.11. Using JSR 330 Standard Annotations ... 113
Dependency Injection with @Inject and @Named .. 114
@Named: a standard equivalent to the @Component annotation 114
Limitations of the standard approach .. 115

4.12. Java-based container configuration .. 116
Basic concepts: @Configuration and @Bean .. 116
Instantiating the Spring container using AnnotationConfigApplicationContext . 116

Simple construction .. 117
Building the container programmatically using register(Class<?>...) 117
Enabling component scanning with scan(String...) 117
Support for web applications with AnnotationConfigWebApplicationContext
... 118

Composing Java-based configurations .. 119
Using the @Import annotation ... 119
Combining Java and XML configuration .. 122

Using the @Bean annotation ... 124
Declaring a bean ... 124
Injecting dependencies .. 125
Receiving lifecycle callbacks ... 125
Specifying bean scope ... 126
Customizing bean naming ... 128
Bean aliasing .. 128

Further information about how Java-based configuration works internally 128
4.13. Registering a LoadTimeWeaver .. 129
4.14. Additional Capabilities of the ApplicationContext .. 130

Internationalization using MessageSource .. 130
Standard and Custom Events ... 133
Convenient access to low-level resources ... 136
Convenient ApplicationContext instantiation for web applications 137

Spring Framework

3.1 Reference Documentation v

Deploying a Spring ApplicationContext as a J2EE RAR file 138
4.15. The BeanFactory .. 138

BeanFactory or ApplicationContext? ... 139
Glue code and the evil singleton .. 140

5. Resources ... 142
5.1. Introduction ... 142
5.2. The Resource interface ... 142
5.3. Built-in Resource implementations .. 143

UrlResource ... 143
ClassPathResource ... 144
FileSystemResource ... 144
ServletContextResource .. 144
InputStreamResource .. 144
ByteArrayResource .. 145

5.4. The ResourceLoader ... 145
5.5. The ResourceLoaderAware interface ... 146
5.6. Resources as dependencies ... 147
5.7. Application contexts and Resource paths ... 147

Constructing application contexts .. 147
Constructing ClassPathXmlApplicationContext instances - shortcuts 148

Wildcards in application context constructor resource paths 149
Ant-style Patterns ... 149
The classpath*: prefix ... 150
Other notes relating to wildcards .. 150

FileSystemResource caveats .. 151
6. Validation, Data Binding, and Type Conversion .. 153

6.1. Introduction ... 153
6.2. Validation using Spring's Validator interface .. 153
6.3. Resolving codes to error messages .. 155
6.4. Bean manipulation and the BeanWrapper .. 155

Setting and getting basic and nested properties ... 156
Built-in PropertyEditor implementations .. 157

Registering additional custom PropertyEditors 160
6.5. Spring 3 Type Conversion .. 163

Converter SPI ... 163
ConverterFactory .. 164
GenericConverter ... 165

ConditionalGenericConverter .. 165
ConversionService API ... 166
Configuring a ConversionService .. 166
Using a ConversionService programatically ... 167

6.6. Spring 3 Field Formatting ... 167
Formatter SPI ... 168
Annotation-driven Formatting ... 169

Format Annotation API ... 170

Spring Framework

3.1 Reference Documentation vi

FormatterRegistry SPI .. 171
FormatterRegistrar SPI ... 171
Configuring Formatting in Spring MVC ... 172

6.7. Spring 3 Validation .. 173
Overview of the JSR-303 Bean Validation API ... 173
Configuring a Bean Validation Implementation .. 174

Injecting a Validator ... 174
Configuring Custom Constraints .. 175
Additional Configuration Options .. 175

Configuring a DataBinder ... 175
Spring MVC 3 Validation ... 176

Triggering @Controller Input Validation ... 176
Configuring a Validator for use by Spring MVC 176
Configuring a JSR-303 Validator for use by Spring MVC 177

7. Spring Expression Language (SpEL) .. 178
7.1. Introduction ... 178
7.2. Feature Overview ... 178
7.3. Expression Evaluation using Spring's Expression Interface 179

The EvaluationContext interface .. 182
Type Conversion .. 182

7.4. Expression support for defining bean definitions .. 183
XML based configuration ... 183
Annotation-based configuration ... 183

7.5. Language Reference ... 185
Literal expressions .. 185
Properties, Arrays, Lists, Maps, Indexers .. 185
Inline lists .. 186
Array construction .. 186
Methods ... 187
Operators ... 187

Relational operators .. 187
Logical operators .. 188
Mathematical operators ... 188

Assignment .. 189
Types ... 189
Constructors ... 189
Variables .. 190

The #this and #root variables ... 190
Functions ... 190
Bean references .. 191
Ternary Operator (If-Then-Else) .. 191
The Elvis Operator ... 192
Safe Navigation operator ... 192
Collection Selection .. 193
Collection Projection .. 193

Spring Framework

3.1 Reference Documentation vii

Expression templating ... 194
7.6. Classes used in the examples ... 194

8. Aspect Oriented Programming with Spring ... 198
8.1. Introduction ... 198

AOP concepts ... 198
Spring AOP capabilities and goals ... 200
AOP Proxies .. 201

8.2. @AspectJ support .. 202
Enabling @AspectJ Support .. 202
Declaring an aspect ... 202
Declaring a pointcut .. 203

Supported Pointcut Designators ... 204
Combining pointcut expressions .. 206
Sharing common pointcut definitions ... 206
Examples ... 207
Writing good pointcuts .. 210

Declaring advice ... 211
Before advice ... 211
After returning advice ... 211
After throwing advice ... 212
After (finally) advice .. 213
Around advice .. 213
Advice parameters .. 214
Advice ordering .. 218

Introductions .. 218
Aspect instantiation models ... 219
Example ... 220

8.3. Schema-based AOP support .. 221
Declaring an aspect ... 222
Declaring a pointcut .. 222
Declaring advice ... 224

Before advice ... 224
After returning advice ... 225
After throwing advice ... 225
After (finally) advice .. 226
Around advice .. 226
Advice parameters .. 227
Advice ordering .. 229

Introductions .. 229
Aspect instantiation models ... 230
Advisors .. 230
Example ... 230

8.4. Choosing which AOP declaration style to use .. 232
Spring AOP or full AspectJ? ... 232
@AspectJ or XML for Spring AOP? .. 233

Spring Framework

3.1 Reference Documentation viii

8.5. Mixing aspect types .. 234
8.6. Proxying mechanisms ... 234

Understanding AOP proxies .. 235
8.7. Programmatic creation of @AspectJ Proxies .. 238
8.8. Using AspectJ with Spring applications ... 238

Using AspectJ to dependency inject domain objects with Spring 238
Unit testing @Configurable objects ... 241
Working with multiple application contexts .. 241

Other Spring aspects for AspectJ ... 242
Configuring AspectJ aspects using Spring IoC .. 242
Load-time weaving with AspectJ in the Spring Framework 243

A first example ... 244
Aspects .. 247
'META-INF/aop.xml' .. 247
Required libraries (JARS) ... 247
Spring configuration ... 248
Environment-specific configuration ... 250

8.9. Further Resources .. 253
9. Spring AOP APIs .. 254

9.1. Introduction ... 254
9.2. Pointcut API in Spring .. 254

Concepts .. 254
Operations on pointcuts ... 255
AspectJ expression pointcuts ... 255
Convenience pointcut implementations .. 255

Static pointcuts ... 256
Dynamic pointcuts .. 257

Pointcut superclasses .. 257
Custom pointcuts .. 258

9.3. Advice API in Spring ... 258
Advice lifecycles .. 258
Advice types in Spring .. 258

Interception around advice .. 258
Before advice ... 259
Throws advice .. 260
After Returning advice .. 261
Introduction advice ... 262

9.4. Advisor API in Spring .. 265
9.5. Using the ProxyFactoryBean to create AOP proxies ... 265

Basics .. 265
JavaBean properties .. 266
JDK- and CGLIB-based proxies .. 267
Proxying interfaces ... 268
Proxying classes ... 270
Using 'global' advisors .. 270

Spring Framework

3.1 Reference Documentation ix

9.6. Concise proxy definitions ... 271
9.7. Creating AOP proxies programmatically with the ProxyFactory 272
9.8. Manipulating advised objects .. 272
9.9. Using the "autoproxy" facility ... 274

Autoproxy bean definitions ... 274
BeanNameAutoProxyCreator .. 274
DefaultAdvisorAutoProxyCreator .. 275
AbstractAdvisorAutoProxyCreator .. 276

Using metadata-driven auto-proxying .. 276
9.10. Using TargetSources .. 278

Hot swappable target sources ... 279
Pooling target sources ... 280
Prototype target sources .. 281
ThreadLocal target sources .. 281

9.11. Defining new Advice types ... 282
9.12. Further resources .. 282

10. Testing ... 283
10.1. Introduction to Spring Testing ... 283
10.2. Unit Testing ... 283

Mock Objects ... 283
JNDI .. 283
Servlet API .. 283
Portlet API ... 284

Unit Testing support Classes ... 284
General utilities .. 284
Spring MVC ... 284

10.3. Integration Testing ... 284
Overview ... 284
Goals of Integration Testing .. 285

Context management and caching .. 286
Dependency Injection of test fixtures ... 286
Transaction management ... 287
Support classes for integration testing .. 287

JDBC Testing Support .. 288
Annotations .. 288

Spring Testing Annotations ... 288
Standard Annotation Support ... 292
Spring JUnit Testing Annotations .. 292

Spring TestContext Framework ... 294
Key abstractions ... 294
Context management .. 295
Dependency injection of test fixtures ... 303
Transaction management ... 306
TestContext support classes ... 308

PetClinic Example .. 310

Spring Framework

3.1 Reference Documentation x

10.4. Further Resources ... 312
IV. Data Access .. 313

11. Transaction Management ... 314
11.1. Introduction to Spring Framework transaction management 314
11.2. Advantages of the Spring Framework's transaction support model 314

Global transactions ... 315
Local transactions ... 315
Spring Framework's consistent programming model 315

11.3. Understanding the Spring Framework transaction abstraction 316
11.4. Synchronizing resources with transactions ... 320

High-level synchronization approach ... 320
Low-level synchronization approach .. 320
TransactionAwareDataSourceProxy ... 321

11.5. Declarative transaction management .. 321
Understanding the Spring Framework's declarative transaction implementation 323
Example of declarative transaction implementation ... 324
Rolling back a declarative transaction .. 328
Configuring different transactional semantics for different beans 329
<tx:advice/> settings ... 331
Using @Transactional ... 332

@Transactional settings .. 336
Multiple Transaction Managers with @Transactional 337
Custom shortcut annotations .. 338

Transaction propagation .. 338
Required .. 339
RequiresNew .. 339
Nested ... 340

Advising transactional operations .. 340
Using @Transactional with AspectJ ... 343

11.6. Programmatic transaction management .. 344
Using the TransactionTemplate ... 344

Specifying transaction settings ... 345
Using the PlatformTransactionManager ... 346

11.7. Choosing between programmatic and declarative transaction management 347
11.8. Application server-specific integration ... 347

IBM WebSphere ... 348
BEA WebLogic Server ... 348
Oracle OC4J ... 348

11.9. Solutions to common problems ... 348
Use of the wrong transaction manager for a specific DataSource 348

11.10. Further Resources ... 348
12. DAO support .. 350

12.1. Introduction ... 350
12.2. Consistent exception hierarchy .. 350
12.3. Annotations used for configuring DAO or Repository classes 351

Spring Framework

3.1 Reference Documentation xi

13. Data access with JDBC .. 353
13.1. Introduction to Spring Framework JDBC ... 353

Choosing an approach for JDBC database access .. 353
Package hierarchy ... 354

13.2. Using the JDBC core classes to control basic JDBC processing and error handling
... 355

JdbcTemplate ... 355
Examples of JdbcTemplate class usage .. 356
JdbcTemplate best practices .. 358

NamedParameterJdbcTemplate .. 359
SimpleJdbcTemplate ... 361
SQLExceptionTranslator ... 363
Executing statements .. 364
Running queries ... 365
Updating the database ... 366
Retrieving auto-generated keys .. 366

13.3. Controlling database connections .. 367
DataSource .. 367
DataSourceUtils ... 368
SmartDataSource .. 368
AbstractDataSource .. 369
SingleConnectionDataSource .. 369
DriverManagerDataSource .. 369
TransactionAwareDataSourceProxy ... 369
DataSourceTransactionManager .. 370
NativeJdbcExtractor ... 370

13.4. JDBC batch operations ... 371
Basic batch operations with the JdbcTemplate .. 371
Batch operations with a List of objects ... 372
Batch operations with multiple batches .. 373

13.5. Simplifying JDBC operations with the SimpleJdbc classes 374
Inserting data using SimpleJdbcInsert .. 374
Retrieving auto-generated keys using SimpleJdbcInsert 375
Specifying columns for a SimpleJdbcInsert .. 375
Using SqlParameterSource to provide parameter values 376
Calling a stored procedure with SimpleJdbcCall ... 377
Explicitly declaring parameters to use for a SimpleJdbcCall 379
How to define SqlParameters ... 380
Calling a stored function using SimpleJdbcCall .. 380
Returning ResultSet/REF Cursor from a SimpleJdbcCall 381

13.6. Modeling JDBC operations as Java objects .. 382
SqlQuery .. 383
MappingSqlQuery .. 383
SqlUpdate .. 384
StoredProcedure ... 385

Spring Framework

3.1 Reference Documentation xii

13.7. Common problems with parameter and data value handling 388
Providing SQL type information for parameters .. 388
Handling BLOB and CLOB objects ... 388
Passing in lists of values for IN clause ... 390
Handling complex types for stored procedure calls ... 390

13.8. Embedded database support .. 392
Why use an embedded database? ... 392
Creating an embedded database instance using Spring XML 392
Creating an embedded database instance programmatically 392
Extending the embedded database support .. 392
Using HSQL .. 393
Using H2 ... 393
Using Derby ... 393
Testing data access logic with an embedded database 393

13.9. Initializing a DataSource ... 394
Initializing a database instance using Spring XML .. 394

Initialization of Other Components that Depend on the Database 395
14. Object Relational Mapping (ORM) Data Access ... 397

14.1. Introduction to ORM with Spring .. 397
14.2. General ORM integration considerations .. 398

Resource and transaction management ... 398
Exception translation .. 399

14.3. Hibernate ... 400
SessionFactory setup in a Spring container ... 400
Implementing DAOs based on plain Hibernate 3 API 401
Declarative transaction demarcation ... 402
Programmatic transaction demarcation ... 404
Transaction management strategies .. 405
Comparing container-managed and locally defined resources 407
Spurious application server warnings with Hibernate 408

14.4. JDO ... 409
PersistenceManagerFactory setup .. 409
Implementing DAOs based on the plain JDO API ... 410
Transaction management ... 412
JdoDialect .. 413

14.5. JPA ... 414
Three options for JPA setup in a Spring environment 414

LocalEntityManagerFactoryBean ... 414
Obtaining an EntityManagerFactory from JNDI 415
LocalContainerEntityManagerFactoryBean .. 415
Dealing with multiple persistence units .. 418

Implementing DAOs based on plain JPA .. 418
Transaction Management .. 421
JpaDialect .. 422

14.6. iBATIS SQL Maps ... 422

Spring Framework

3.1 Reference Documentation xiii

Setting up the SqlMapClient .. 422
Using SqlMapClientTemplate and SqlMapClientDaoSupport 424
Implementing DAOs based on plain iBATIS API ... 425

15. Marshalling XML using O/X Mappers ... 426
15.1. Introduction ... 426
15.2. Marshaller and Unmarshaller .. 426

Marshaller .. 426
Unmarshaller .. 427
XmlMappingException ... 428

15.3. Using Marshaller and Unmarshaller ... 428
15.4. XML Schema-based Configuration .. 430
15.5. JAXB .. 431

Jaxb2Marshaller ... 431
XML Schema-based Configuration .. 431

15.6. Castor .. 432
CastorMarshaller .. 432
Mapping .. 432

15.7. XMLBeans .. 433
XmlBeansMarshaller .. 433

XML Schema-based Configuration .. 433
15.8. JiBX .. 434

JibxMarshaller .. 434
XML Schema-based Configuration .. 434

15.9. XStream .. 435
XStreamMarshaller ... 435

V. The Web .. 437
16. Web MVC framework ... 438

16.1. Introduction to Spring Web MVC framework ... 438
Features of Spring Web MVC ... 439
Pluggability of other MVC implementations ... 440

16.2. The DispatcherServlet .. 440
Special Bean Types In the WebApplicationContext .. 443
Default DispatcherServlet Configuration .. 444
DispatcherServlet Processing Sequence .. 444

16.3. Implementing Controllers ... 446
Defining a controller with @Controller .. 447
Mapping Requests With @RequestMapping ... 447

URI Template Patterns .. 449
URI Template Patterns with Regular Expressions 450
Path Patterns .. 451
Consumable Media Types ... 451
Producible Media Types .. 451
Request Parameters and Header Values .. 452

Defining @RequestMapping handler methods .. 452
Supported method argument types ... 453

Spring Framework

3.1 Reference Documentation xiv

Supported method return types .. 455
Binding request parameters to method parameters with @RequestParam .. 456
Mapping the request body with the @RequestBody annotation 456
Mapping the response body with the @ResponseBody annotation 457
Using HttpEntity<?> ... 458
Using @ModelAttribute on a method ... 458
Using @ModelAttribute on a method argument 459
Using @SessionAttributes to store model attributes in the HTTP session
between requests .. 461
Specifying redirect and flash attributes ... 462
Working with "application/x-www-form-urlencoded" data 462
Mapping cookie values with the @CookieValue annotation 463
Mapping request header attributes with the @RequestHeader annotation .. 463
Method Parameters And Type Conversion ... 464
Customizing WebDataBinder initialization ... 464
Support for the 'Last-Modified' Response Header To Facilitate Content
Caching ... 465

16.4. Handler mappings .. 466
Intercepting requests with a HandlerInterceptor .. 467

16.5. Resolving views ... 468
Resolving views with the ViewResolver interface ... 469
Chaining ViewResolvers ... 471
Redirecting to views ... 471

RedirectView ... 472
The redirect: prefix ... 473
The forward: prefix ... 473

ContentNegotiatingViewResolver .. 473
16.6. Using flash attributes .. 476
16.7. Building URIs .. 477
16.8. Using locales ... 478

AcceptHeaderLocaleResolver .. 478
CookieLocaleResolver .. 478
SessionLocaleResolver ... 479
LocaleChangeInterceptor .. 479

16.9. Using themes ... 479
Overview of themes .. 479
Defining themes ... 480
Theme resolvers ... 480

16.10. Spring's multipart (file upload) support .. 481
Introduction ... 481
Using a MultipartResolver with Commons FileUpload 481
Using a MultipartResolver with Servlet 3.0 .. 482
Handling a file upload in a form .. 482
Handling a file upload request from programmatic clients 483

16.11. Handling exceptions ... 484

Spring Framework

3.1 Reference Documentation xv

HandlerExceptionResolver .. 484
@ExceptionHandler .. 485

16.12. Convention over configuration support .. 486
The Controller ControllerClassNameHandlerMapping 486
The Model ModelMap (ModelAndView) ... 487
The View - RequestToViewNameTranslator .. 488

16.13. ETag support .. 490
16.14. Configuring Spring MVC .. 490

Enabling MVC Java Config or the MVC XML Namespace 491
Customizing the Provided Configuration .. 492
Configuring Interceptors ... 493
Configuring View Controllers ... 494
Configuring Serving of Resources ... 494
mvc:default-servlet-handler ... 496
More Spring Web MVC Resources .. 497
Advanced Customizations with MVC Java Config .. 498
Advanced Customizations with the MVC Namespace 498

17. View technologies ... 500
17.1. Introduction ... 500
17.2. JSP & JSTL ... 500

View resolvers ... 500
'Plain-old' JSPs versus JSTL .. 501
Additional tags facilitating development .. 501
Using Spring's form tag library .. 501

Configuration ... 501
The form tag .. 502
The input tag .. 503
The checkbox tag .. 503
The checkboxes tag .. 505
The radiobutton tag ... 505
The radiobuttons tag ... 506
The password tag .. 506
The select tag ... 506
The option tag .. 507
The options tag ... 507
The textarea tag .. 508
The hidden tag .. 508
The errors tag ... 509
HTTP Method Conversion .. 511
HTML5 Tags ... 511

17.3. Tiles .. 512
Dependencies ... 512
How to integrate Tiles ... 512

UrlBasedViewResolver ... 513
ResourceBundleViewResolver .. 513

Spring Framework

3.1 Reference Documentation xvi

SimpleSpringPreparerFactory and SpringBeanPreparerFactory 513
17.4. Velocity & FreeMarker ... 514

Dependencies ... 514
Context configuration ... 514
Creating templates .. 515
Advanced configuration .. 515

velocity.properties .. 515
FreeMarker .. 516

Bind support and form handling ... 516
The bind macros ... 517
Simple binding ... 517
Form input generation macros ... 518
HTML escaping and XHTML compliance ... 522

17.5. XSLT .. 523
My First Words .. 523

Bean definitions ... 523
Standard MVC controller code .. 523
Convert the model data to XML .. 524
Defining the view properties .. 525
Document transformation .. 525

Summary ... 525
17.6. Document views (PDF/Excel) ... 526

Introduction ... 526
Configuration and setup .. 526

Document view definitions .. 526
Controller code ... 527
Subclassing for Excel views .. 527
Subclassing for PDF views .. 528

17.7. JasperReports ... 529
Dependencies ... 529
Configuration ... 529

Configuring the ViewResolver .. 529
Configuring the Views .. 530
About Report Files ... 530
Using JasperReportsMultiFormatView ... 531

Populating the ModelAndView .. 532
Working with Sub-Reports .. 532

Configuring Sub-Report Files .. 533
Configuring Sub-Report Data Sources ... 533

Configuring Exporter Parameters ... 534
17.8. Feed Views .. 534
17.9. XML Marshalling View .. 535
17.10. JSON Mapping View .. 535

18. Integrating with other web frameworks ... 536
18.1. Introduction ... 536

Spring Framework

3.1 Reference Documentation xvii

18.2. Common configuration ... 537
18.3. JavaServer Faces 1.1 and 1.2 ... 538

DelegatingVariableResolver (JSF 1.1/1.2) .. 538
SpringBeanVariableResolver (JSF 1.1/1.2) ... 539
SpringBeanFacesELResolver (JSF 1.2+) .. 539
FacesContextUtils .. 540

18.4. Apache Struts 1.x and 2.x ... 540
ContextLoaderPlugin .. 541

DelegatingRequestProcessor ... 542
DelegatingActionProxy ... 542

ActionSupport Classes .. 543
18.5. WebWork 2.x ... 543
18.6. Tapestry 3.x and 4.x ... 544

Injecting Spring-managed beans .. 545
Dependency Injecting Spring Beans into Tapestry pages 546
Component definition files .. 547
Adding abstract accessors .. 548
Dependency Injecting Spring Beans into Tapestry pages - Tapestry 4.x style
... 550

18.7. Further Resources ... 551
19. Portlet MVC Framework ... 552

19.1. Introduction ... 552
Controllers - The C in MVC .. 553
Views - The V in MVC ... 553
Web-scoped beans .. 554

19.2. The DispatcherPortlet ... 554
19.3. The ViewRendererServlet ... 556
19.4. Controllers ... 557

AbstractController and PortletContentGenerator ... 557
Other simple controllers .. 559
Command Controllers ... 559
PortletWrappingController .. 560

19.5. Handler mappings .. 560
PortletModeHandlerMapping .. 561
ParameterHandlerMapping .. 562
PortletModeParameterHandlerMapping ... 562
Adding HandlerInterceptors .. 563
HandlerInterceptorAdapter .. 563
ParameterMappingInterceptor ... 563

19.6. Views and resolving them ... 564
19.7. Multipart (file upload) support .. 564

Using the PortletMultipartResolver .. 565
Handling a file upload in a form .. 565

19.8. Handling exceptions ... 568
19.9. Annotation-based controller configuration ... 569

Spring Framework

3.1 Reference Documentation xviii

Setting up the dispatcher for annotation support .. 569
Defining a controller with @Controller .. 569
Mapping requests with @RequestMapping ... 570
Supported handler method arguments .. 571
Binding request parameters to method parameters with @RequestParam 573
Providing a link to data from the model with @ModelAttribute 574
Specifying attributes to store in a Session with @SessionAttributes 574
Customizing WebDataBinder initialization ... 575

Customizing data binding with @InitBinder ... 575
Configuring a custom WebBindingInitializer .. 575

19.10. Portlet application deployment .. 576
VI. Integration .. 577

20. Remoting and web services using Spring .. 578
20.1. Introduction ... 578
20.2. Exposing services using RMI .. 579

Exporting the service using the RmiServiceExporter 579
Linking in the service at the client ... 580

20.3. Using Hessian or Burlap to remotely call services via HTTP 581
Wiring up the DispatcherServlet for Hessian and co. 581
Exposing your beans by using the HessianServiceExporter 581
Linking in the service on the client .. 582
Using Burlap .. 582
Applying HTTP basic authentication to a service exposed through Hessian or
Burlap .. 583

20.4. Exposing services using HTTP invokers .. 583
Exposing the service object ... 583
Linking in the service at the client ... 584

20.5. Web services .. 585
Exposing servlet-based web services using JAX-RPC 586
Accessing web services using JAX-RPC .. 586
Registering JAX-RPC Bean Mappings ... 588
Registering your own JAX-RPC Handler ... 589
Exposing servlet-based web services using JAX-WS 589
Exporting standalone web services using JAX-WS ... 590
Exporting web services using the JAX-WS RI's Spring support 591
Accessing web services using JAX-WS .. 591

20.6. JMS ... 592
Server-side configuration .. 593
Client-side configuration ... 594

20.7. Auto-detection is not implemented for remote interfaces 595
20.8. Considerations when choosing a technology ... 595
20.9. Accessing RESTful services on the Client .. 596

RestTemplate ... 596
Working with the URI .. 598
Dealing with request and response headers ... 599

Spring Framework

3.1 Reference Documentation xix

HTTP Message Conversion ... 599
StringHttpMessageConverter ... 600
FormHttpMessageConverter .. 600
ByteArrayMessageConverter ... 600
MarshallingHttpMessageConverter .. 600
MappingJacksonHttpMessageConverter ... 601
SourceHttpMessageConverter ... 601
BufferedImageHttpMessageConverter ... 601

21. Enterprise JavaBeans (EJB) integration .. 602
21.1. Introduction ... 602
21.2. Accessing EJBs .. 602

Concepts .. 602
Accessing local SLSBs ... 603
Accessing remote SLSBs .. 604
Accessing EJB 2.x SLSBs versus EJB 3 SLSBs .. 605

21.3. Using Spring's EJB implementation support classes .. 605
EJB 2.x base classes ... 605
EJB 3 injection interceptor .. 607

22. JMS (Java Message Service) .. 609
22.1. Introduction ... 609
22.2. Using Spring JMS .. 609

JmsTemplate .. 609
Connections ... 610

Caching Messaging Resources ... 611
SingleConnectionFactory .. 611
CachingConnectionFactory ... 611

Destination Management ... 611
Message Listener Containers ... 612

SimpleMessageListenerContainer .. 613
DefaultMessageListenerContainer ... 613

Transaction management ... 613
22.3. Sending a Message ... 614

Using Message Converters .. 615
SessionCallback and ProducerCallback .. 616

22.4. Receiving a message ... 616
Synchronous Reception ... 616
Asynchronous Reception - Message-Driven POJOs .. 616
The SessionAwareMessageListener interface ... 617
The MessageListenerAdapter .. 617
Processing messages within transactions .. 619

22.5. Support for JCA Message Endpoints .. 620
22.6. JMS Namespace Support .. 622

23. JMX ... 627
23.1. Introduction ... 627
23.2. Exporting your beans to JMX .. 627

Spring Framework

3.1 Reference Documentation xx

Creating an MBeanServer ... 628
Reusing an existing MBeanServer ... 629
Lazy-initialized MBeans ... 630
Automatic registration of MBeans ... 630
Controlling the registration behavior .. 630

23.3. Controlling the management interface of your beans 632
The MBeanInfoAssembler Interface .. 632
Using Source-Level Metadata (JDK 5.0 annotations) 632
Source-Level Metadata Types ... 634
The AutodetectCapableMBeanInfoAssembler interface 636
Defining management interfaces using Java interfaces 637
Using MethodNameBasedMBeanInfoAssembler .. 638

23.4. Controlling the ObjectNames for your beans .. 638
Reading ObjectNames from Properties ... 639
Using the MetadataNamingStrategy ... 640
The <context:mbean-export/> element ... 640

23.5. JSR-160 Connectors ... 641
Server-side Connectors ... 641
Client-side Connectors .. 642
JMX over Burlap/Hessian/SOAP ... 642

23.6. Accessing MBeans via Proxies .. 643
23.7. Notifications .. 643

Registering Listeners for Notifications ... 643
Publishing Notifications .. 647

23.8. Further Resources ... 648
24. JCA CCI ... 649

24.1. Introduction ... 649
24.2. Configuring CCI .. 649

Connector configuration .. 649
ConnectionFactory configuration in Spring .. 650
Configuring CCI connections .. 651
Using a single CCI connection ... 651

24.3. Using Spring's CCI access support ... 652
Record conversion .. 652
The CciTemplate .. 653
DAO support .. 654
Automatic output record generation ... 655
Summary ... 655
Using a CCI Connection and Interaction directly .. 656
Example for CciTemplate usage .. 657

24.4. Modeling CCI access as operation objects .. 659
MappingRecordOperation ... 659
MappingCommAreaOperation ... 660
Automatic output record generation ... 660
Summary ... 660

Spring Framework

3.1 Reference Documentation xxi

Example for MappingRecordOperation usage ... 661
Example for MappingCommAreaOperation usage .. 663

24.5. Transactions ... 664
25. Email ... 666

25.1. Introduction ... 666
25.2. Usage .. 666

Basic MailSender and SimpleMailMessage usage ... 667
Using the JavaMailSender and the MimeMessagePreparator 668

25.3. Using the JavaMail MimeMessageHelper .. 669
Sending attachments and inline resources ... 669

Attachments ... 669
Inline resources .. 669

Creating email content using a templating library ... 670
A Velocity-based example .. 671

26. Task Execution and Scheduling .. 673
26.1. Introduction ... 673
26.2. The Spring TaskExecutor abstraction ... 673

TaskExecutor types ... 673
Using a TaskExecutor ... 675

26.3. The Spring TaskScheduler abstraction ... 676
The Trigger interface .. 676
Trigger implementations ... 677
TaskScheduler implementations .. 677

26.4. The Task Namespace .. 678
The 'scheduler' element ... 678
The 'executor' element .. 678
The 'scheduled-tasks' element .. 679

26.5. Annotation Support for Scheduling and Asynchronous Execution 680
The @Scheduled Annotation ... 680
The @Async Annotation ... 681
The <annotation-driven> Element .. 682

26.6. Using the OpenSymphony Quartz Scheduler .. 682
Using the JobDetailBean ... 682
Using the MethodInvokingJobDetailFactoryBean ... 683
Wiring up jobs using triggers and the SchedulerFactoryBean 684

26.7. Using JDK Timer support ... 685
Creating custom timers ... 685
Using the MethodInvokingTimerTaskFactoryBean ... 685
Wrapping up: setting up the tasks using the TimerFactoryBean 686

27. Dynamic language support ... 687
27.1. Introduction ... 687
27.2. A first example ... 687
27.3. Defining beans that are backed by dynamic languages 689

Common concepts .. 689
The <lang:language/> element ... 690

Spring Framework

3.1 Reference Documentation xxii

Refreshable beans ... 690
Inline dynamic language source files .. 693
Understanding Constructor Injection in the context of
dynamic-language-backed beans .. 693

JRuby beans ... 694
Groovy beans ... 696

Customising Groovy objects via a callback ... 698
BeanShell beans ... 699

27.4. Scenarios ... 700
Scripted Spring MVC Controllers .. 700
Scripted Validators ... 701

27.5. Bits and bobs ... 702
AOP - advising scripted beans ... 702
Scoping .. 702

27.6. Further Resources ... 703
28. Cache Abstraction ... 704

28.1. Introduction ... 704
28.2. Understanding the cache abstraction .. 704
28.3. Declarative annotation-based caching .. 705

@Cacheable annotation ... 705
Default Key Generation .. 706
Custom Key Generation Declaration .. 706
Conditional caching .. 707
Available caching SpEL evaluation context .. 707

@CachePut annotation .. 708
@CacheEvict annotation ... 708
@Caching annotation .. 709
Enable caching annotations ... 709
Using custom annotations ... 712

28.4. Declarative XML-based caching ... 713
28.5. Configuring the cache storage ... 714

JDK ConcurrentMap-based Cache ... 714
Ehcache-based Cache .. 714
Dealing with caches without a backing store ... 714

28.6. Plugging-in different back-end caches ... 715
28.7. How can I set the TTL/TTI/Eviction policy/XXX feature? 715

VII. Appendices ... 716
A. Classic Spring Usage .. 717

A.1. Classic ORM usage ... 717
Hibernate ... 717

The HibernateTemplate ... 717
Implementing Spring-based DAOs without callbacks 718

JDO ... 719
JdoTemplate and JdoDaoSupport ... 719

JPA ... 720

Spring Framework

3.1 Reference Documentation xxiii

JpaTemplate and JpaDaoSupport ... 720
A.2. Classic Spring MVC .. 721
A.3. JMS Usage .. 722

JmsTemplate .. 722
Asynchronous Message Reception ... 722
Connections ... 723
Transaction Management .. 723

B. Classic Spring AOP Usage .. 724
B.1. Pointcut API in Spring ... 724

Concepts .. 724
Operations on pointcuts ... 725
AspectJ expression pointcuts ... 725
Convenience pointcut implementations .. 725

Static pointcuts ... 725
Dynamic pointcuts .. 727

Pointcut superclasses .. 727
Custom pointcuts .. 728

B.2. Advice API in Spring ... 728
Advice lifecycles .. 728
Advice types in Spring .. 728

Interception around advice .. 728
Before advice ... 729
Throws advice .. 730
After Returning advice .. 731
Introduction advice ... 732

B.3. Advisor API in Spring ... 735
B.4. Using the ProxyFactoryBean to create AOP proxies ... 735

Basics .. 735
JavaBean properties .. 736
JDK- and CGLIB-based proxies .. 737
Proxying interfaces ... 738
Proxying classes ... 740
Using 'global' advisors .. 740

B.5. Concise proxy definitions ... 741
B.6. Creating AOP proxies programmatically with the ProxyFactory 742
B.7. Manipulating advised objects ... 742
B.8. Using the "autoproxy" facility .. 744

Autoproxy bean definitions ... 744
BeanNameAutoProxyCreator .. 744
DefaultAdvisorAutoProxyCreator .. 745
AbstractAdvisorAutoProxyCreator .. 746

Using metadata-driven auto-proxying .. 746
B.9. Using TargetSources .. 749

Hot swappable target sources ... 749
Pooling target sources ... 750

Spring Framework

3.1 Reference Documentation xxiv

Prototype target sources .. 751
ThreadLocal target sources .. 751

B.10. Defining new Advice types .. 752
B.11. Further resources ... 752

C. XML Schema-based configuration .. 754
C.1. Introduction .. 754
C.2. XML Schema-based configuration .. 755

Referencing the schemas ... 755
The util schema .. 756

<util:constant/> .. 756
<util:property-path/> ... 758
<util:properties/> .. 759
<util:list/> .. 760
<util:map/> .. 761
<util:set/> .. 761

The jee schema ... 762
<jee:jndi-lookup/> (simple) ... 762
<jee:jndi-lookup/> (with single JNDI environment setting) 763
<jee:jndi-lookup/> (with multiple JNDI environment settings) 763
<jee:jndi-lookup/> (complex) .. 764
<jee:local-slsb/> (simple) .. 764
<jee:local-slsb/> (complex) ... 764
<jee:remote-slsb/> .. 765

The lang schema ... 765
The jms schema .. 766
The tx (transaction) schema ... 766
The aop schema .. 767
The context schema .. 767

<property-placeholder/> .. 768
<annotation-config/> .. 768
<component-scan/> .. 768
<load-time-weaver/> ... 768
<spring-configured/> .. 768
<mbean-export/> .. 768

The tool schema ... 769
The beans schema ... 769

D. Extensible XML authoring .. 770
D.1. Introduction .. 770
D.2. Authoring the schema .. 770
D.3. Coding a NamespaceHandler ... 772
D.4. Coding a BeanDefinitionParser .. 772
D.5. Registering the handler and the schema ... 773

'META-INF/spring.handlers' ... 774
'META-INF/spring.schemas' ... 774

D.6. Using a custom extension in your Spring XML configuration 774

Spring Framework

3.1 Reference Documentation xxv

D.7. Meatier examples .. 775
Nesting custom tags within custom tags ... 775
Custom attributes on 'normal' elements .. 778

D.8. Further Resources .. 780
E. spring-beans-2.0.dtd ... 781
F. spring.tld .. 792

F.1. Introduction ... 792
F.2. The bind tag .. 792
F.3. The escapeBody tag ... 793
F.4. The hasBindErrors tag .. 793
F.5. The htmlEscape tag .. 793
F.6. The message tag ... 794
F.7. The nestedPath tag ... 794
F.8. The theme tag .. 795
F.9. The transform tag ... 795
F.10. The url tag ... 796
F.11. The eval tag ... 796

G. spring-form.tld ... 798
G.1. Introduction .. 798
G.2. The checkbox tag .. 798
G.3. The checkboxes tag ... 800
G.4. The errors tag .. 802
G.5. The form tag ... 803
G.6. The hidden tag .. 805
G.7. The input tag ... 805
G.8. The label tag ... 807
G.9. The option tag ... 809
G.10. The options tag .. 810
G.11. The password tag ... 811
G.12. The radiobutton tag .. 813
G.13. The radiobuttons tag .. 815
G.14. The select tag .. 817
G.15. The textarea tag ... 819

Spring Framework

3.1 Reference Documentation xxvi

Part I. Overview of Spring Framework
The Spring Framework is a lightweight solution and a potential one-stop-shop for building your
enterprise-ready applications. However, Spring is modular, allowing you to use only those parts that you
need, without having to bring in the rest. You can use the IoC container, with Struts on top, but you can
also use only the Hibernate integration code or the JDBC abstraction layer. The Spring Framework
supports declarative transaction management, remote access to your logic through RMI or web services,
and various options for persisting your data. It offers a full-featured MVC framework, and enables you to
integrate AOP transparently into your software.

Spring is designed to be non-intrusive, meaning that your domain logic code generally has no
dependencies on the framework itself. In your integration layer (such as the data access layer), some
dependencies on the data access technology and the Spring libraries will exist. However, it should be easy
to isolate these dependencies from the rest of your code base.

This document is a reference guide to Spring Framework features. If you have any requests, comments, or
questions on this document, please post them on the user mailing list or on the support forums at
http://forum.springsource.org/.

http://forum.springsource.org/

1. Introduction to Spring Framework
Spring Framework is a Java platform that provides comprehensive infrastructure support for developing
Java applications. Spring handles the infrastructure so you can focus on your application.

Spring enables you to build applications from “plain old Java objects” (POJOs) and to apply enterprise
services non-invasively to POJOs. This capability applies to the Java SE programming model and to full
and partial Java EE.

Examples of how you, as an application developer, can use the Spring platform advantage:

• Make a Java method execute in a database transaction without having to deal with transaction APIs.

• Make a local Java method a remote procedure without having to deal with remote APIs.

• Make a local Java method a management operation without having to deal with JMX APIs.

• Make a local Java method a message handler without having to deal with JMS APIs.

1.1 Dependency Injection and Inversion of Control

Background

“The question is, what aspect of control are [they] inverting?” Martin Fowler posed this question
about Inversion of Control (IoC) on his site in 2004. Fowler suggested renaming the principle to
make it more self-explanatory and came up with Dependency Injection.

For insight into IoC and DI, refer to Fowler's article at
http://martinfowler.com/articles/injection.html.

Java applications -- a loose term that runs the gamut from constrained applets to n-tier server-side
enterprise applications -- typically consist of objects that collaborate to form the application proper. Thus
the objects in an application have dependencies on each other.

Although the Java platform provides a wealth of application development functionality, it lacks the means
to organize the basic building blocks into a coherent whole, leaving that task to architects and developers.
True, you can use design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service
Locator to compose the various classes and object instances that make up an application. However, these
patterns are simply that: best practices given a name, with a description of what the pattern does, where to
apply it, the problems it addresses, and so forth. Patterns are formalized best practices that you must
implement yourself in your application.

The Spring Framework Inversion of Control (IoC) component addresses this concern by providing a

Spring Framework

3.1 Reference Documentation 2

http://martinfowler.com/articles/injection.html

formalized means of composing disparate components into a fully working application ready for use. The
Spring Framework codifies formalized design patterns as first-class objects that you can integrate into
your own application(s). Numerous organizations and institutions use the Spring Framework in this
manner to engineer robust, maintainable applications.

1.2 Modules

The Spring Framework consists of features organized into about 20 modules. These modules are grouped
into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming),
Instrumentation, and Test, as shown in the following diagram.

Overview of the Spring Framework

Core Container

The Core Container consists of the Core, Beans, Context, and Expression Language modules.

Spring Framework

3.1 Reference Documentation 3

The Core and Beans modules provide the fundamental parts of the framework, including the IoC and
Dependency Injection features. The BeanFactory is a sophisticated implementation of the factory
pattern. It removes the need for programmatic singletons and allows you to decouple the configuration
and specification of dependencies from your actual program logic.

The Context module builds on the solid base provided by the Core and Beans modules: it is a means to
access objects in a framework-style manner that is similar to a JNDI registry. The Context module
inherits its features from the Beans module and adds support for internationalization (using, for example,
resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by, for
example, a servlet container. The Context module also supports Java EE features such as EJB, JMX ,and
basic remoting. The ApplicationContext interface is the focal point of the Context module.

The Expression Language module provides a powerful expression language for querying and
manipulating an object graph at runtime. It is an extension of the unified expression language (unified
EL) as specified in the JSP 2.1 specification. The language supports setting and getting property values,
property assignment, method invocation, accessing the context of arrays, collections and indexers, logical
and arithmetic operators, named variables, and retrieval of objects by name from Spring's IoC container.
It also supports list projection and selection as well as common list aggregations.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS and Transaction modules.

The JDBC module provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding
and parsing of database-vendor specific error codes.

The ORM module provides integration layers for popular object-relational mapping APIs, including JPA,
JDO, Hibernate, and iBatis. Using the ORM package you can use all of these O/R-mapping frameworks
in combination with all of the other features Spring offers, such as the simple declarative transaction
management feature mentioned previously.

The OXM module provides an abstraction layer that supports Object/XML mapping implementations for
JAXB, Castor, XMLBeans, JiBX and XStream.

The Java Messaging Service (JMS) module contains features for producing and consuming messages.

The Transaction module supports programmatic and declarative transaction management for classes that
implement special interfaces and for all your POJOs (plain old Java objects).

Web

The Web layer consists of the Web, Web-Servlet, Web-Struts, and Web-Portlet modules.

Spring's Web module provides basic web-oriented integration features such as multipart file-upload
functionality and the initialization of the IoC container using servlet listeners and a web-oriented

Spring Framework

3.1 Reference Documentation 4

application context. It also contains the web-related parts of Spring's remoting support.

The Web-Servlet module contains Spring's model-view-controller (MVC) implementation for web
applications. Spring's MVC framework provides a clean separation between domain model code and web
forms, and integrates with all the other features of the Spring Framework.

The Web-Struts module contains the support classes for integrating a classic Struts web tier within a
Spring application. Note that this support is now deprecated as of Spring 3.0. Consider migrating your
application to Struts 2.0 and its Spring integration or to a Spring MVC solution.

The Web-Portlet module provides the MVC implementation to be used in a portlet environment and
mirrors the functionality of Web-Servlet module.

AOP and Instrumentation

Spring's AOP module provides an AOP Alliance-compliant aspect-oriented programming implementation
allowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code that
implements functionality that should be separated. Using source-level metadata functionality, you can
also incorporate behavioral information into your code, in a manner similar to that of .NET attributes.

The separate Aspects module provides integration with AspectJ.

The Instrumentation module provides class instrumentation support and classloader implementations to
be used in certain application servers.

Test

The Test module supports the testing of Spring components with JUnit or TestNG. It provides consistent
loading of Spring ApplicationContexts and caching of those contexts. It also provides mock objects that
you can use to test your code in isolation.

1.3 Usage scenarios

The building blocks described previously make Spring a logical choice in many scenarios, from applets to
full-fledged enterprise applications that use Spring's transaction management functionality and web
framework integration.

Spring Framework

3.1 Reference Documentation 5

Typical full-fledged Spring web application

Spring's declarative transaction management features make the web application fully transactional, just as
it would be if you used EJB container-managed transactions. All your custom business logic can be
implemented with simple POJOs and managed by Spring's IoC container. Additional services include
support for sending email and validation that is independent of the web layer, which lets you choose
where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and
iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and
standard Hibernate SessionFactory configuration. Form controllers seamlessly integrate the
web-layer with the domain model, removing the need for ActionForms or other classes that transform
HTTP parameters to values for your domain model.

Spring Framework

3.1 Reference Documentation 6

Spring middle-tier using a third-party web framework

Sometimes circumstances do not allow you to completely switch to a different framework. The Spring
Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built with WebWork, Struts, Tapestry, or other UI frameworks can be integrated with a
Spring-based middle-tier, which allows you to use Spring transaction features. You simply need to wire
up your business logic using an ApplicationContext and use a WebApplicationContext to
integrate your web layer.

Spring Framework

3.1 Reference Documentation 7

Remoting usage scenario

When you need to access existing code through web services, you can use Spring's Hessian-,
Burlap-, Rmi- or JaxRpcProxyFactory classes. Enabling remote access to existing applications
is not difficult.

Spring Framework

3.1 Reference Documentation 8

EJBs - Wrapping existing POJOs

The Spring Framework also provides an access and abstraction layer for Enterprise JavaBeans, enabling
you to reuse your existing POJOs and wrap them in stateless session beans for use in scalable, fail-safe
web applications that might need declarative security.

Dependency Management and Naming Conventions

Dependency management and dependency injection are different things. To get those nice features of
Spring into your application (like dependency injection) you need to assemble all the libraries needed (jar
files) and get them onto your classpath at runtime, and possibly at compile time. These dependencies are
not virtual components that are injected, but physical resources in a file system (typically). The process of
dependency management involves locating those resources, storing them and adding them to classpaths.
Dependencies can be direct (e.g. my application depends on Spring at runtime), or indirect (e.g. my
application depends on commons-dbcp which depends on commons-pool). The indirect
dependencies are also known as "transitive" and it is those dependencies that are hardest to identify and
manage.

If you are going to use Spring you need to get a copy of the jar libraries that comprise the pieces of Spring
that you need. To make this easier Spring is packaged as a set of modules that separate the dependencies
as much as possible, so for example if you don't want to write a web application you don't need the
spring-web modules. To refer to Spring library modules in this guide we use a shorthand naming
convention spring-* or spring-*.jar, where "*" represents the short name for the module (e.g.
spring-core, spring-webmvc, spring-jms, etc.). The actual jar file name that you use may be

Spring Framework

3.1 Reference Documentation 9

in this form (see below) or it may not, and normally it also has a version number in the file name (e.g.
spring-core-3.0.0.RELEASE.jar).

In general, Spring publishes its artifacts to four different places:

• On the community download site http://www.springsource.org/downloads/community. Here you find
all the Spring jars bundled together into a zip file for easy download. The names of the jars here since
version 3.0 are in the form org.springframework.*-<version>.jar.

• Maven Central, which is the default repository that Maven queries, and does not require any special
configuration to use. Many of the common libraries that Spring depends on also are available from
Maven Central and a large section of the Spring community uses Maven for dependency management,
so this is convenient for them. The names of the jars here are in the form
spring-*-<version>.jar and the Maven groupId is org.springframework.

• The Enterprise Bundle Repository (EBR), which is run by SpringSource and also hosts all the libraries
that integrate with Spring. Both Maven and Ivy repositories are available here for all Spring jars and
their dependencies, plus a large number of other common libraries that people use in applications with
Spring. Both full releases and also milestones and development snapshots are deployed here. The
names of the jar files are in the same form as the community download
(org.springframework.*-<version>.jar), and the dependencies are also in this "long"
form, with external libraries (not from SpringSource) having the prefix com.springsource. See
the FAQ for more information.

• In a public Maven repository hosted on Amazon S3 for development snapshots and milestone releases
(a copy of the final releases is also held here). The jar file names are in the same form as Maven
Central, so this is a useful place to get development versions of Spring to use with other libraries
depoyed in Maven Central.

So the first thing you need to decide is how to manage your dependencies: most people use an automated
system like Maven or Ivy, but you can also do it manually by downloading all the jars yourself. When
obtaining Spring with Maven or Ivy you have then to decide which place you'll get it from. In general, if
you care about OSGi, use the EBR, since it houses OSGi compatible artifacts for all of Spring's
dependencies, such as Hibernate and Freemarker. If OSGi does not matter to you, either place works,
though there are some pros and cons between them. In general, pick one place or the other for your
project; do not mix them. This is particularly important since EBR artifacts necessarily use a different
naming convention than Maven Central artifacts.

Table 1.1. Comparison of Maven Central and SpringSource EBR Repositories

Feature Maven Central EBR

OSGi Compatible Not explicit Yes

Number of Artifacts Tens of thousands; all kinds Hundreds; those that Spring
integrates with

Spring Framework

3.1 Reference Documentation 10

http://www.springsource.org/downloads/community
http://www.springsource.com/repository/app/faq

Feature Maven Central EBR

Consistent Naming Conventions No Yes

Naming Convention: GroupId Varies. Newer artifacts often use
domain name, e.g. org.slf4j.
Older ones often just use the
artifact name, e.g. log4j.

Domain name of origin or main
package root, e.g.
org.springframework

Naming Convention: ArtifactId Varies. Generally the project or
module name, using a hyphen "-"
separator, e.g. spring-core, logj4.

Bundle Symbolic Name, derived
from the main package root, e.g.
org.springframework.beans. If
the jar had to be patched to
ensure OSGi compliance then
com.springsource is appended,
e.g.
com.springsource.org.apache.log4j

Naming Convention: Version Varies. Many new artifacts use
m.m.m or m.m.m.X (with
m=digit, X=text). Older ones use
m.m. Some neither. Ordering is
defined but not often relied on,
so not strictly reliable.

OSGi version number m.m.m.X,
e.g. 3.0.0.RC3. The text qualifier
imposes alphabetic ordering on
versions with the same numeric
values.

Publishing Usually automatic via rsync or
source control updates. Project
authors can upload individual
jars to JIRA.

Manual (JIRA processed by
SpringSource)

Quality Assurance By policy. Accuracy is
responsibility of authors.

Extensive for OSGi manifest,
Maven POM and Ivy metadata.
QA performed by Spring team.

Hosting Contegix. Funded by Sonatype
with several mirrors.

S3 funded by SpringSource.

Search Utilities Various http://www.springsource.com/repository

Integration with SpringSource
Tools

Integration through STS with
Maven dependency management

Extensive integration through
STS with Maven, Roo,
CloudFoundry

Spring Dependencies and Depending on Spring

Although Spring provides integration and support for a huge range of enterprise and other external tools,
it intentionally keeps its mandatory dependencies to an absolute minimum: you shouldn't have to locate

Spring Framework

3.1 Reference Documentation 11

http://www.springsource.com/repository

and download (even automatically) a large number of jar libraries in order to use Spring for simple use
cases. For basic dependency injection there is only one mandatory external dependency, and that is for
logging (see below for a more detailed description of logging options).

Next we outline the basic steps needed to configure an application that depends on Spring, first with
Maven and then with Ivy. In all cases, if anything is unclear, refer to the documentation of your
dependency management system, or look at some sample code - Spring itself uses Ivy to manage
dependencies when it is building, and our samples mostly use Maven.

Maven Dependency Management

If you are using Maven for dependency management you don't even need to supply the logging
dependency explicitly. For example, to create an application context and use dependency injection to
configure an application, your Maven dependencies will look like this:

<dependencies>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>3.0.0.RELEASE</version>
<scope>runtime</scope>

</dependency>
</dependencies>

That's it. Note the scope can be declared as runtime if you don't need to compile against Spring APIs,
which is typically the case for basic dependency injection use cases.

We used the Maven Central naming conventions in the example above, so that works with Maven Central
or the SpringSource S3 Maven repository. To use the S3 Maven repository (e.g. for milestones or
developer snaphots), you need to specify the repository location in your Maven configuration. For full
releases:

<repositories>
<repository>

<id>com.springsource.repository.maven.release</id>
<url>http://maven.springframework.org/release/</url>
<snapshots><enabled>false</enabled></snapshots>

</repository>
</repositories>

For milestones:

<repositories>
<repository>

<id>com.springsource.repository.maven.milestone</id>
<url>http://maven.springframework.org/milestone/</url>
<snapshots><enabled>false</enabled></snapshots>

</repository>
</repositories>

And for snapshots:

Spring Framework

3.1 Reference Documentation 12

<repositories>
<repository>

<id>com.springsource.repository.maven.snapshot</id>
<url>http://maven.springframework.org/snapshot/</url>
<snapshots><enabled>true</enabled></snapshots>

</repository>
</repositories>

To use the SpringSource EBR you would need to use a different naming convention for the dependencies.
The names are usually easy to guess, e.g. in this case it is:

<dependencies>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>org.springframework.context</artifactId>
<version>3.0.0.RELEASE</version>
<scope>runtime</scope>

</dependency>
</dependencies>

You also need to declare the location of the repository explicitly (only the URL is important):

<repositories>
<repository>

<id>com.springsource.repository.bundles.release</id>
<url>http://repository.springsource.com/maven/bundles/release/</url>

</repository>
</repositories>

If you are managing your dependencies by hand, the URL in the repository declaration above is not
browseable, but there is a user interface at http://www.springsource.com/repository that can be used to
search for and download dependencies. It also has handy snippets of Maven and Ivy configuration that
you can copy and paste if you are using those tools.

Ivy Dependency Management

If you prefer to use Ivy to manage dependencies then there are similar names and configuration options.

To configure Ivy to point to the SpringSource EBR add the following resolvers to your
ivysettings.xml:

<resolvers>

<url name="com.springsource.repository.bundles.release">

<ivy pattern="http://repository.springsource.com/ivy/bundles/release/
[organisation]/[module]/[revision]/[artifact]-[revision].[ext]" />

<artifact pattern="http://repository.springsource.com/ivy/bundles/release/
[organisation]/[module]/[revision]/[artifact]-[revision].[ext]" />

</url>

<url name="com.springsource.repository.bundles.external">

<ivy pattern="http://repository.springsource.com/ivy/bundles/external/
[organisation]/[module]/[revision]/[artifact]-[revision].[ext]" />

<artifact pattern="http://repository.springsource.com/ivy/bundles/external/

Spring Framework

3.1 Reference Documentation 13

http://www.springsource.com/repository
http://ant.apache.org/ivy

[organisation]/[module]/[revision]/[artifact]-[revision].[ext]" />

</url>

</resolvers>

The XML above is not valid because the lines are too long - if you copy-paste then remove the extra line
endings in the middle of the url patterns.

Once Ivy is configured to look in the EBR adding a dependency is easy. Simply pull up the details page
for the bundle in question in the repository browser and you'll find an Ivy snippet ready for you to include
in your dependencies section. For example (in ivy.xml):

<dependency org="org.springframework"
name="org.springframework.core" rev="3.0.0.RELEASE" conf="compile->runtime"/>

Logging

Logging is a very important dependency for Spring because a) it is the only mandatory external
dependency, b) everyone likes to see some output from the tools they are using, and c) Spring integrates
with lots of other tools all of which have also made a choice of logging dependency. One of the goals of
an application developer is often to have unified logging configured in a central place for the whole
application, including all external components. This is more difficult than it might have been since there
are so many choices of logging framework.

The mandatory logging dependency in Spring is the Jakarta Commons Logging API (JCL). We compile
against JCL and we also make JCL Log objects visible for classes that extend the Spring Framework. It's
important to users that all versions of Spring use the same logging library: migration is easy because
backwards compatibility is preserved even with applications that extend Spring. The way we do this is to
make one of the modules in Spring depend explicitly on commons-logging (the canonical
implementation of JCL), and then make all the other modules depend on that at compile time. If you are
using Maven for example, and wondering where you picked up the dependency on
commons-logging, then it is from Spring and specifically from the central module called
spring-core.

The nice thing about commons-logging is that you don't need anything else to make your application
work. It has a runtime discovery algorithm that looks for other logging frameworks in well known places
on the classpath and uses one that it thinks is appropriate (or you can tell it which one if you need to). If
nothing else is available you get pretty nice looking logs just from the JDK (java.util.logging or JUL for
short). You should find that your Spring application works and logs happily to the console out of the box
in most situations, and that's important.

Not Using Commons Logging

Unfortunately, the runtime discovery algorithm in commons-logging, while convenient for the
end-user, is problematic. If we could turn back the clock and start Spring now as a new project it would

Spring Framework

3.1 Reference Documentation 14

use a different logging dependency. The first choice would probably be the Simple Logging Facade for
Java (SLF4J), which is also used by a lot of other tools that people use with Spring inside their
applications.

Switching off commons-logging is easy: just make sure it isn't on the classpath at runtime. In Maven
terms you exclude the dependency, and because of the way that the Spring dependencies are declared, you
only have to do that once.

<dependencies>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>3.0.0.RELEASE</version>
<scope>runtime</scope>
<exclusions>

<exclusion>
<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>

</exclusion>
</exclusions>

</dependency>
</dependencies>

Now this application is probably broken because there is no implementation of the JCL API on the
classpath, so to fix it a new one has to be provided. In the next section we show you how to provide an
alternative implementation of JCL using SLF4J as an example.

Using SLF4J

SLF4J is a cleaner dependency and more efficient at runtime than commons-logging because it uses
compile-time bindings instead of runtime discovery of the other logging frameworks it integrates. This
also means that you have to be more explicit about what you want to happen at runtime, and declare it or
configure it accordingly. SLF4J provides bindings to many common logging frameworks, so you can
usually choose one that you already use, and bind to that for configuration and management.

SLF4J provides bindings to many common logging frameworks, including JCL, and it also does the
reverse: bridges between other logging frameworks and itself. So to use SLF4J with Spring you need to
replace the commons-logging dependency with the SLF4J-JCL bridge. Once you have done that then
logging calls from within Spring will be translated into logging calls to the SLF4J API, so if other
libraries in your application use that API, then you have a single place to configure and manage logging.

A common choice might be to bridge Spring to SLF4J, and then provide explicit binding from SLF4J to
Log4J. You need to supply 4 dependencies (and exclude the existing commons-logging): the bridge,
the SLF4J API, the binding to Log4J, and the Log4J implementation itself. In Maven you would do that
like this

<dependencies>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>3.0.0.RELEASE</version>
<scope>runtime</scope>
<exclusions>

Spring Framework

3.1 Reference Documentation 15

http://www.slf4j.org

<exclusion>
<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.slf4j</groupId>
<artifactId>jcl-over-slf4j</artifactId>
<version>1.5.8</version>
<scope>runtime</scope>

</dependency>
<dependency>

<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.5.8</version>
<scope>runtime</scope>

</dependency>
<dependency>

<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.5.8</version>
<scope>runtime</scope>

</dependency>
<dependency>

<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>
<scope>runtime</scope>

</dependency>
</dependencies>

That might seem like a lot of dependencies just to get some logging. Well it is, but it is optional, and it
should behave better than the vanilla commons-logging with respect to classloader issues, notably if
you are in a strict container like an OSGi platform. Allegedly there is also a performance benefit because
the bindings are at compile-time not runtime.

A more common choice amongst SLF4J users, which uses fewer steps and generates fewer dependencies,
is to bind directly to Logback. This removes the extra binding step because Logback implements SLF4J
directly, so you only need to depend on two libaries not four (jcl-over-slf4j and logback). If you
do that you might also need to exlude the slf4j-api dependency from other external dependencies (not
Spring), because you only want one version of that API on the classpath.

Using Log4J

Many people use Log4j as a logging framework for configuration and management purposes. It's efficient
and well-established, and in fact it's what we use at runtime when we build and test Spring. Spring also
provides some utilities for configuring and initializing Log4j, so it has an optional compile-time
dependency on Log4j in some modules.

To make Log4j work with the default JCL dependency (commons-logging) all you need to do is put
Log4j on the classpath, and provide it with a configuration file (log4j.properties or log4j.xml
in the root of the classpath). So for Maven users this is your dependency declaration:

<dependencies>
<dependency>

Spring Framework

3.1 Reference Documentation 16

http://logback.qos.ch
http://logging.apache.org/log4j

<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>3.0.0.RELEASE</version>
<scope>runtime</scope>

</dependency>
<dependency>

<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>
<scope>runtime</scope>

</dependency>
</dependencies>

And here's a sample log4j.properties for logging to the console:

log4j.rootCategory=INFO, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %t %c{2}:%L - %m%n

log4j.category.org.springframework.beans.factory=DEBUG

Runtime Containers with Native JCL

Many people run their Spring applications in a container that itself provides an implementation of JCL.
IBM Websphere Application Server (WAS) is the archetype. This often causes problems, and
unfortunately there is no silver bullet solution; simply excluding commons-logging from your
application is not enough in most situations.

To be clear about this: the problems reported are usually not with JCL per se, or even with
commons-logging: rather they are to do with binding commons-logging to another framework
(often Log4J). This can fail because commons-logging changed the way they do the runtime
discovery in between the older versions (1.0) found in some containers and the modern versions that most
people use now (1.1). Spring does not use any unusual parts of the JCL API, so nothing breaks there, but
as soon as Spring or your application tries to do any logging you can find that the bindings to Log4J are
not working.

In such cases with WAS the easiest thing to do is to invert the class loader hierarchy (IBM calls it "parent
last") so that the application controls the JCL dependency, not the container. That option isn't always
open, but there are plenty of other suggestions in the public domain for alternative approaches, and your
mileage may vary depending on the exact version and feature set of the container.

Spring Framework

3.1 Reference Documentation 17

Part II. What's New in Spring 3

2. New Features and Enhancements in Spring 3.0
If you have been using the Spring Framework for some time, you will be aware that Spring has undergone
two major revisions: Spring 2.0, released in October 2006, and Spring 2.5, released in November 2007. It
is now time for a third overhaul resulting in Spring 3.0.

Java SE and Java EE Support

The Spring Framework is now based on Java 5, and Java 6 is fully supported.

Furthermore, Spring is compatible with J2EE 1.4 and Java EE 5, while at the same time introducing
some early support for Java EE 6.

2.1 Java 5

The entire framework code has been revised to take advantage of Java 5 features like generics, varargs
and other language improvements. We have done our best to still keep the code backwards compatible.
We now have consistent use of generic Collections and Maps, consistent use of generic FactoryBeans,
and also consistent resolution of bridge methods in the Spring AOP API. Generic ApplicationListeners
automatically receive specific event types only. All callback interfaces such as TransactionCallback and
HibernateCallback declare a generic result value now. Overall, the Spring core codebase is now freshly
revised and optimized for Java 5.

Spring's TaskExecutor abstraction has been updated for close integration with Java 5's java.util.concurrent
facilities. We provide first-class support for Callables and Futures now, as well as ExecutorService
adapters, ThreadFactory integration, etc. This has been aligned with JSR-236 (Concurrency Utilities for
Java EE 6) as far as possible. Furthermore, we provide support for asynchronous method invocations
through the use of the new @Async annotation (or EJB 3.1's @Asynchronous annotation).

2.2 Improved documentation

The Spring reference documentation has also substantially been updated to reflect all of the changes and
new features for Spring 3.0. While every effort has been made to ensure that there are no errors in this
documentation, some errors may nevertheless have crept in. If you do spot any typos or even more serious
errors, and you can spare a few cycles during lunch, please do bring the error to the attention of the
Spring team by raising an issue.

2.3 New articles and tutorials

Spring Framework

3.1 Reference Documentation 19

http://jira.springframework.org/

There are many excellent articles and tutorials that show how to get started with Spring 3 features. Read
them at the Spring Documentation page.

The samples have been improved and updated to take advantage of the new features in Spring 3.
Additionally, the samples have been moved out of the source tree into a dedicated SVN repository
available at:

https://anonsvn.springframework.org/svn/spring-samples/

As such, the samples are no longer distributed alongside Spring 3 and need to be downloaded separately
from the repository mentioned above. However, this documentation will continue to refer to some
samples (in particular Petclinic) to illustrate various features.

Note
For more information on Subversion (or in short SVN), see the project homepage at:
http://subversion.apache.org/

2.4 New module organization and build system

The framework modules have been revised and are now managed separately with one source-tree per
module jar:

• org.springframework.aop

• org.springframework.beans

• org.springframework.context

• org.springframework.context.support

• org.springframework.expression

• org.springframework.instrument

• org.springframework.jdbc

• org.springframework.jms

• org.springframework.orm

• org.springframework.oxm

• org.springframework.test

• org.springframework.transaction

Spring Framework

3.1 Reference Documentation 20

http://www.springsource.org/documentation
https://anonsvn.springframework.org/svn/spring-samples/

• org.springframework.web

• org.springframework.web.portlet

• org.springframework.web.servlet

• org.springframework.web.struts

Note:

The spring.jar artifact that contained almost the entire framework is no longer provided.

We are now using a new Spring build system as known from Spring Web Flow 2.0. This gives us:

• Ivy-based "Spring Build" system

• consistent deployment procedure

• consistent dependency management

• consistent generation of OSGi manifests

2.5 Overview of new features

This is a list of new features for Spring 3.0. We will cover these features in more detail later in this
section.

• Spring Expression Language

• IoC enhancements/Java based bean metadata

• General-purpose type conversion system and field formatting system

• Object to XML mapping functionality (OXM) moved from Spring Web Services project

• Comprehensive REST support

• @MVC additions

• Declarative model validation

• Early support for Java EE 6

• Embedded database support

Spring Framework

3.1 Reference Documentation 21

Core APIs updated for Java 5

BeanFactory interface returns typed bean instances as far as possible:

• T getBean(Class<T> requiredType)

• T getBean(String name, Class<T> requiredType)

• Map<String, T> getBeansOfType(Class<T> type)

Spring's TaskExecutor interface now extends java.util.concurrent.Executor:

• extended AsyncTaskExecutor supports standard Callables with Futures

New Java 5 based converter API and SPI:

• stateless ConversionService and Converters

• superseding standard JDK PropertyEditors

Typed ApplicationListener<E>

Spring Expression Language

Spring introduces an expression language which is similar to Unified EL in its syntax but offers
significantly more features. The expression language can be used when defining XML and Annotation
based bean definitions and also serves as the foundation for expression language support across the
Spring portfolio. Details of this new functionality can be found in the chapter Spring Expression
Language (SpEL).

The Spring Expression Language was created to provide the Spring community a single, well supported
expression language that can be used across all the products in the Spring portfolio. Its language features
are driven by the requirements of the projects in the Spring portfolio, including tooling requirements for
code completion support within the Eclipse based SpringSource Tool Suite.

The following is an example of how the Expression Language can be used to configure some properties
of a database setup

<bean class="mycompany.RewardsTestDatabase">
<property name="databaseName"

value="#{systemProperties.databaseName}"/>
<property name="keyGenerator"

value="#{strategyBean.databaseKeyGenerator}"/>
</bean>

This functionality is also available if you prefer to configure your components using annotations:

@Repository
public class RewardsTestDatabase {

Spring Framework

3.1 Reference Documentation 22

http://www.springsource.com/products/sts

@Value("#{systemProperties.databaseName}")
public void setDatabaseName(String dbName) { … }

@Value("#{strategyBean.databaseKeyGenerator}")
public void setKeyGenerator(KeyGenerator kg) { … }

}

The Inversion of Control (IoC) container

Java based bean metadata

Some core features from the JavaConfig project have been added to the Spring Framework now. This
means that the following annotations are now directly supported:

• @Configuration

• @Bean

• @DependsOn

• @Primary

• @Lazy

• @Import

• @ImportResource

• @Value

Here is an example of a Java class providing basic configuration using the new JavaConfig features:

package org.example.config;

@Configuration
public class AppConfig {

private @Value("#{jdbcProperties.url}") String jdbcUrl;
private @Value("#{jdbcProperties.username}") String username;
private @Value("#{jdbcProperties.password}") String password;

@Bean
public FooService fooService() {

return new FooServiceImpl(fooRepository());
}

@Bean
public FooRepository fooRepository() {

return new HibernateFooRepository(sessionFactory());
}

@Bean
public SessionFactory sessionFactory() {

// wire up a session factory
AnnotationSessionFactoryBean asFactoryBean =

new AnnotationSessionFactoryBean();

Spring Framework

3.1 Reference Documentation 23

http://www.springsource.org/javaconfig

asFactoryBean.setDataSource(dataSource());
// additional config
return asFactoryBean.getObject();

}

@Bean
public DataSource dataSource() {

return new DriverManagerDataSource(jdbcUrl, username, password);
}

}

To get this to work you need to add the following component scanning entry in your minimal application
context XML file.

<context:component-scan base-package="org.example.config"/>
<util:properties id="jdbcProperties" location="classpath:org/example/config/jdbc.properties"/>

Or you can bootstrap a @Configuration class directly using
AnnotationConfigApplicationContext:

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
FooService fooService = ctx.getBean(FooService.class);
fooService.doStuff();

}

See the section called “Instantiating the Spring container using AnnotationConfigApplicationContext” for
full information on AnnotationConfigApplicationContext.

Defining bean metadata within components

@Bean annotated methods are also supported inside Spring components. They contribute a factory bean
definition to the container. See Defining bean metadata within components for more information

General purpose type conversion system and field formatting system

A general purpose type conversion system has been introduced. The system is currently used by SpEL for
type conversion, and may also be used by a Spring Container and DataBinder when binding bean property
values.

In addition, a formatter SPI has been introduced for formatting field values. This SPI provides a simpler
and more robust alternative to JavaBean PropertyEditors for use in client environments such as Spring
MVC.

The Data Tier

Object to XML mapping functionality (OXM) from the Spring Web Services project has been moved to
the core Spring Framework now. The functionality is found in the org.springframework.oxm
package. More information on the use of the OXM module can be found in the Marshalling XML using
O/X Mappers chapter.

Spring Framework

3.1 Reference Documentation 24

The Web Tier

The most exciting new feature for the Web Tier is the support for building RESTful web services and
web applications. There are also some new annotations that can be used in any web application.

Comprehensive REST support

Server-side support for building RESTful applications has been provided as an extension of the existing
annotation driven MVC web framework. Client-side support is provided by the RestTemplate class in
the spirit of other template classes such as JdbcTemplate and JmsTemplate. Both server and client
side REST functionality make use of HttpConverters to facilitate the conversion between objects and
their representation in HTTP requests and responses.

The MarshallingHttpMessageConverter uses the Object to XML mapping functionality
mentioned earlier.

Refer to the sections on MVC and the RestTemplate for more information.

@MVC additions

A mvc namespace has been introduced that greatly simplifies Spring MVC configuration.

Additional annotations such as @CookieValue and @RequestHeaders have been added. See
Mapping cookie values with the @CookieValue annotation and Mapping request header attributes with
the @RequestHeader annotation for more information.

Declarative model validation

Several validation enhancements, including JSR 303 support that uses Hibernate Validator as the default
provider.

Early support for Java EE 6

We provide support for asynchronous method invocations through the use of the new @Async annotation
(or EJB 3.1's @Asynchronous annotation).

JSR 303, JSF 2.0, JPA 2.0, etc

Support for embedded databases

Convenient support for embedded Java database engines, including HSQL, H2, and Derby, is now
provided.

Spring Framework

3.1 Reference Documentation 25

3. New Features and Enhancements in Spring 3.1
Building on the support introduced in Spring 3.0, Spring 3.1 is currently under development, and at the
time of this writing Spring 3.1 RC1 is being prepared for release.

3.1 Overview of new features

This is a list of new features for Spring 3.1. Most features do not yet have dedicated reference
documentation but do have Javadoc. In such cases, fully-qualified class names are given.

Cache Abstraction

• Chapter 28, Cache Abstraction

• Cache Abstraction (SpringSource team blog)

Bean Definition Profiles

• XML profiles (SpringSource Team Blog)

• Introducing @Profile (SpringSource Team Blog)

• See org.springframework.context.annotation.Configuration Javadoc

• See org.springframework.context.annotation.Profile Javadoc

Environment Abstraction

• Environment Abstraction (SpringSource Team Blog)

• See org.springframework.core.env.Environment Javadoc

PropertySource Abstraction

• Unified Property Management (SpringSource Team Blog)

• See org.springframework.core.env.Environment Javadoc

• See org.springframework.core.env.PropertySource Javadoc

• See org.springframework.context.annotation.PropertySource Javadoc

Spring Framework

3.1 Reference Documentation 26

http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/
http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/
http://blog.springsource.com/2011/02/14/spring-3-1-m1-introducing-profile/
http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/
http://blog.springsource.com/2011/02/15/spring-3-1-m1-unified-property-management/

Code equivalents for Spring's XML namespaces

Code-based equivalents to popular Spring XML namespace elements <context:component-scan/>,
<tx:annotation-driven/> and <mvc:annotation-driven> have been developed, most in the form of
@Enable annotations. These are designed for use in conjunction with Spring's @Configuration
classes, which were introduced in Spring 3.0.

• See org.springframework.context.annotation.Configuration Javadoc

• See org.springframework.context.annotation.ComponentScan Javadoc

• See org.springframework.transaction.annotation.EnableTransactionManagement Javadoc

• See org.springframework.cache.annotation.EnableCaching Javadoc

• See org.springframework.web.servlet.config.annotation.EnableWebMvc Javadoc

• See org.springframework.scheduling.annotation.EnableScheduling Javadoc

• See org.springframework.scheduling.annotation.EnableAsync Javadoc

• See org.springframework.context.annotation.EnableAspectJAutoProxy Javadoc

• See org.springframework.context.annotation.EnableLoadTimeWeaving Javadoc

• See org.springframework.beans.factory.aspectj.EnableSpringConfigured Javadoc

Support for Hibernate 4.x

• See Javadoc for classes within the new org.springframework.orm.hibernate4 package

TestContext framework support for @Configuration classes and bean
definition profiles

The @ContextConfiguration annotation now supports supplying @Configuration classes for
configuring the Spring TestContext. In addition, a new @ActiveProfiles annotation has been
introduced to support declarative configuration of active bean definition profiles in
ApplicationContext integration tests.

• Spring 3.1 M2: Testing with @Configuration Classes and Profiles (SpringSource Team Blog)

• See the section called “Spring TestContext Framework”

• See the section called “Context configuration with @Configuration classes” and
org.springframework.test.context.ContextConfiguration Javadoc

Spring Framework

3.1 Reference Documentation 27

http://blog.springsource.com/2011/06/21/spring-3-1-m2-testing-with-configuration-classes-and-profiles/

• See org.springframework.test.context.ActiveProfiles Javadoc

• See org.springframework.test.context.SmartContextLoader Javadoc

• See
org.springframework.test.context.support.DelegatingSmartContextLoader
Javadoc

• See
org.springframework.test.context.support.AnnotationConfigContextLoader
Javadoc

c: namespace for more concise constructor injection

• the section called “XML shortcut with the c-namespace”

Support for injection against non-standard JavaBeans setters

Prior to Spring 3.1, in order to inject against a property method it had to conform strictly to JavaBeans
property signature rules, namely that any 'setter' method must be void-returning. It is now possible in
Spring XML to specify setter methods that return any object type. This is useful when considering
designing APIs for method-chaining, where setter methods return a reference to 'this'.

Support for Servlet 3 code-based configuration of Servlet Container

The new WebApplicationInitializer builds atop Servlet 3.0's
ServletContainerInitializer support to provide a programmatic alternative to the traditional
web.xml.

• See org.springframework.web.WebApplicationInitializer Javadoc

• Diff from Spring's Greenhouse reference application demonstrating migration from web.xml to
WebApplicationInitializer

Support for Servlet 3 MultipartResolver

• See org.springframework.web.multipart.support.StandardServletMultipartResolver Javadoc

JPA EntityManagerFactory bootstrapping without persistence.xml

In standard JPA, persistence units get defined through META-INF/persistence.xml files in
specific jar files which will in turn get searched for @Entity classes. In many cases, persistence.xml

Spring Framework

3.1 Reference Documentation 28

http://bit.ly/lrDHja

does not contain more than a unit name and relies on defaults and/or external setup for all other concerns
(such as the DataSource to use, etc). For that reason, Spring 3.1 provides an alternative:
LocalContainerEntityManagerFactoryBean accepts a 'packagesToScan' property, specifying
base packages to scan for @Entity classes. This is analogous to
AnnotationSessionFactoryBean's property of the same name for native Hibernate setup, and
also to Spring's component-scan feature for regular Spring beans. Effectively, this allows for XML-free
JPA setup at the mere expense of specifying a base package for entity scanning: a particularly fine match
for Spring applications which rely on component scanning for Spring beans as well, possibly even
bootstrapped using a code-based Servlet 3.0 initializer.

New HandlerMethod-based Support Classes For Annotated Controller
Processing

Spring 3.1 introduces a new set of support classes for processing requests with annotated controllers:

• RequestMappingHandlerMapping

• RequestMappingHandlerAdapter

• ExceptionHandlerExceptionResolver

These classes are a replacement for the existing:

• DefaultAnnotationHandlerMapping

• AnnotationMethodHandlerAdapter

• AnnotationMethodHandlerExceptionResolver

The new classes were developed in response to many requests to make annotation controller support
classes more customizable and open for extension. Whereas previously you could configure a custom
annotated controller method argument resolver, with the new support classes you can customize the
processing for any supported method argument or return value type.

• See org.springframework.web.method.support.HandlerMethodArgumentResolver Javadoc

• See org.springframework.web.method.support.HandlerMethodReturnValueHandler Javadoc

A second notable difference is the introduction of a HandlerMethod abstraction to represent an
@RequestMapping method. This abstraction is used throughout by the new support classes as the
handler instance. For example a HandlerInterceptor can cast the handler from Object to
HandlerMethod and get access to the target controller method, its annotations, etc.

The new classes are enabled by default by the MVC namespace and by Java-based configuration via
@EnableWebMvc. The existing classes will continue to be available but use of the new classes is
recommended going forward.

Spring Framework

3.1 Reference Documentation 29

"consumes" and "produces" conditions in @RequestMapping

Improved support for specifying media types consumed by a method through the 'Content-Type'
header as well as for producible types specified through the 'Accept' header. See the section called
“Consumable Media Types” and the section called “Producible Media Types”

Flash Attributes and RedirectAttributes

Flash attributes can now be stored in a FlashMap and saved in the HTTP session to survive a redirect.
For an overview of the general support for flash attributes in Spring MVC see Section 16.6, “Using flash
attributes”.

In annotated controllers, an @RequestMapping method can add flash attributes by declaring a method
argument of type RedirectAttributes. This method argument can now also be used to get precise
control over the attributes used in a redirect scenario. See the section called “Specifying redirect and flash
attributes” for more details.

URI Template Variable Enhancements

URI template variables from the current request are used in more places:

• URI template variables are used in addition to request parameters when binding a request to
@ModelAttribute method arguments.

• @PathVariable method argument values are merged into the model before rendering, except in views
that generate content in an automated fashion such as JSON serialization or XML marshalling.

• A redirect string can contain placeholders for URI variables (e.g.
"redirect:/blog/{year}/{month}"). When expanding the placeholders, URI template
variables from the current request are automatically considered.

• An @ModelAttribute method argument can be instantiated from a URI template variable provided
there is a registered Converter or PropertyEditor to convert from a String to the target object type.

@Valid On @RequestBody Controller Method Arguments

An @RequestBody method argument can be annotated with @Valid to invoke automatic validation
similar to the support for @ModelAttribute method arguments. A resulting
MethodArgumentNotValidException is handled in the
DefaultHandlerExceptionResolver and results in a 400 response code.

@RequestPart Annotation On Controller Method Arguments

Spring Framework

3.1 Reference Documentation 30

This new annotation provides access to the content of a "multipart/form-data" request part. See the section
called “Handling a file upload request from programmatic clients” and Section 16.10, “Spring's multipart
(file upload) support”.

UriComponentsBuilder and UriComponents

A new UriComponents class has been added, which is an immutable container of URI components
providing access to all contained URI components. A nenw UriComponentsBuilder class is also
provided to help create UriComponents instances. Together the two classes give fine-grained control
over all aspects of preparing a URI including construction, expansion from URI template variables, and
encoding.

In most cases the new classes can be used as a more flexible alternative to the existing UriTemplate
especially since UriTemplate relies on those same classes internally.

A ServletUriComponentsBuilder sub-class provides static factory methods to copy information
from a Servlet request. See Section 16.7, “Building URIs”.

Spring Framework

3.1 Reference Documentation 31

Part III. Core Technologies
This part of the reference documentation covers all of those technologies that are absolutely integral to
the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (IoC) container. A thorough
treatment of the Spring Framework's IoC container is closely followed by comprehensive coverage of
Spring's Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP
framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet
spot of AOP requirements in Java enterprise programming.

Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly
most mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is
certainly advocated by the Spring team, and so coverage of Spring's support for integration testing is
covered (alongside best practices for unit testing). The Spring team has found that the correct use of IoC
certainly does make both unit and integration testing easier (in that the presence of setter methods and
appropriate constructors on classes makes them easier to wire together in a test without having to set up
service locator registries and suchlike)... the chapter dedicated solely to testing will hopefully convince
you of this as well.

• Chapter 4, The IoC container

• Chapter 5, Resources

• Chapter 6, Validation, Data Binding, and Type Conversion

• Chapter 7, Spring Expression Language (SpEL)

• Chapter 8, Aspect Oriented Programming with Spring

• Chapter 9, Spring AOP APIs

• Chapter 10, Testing

1See Background

4. The IoC container

4.1 Introduction to the Spring IoC container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) 1principle.
IoC is also known as dependency injection (DI). It is a process whereby objects define their dependencies,
that is, the other objects they work with, only through constructor arguments, arguments to a factory
method, or properties that are set on the object instance after it is constructed or returned from a factory
method. The container then injects those dependencies when it creates the bean. This process is
fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself controlling the
instantiation or location of its dependencies by using direct construction of classes, or a mechanism such
as the Service Locator pattern.

The org.springframework.beans and org.springframework.context packages are the
basis for Spring Framework's IoC container. The BeanFactory interface provides an advanced
configuration mechanism capable of managing any type of object. ApplicationContext is a
sub-interface of BeanFactory. It adds easier integration with Spring's AOP features; message
resource handling (for use in internationalization), event publication; and application-layer specific
contexts such as the WebApplicationContext for use in web applications.

In short, the BeanFactory provides the configuration framework and basic functionality, and the
ApplicationContext adds more enterprise-specific functionality. The ApplicationContext is
a complete superset of the BeanFactory, and is used exclusively in this chapter in descriptions of
Spring's IoC container. For more information on using the BeanFactory instead of the
ApplicationContext, refer to Section 4.15, “The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed by the Spring IoC
container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed by
a Spring IoC container. Otherwise, a bean is simply one of many objects in your application. Beans, and
the dependencies among them, are reflected in the configuration metadata used by a container.

4.2 Container overview

The interface org.springframework.context.ApplicationContext represents the Spring
IoC container and is responsible for instantiating, configuring, and assembling the aforementioned beans.
The container gets its instructions on what objects to instantiate, configure, and assemble by reading
configuration metadata. The configuration metadata is represented in XML, Java annotations, or Java
code. It allows you to express the objects that compose your application and the rich interdependencies

Spring Framework

3.1 Reference Documentation 33

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/BeanFactory.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

between such objects.

Several implementations of the ApplicationContext interface are supplied out-of-the-box with
Spring. In standalone applications it is common to create an instance of
ClassPathXmlApplicationContext or FileSystemXmlApplicationContext. While
XML has been the traditional format for defining configuration metadata you can instruct the container to
use Java annotations or code as the metadata format by providng a small amount of XML configuration to
declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more instances of a
Spring IoC container. For example, in a web application scenario, a simple eight (or so) lines of
boilerplate J2EE web descriptor XML in the web.xml file of the application will typically suffice (see
the section called “Convenient ApplicationContext instantiation for web applications”). If you are using
the SpringSource Tool Suite Eclipse-powered development environment or Spring Roo this boilerplate
configuration can be easily created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes are combined
with configuration metadata so that after the ApplicationContext is created and initialized, you
have a fully configured and executable system or application.

The Spring IoC container

Configuration metadata

As the preceding diagram shows, the Spring IoC container consumes a form of configuration metadata;

Spring Framework

3.1 Reference Documentation 34

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/support/ClassPathXmlApplicationContext.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/support/FileSystemXmlApplicationContext.html
http://www.springsource.com/produts/sts
http://www.springsource.org/roo

this configuration metadata represents how you as an application developer tell the Spring container to
instantiate, configure, and assemble the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what
most of this chapter uses to convey key concepts and features of the Spring IoC container.

Note

XML-based metadata is not the only allowed form of configuration metadata. The Spring IoC
container itself is totally decoupled from the format in which this configuration metadata is
actually written.

For information about using other forms of metadata with the Spring container, see:

• Annotation-based configuration: Spring 2.5 introduced support for annotation-based configuration
metadata.

• Java-based configuration: Starting with Spring 3.0, many features provided by the Spring JavaConfig
project became part of the core Spring Framework. Thus you can define beans external to your
application classes by using Java rather than XML files. To use these new features, see the
@Configuration, @Bean, @Import and @DependsOn annotations.

Spring configuration consists of at least one and typically more than one bean definition that the container
must manage. XML-based configuration metadata shows these beans configured as <bean/> elements
inside a top-level <beans/> element.

These bean definitions correspond to the actual objects that make up your application. Typically you
define service layer objects, data access objects (DAOs), presentation objects such as Struts Action
instances, infrastructure objects such as Hibernate SessionFactories, JMS Queues, and so forth.
Typically one does not configure fine-grained domain objects in the container, because it is usually the
responsibility of DAOs and business logic to create and load domain objects. However, you can use
Spring's integration with AspectJ to configure objects that have been created outside the control of an IoC
container. See Using AspectJ to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->

</bean>

<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->

</bean>

<!-- more bean definitions go here -->

Spring Framework

3.1 Reference Documentation 35

http://www.springsource.org/javaconfig
http://www.springsource.org/javaconfig

</beans>

The id attribute is a string that you use to identify the individual bean definition. The class attribute
defines the type of the bean and uses the fully qualified classname. The value of the id attribute refers to
collaborating objects. The XML for referring to collaborating objects is not shown in this example; see
Dependencies for more information.

Instantiating a container

Instantiating a Spring IoC container is straightforward. The location path or paths supplied to an
ApplicationContext constructor are actually resource strings that allow the container to load
configuration metadata from a variety of external resources such as the local file system, from the Java
CLASSPATH, and so on.

ApplicationContext context =
new ClassPathXmlApplicationContext(new String[] {"services.xml", "daos.xml"});

Note

After you learn about Spring's IoC container, you may want to know more about Spring's
Resource abstraction, as described in Chapter 5, Resources, which provides a convenient
mechanism for reading an InputSream from locations defined in a URI syntax. In particular,
Resource paths are used to construct applications contexts as described in Section 5.7,
“Application contexts and Resource paths”.

The following example shows the service layer objects (services.xml) configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- services -->

<bean id="petStore"
class="org.springframework.samples.jpetstore.services.PetStoreServiceImpl">

<property name="accountDao" ref="accountDao"/>
<property name="itemDao" ref="itemDao"/>
<!-- additional collaborators and configuration for this bean go here -->

</bean>

<!-- more bean definitions for services go here -->

</beans>

The following example shows the data access objects daos.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

Spring Framework

3.1 Reference Documentation 36

<bean id="accountDao"
class="org.springframework.samples.jpetstore.dao.ibatis.SqlMapAccountDao">

<!-- additional collaborators and configuration for this bean go here -->
</bean>

<bean id="itemDao" class="org.springframework.samples.jpetstore.dao.ibatis.SqlMapItemDao">
<!-- additional collaborators and configuration for this bean go here -->

</bean>

<!-- more bean definitions for data access objects go here -->

</beans>

In the preceding example, the service layer consists of the class PetStoreServiceImpl, and two
data access objects of the type SqlMapAccountDao and SqlMapItemDao are based on the iBatis
Object/Relational mapping framework. The property name element refers to the name of the
JavaBean property, and the ref element refers to the name of another bean definition. This linkage
between id and ref elements expresses the dependency between collaborating objects. For details of
configuring an object's dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individual XML
configuration file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML fragments.
This constructor takes multiple Resource locations, as was shown in the previous section.
Alternatively, use one or more occurrences of the <import/> element to load bean definitions from
another file or files. For example:

<beans>

<import resource="services.xml"/>
<import resource="resources/messageSource.xml"/>
<import resource="/resources/themeSource.xml"/>

<bean id="bean1" class="..."/>
<bean id="bean2" class="..."/>

</beans>

In the preceding example, external bean definitions are loaded from three files, services.xml,
messageSource.xml, and themeSource.xml. All location paths are relative to the definition file
doing the importing, so services.xml must be in the same directory or classpath location as the file
doing the importing, while messageSource.xml and themeSource.xml must be in a
resources location below the location of the importing file. As you can see, a leading slash is ignored,
but given that these paths are relative, it is better form not to use the slash at all. The contents of the files
being imported, including the top level <beans/> element, must be valid XML bean definitions
according to the Spring Schema or DTD.

Note

Spring Framework

3.1 Reference Documentation 37

http://ibatis.apache.org/

It is possible, but not recommended, to reference files in parent directories using a relative
"../" path. Doing so creates a dependency on a file that is outside the current application. In
particular, this reference is not recommended for "classpath:" URLs (for example,
"classpath:../services.xml"), where the runtime resolution process chooses the "nearest"
classpath root and then looks into its parent directory. Classpath configuration changes may
lead to the choice of a different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for example,
"file:C:/config/services.xml" or "classpath:/config/services.xml". However, be aware that you
are coupling your application's configuration to specific absolute locations. It is generally
preferable to keep an indirection for such absolute locations, for example, through "${...}"
placeholders that are resolved against JVM system properties at runtime.

Using the container

The ApplicationContext is the interface for an advanced factory capable of maintaining a registry
of different beans and their dependencies. Using the method T getBean(Stringname, Class<T>
requiredType) you can retrieve instances of your beans.

The ApplicationContext enables you to read bean definitions and access them as follows:

// create and configure beans
ApplicationContext context =

new ClassPathXmlApplicationContext(new String[] {"services.xml", "daos.xml"});

// retrieve configured instance
PetStoreServiceImpl service = context.getBean("petStore", PetStoreServiceImpl.class);

// use configured instance
List userList service.getUsernameList();

You use getBean() to retrieve instances of your beans. The ApplicationContext interface has a
few other methods for retrieving beans, but ideally your application code should never use them. Indeed,
your application code should have no calls to the getBean() method at all, and thus no dependency on
Spring APIs at all. For example, Spring's integration with web frameworks provides for dependency
injection for various web framework classes such as controllers and JSF-managed beans.

4.3 Bean overview

A Spring IoC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML <bean/> definitions.

Within the container itself, these bean definitions are represented as BeanDefinition objects, which
contain (among other information) the following metadata:

Spring Framework

3.1 Reference Documentation 38

• A package-qualified class name: typically the actual implementation class of the bean being defined.

• Bean behavioral configuration elements, which state how the bean should behave in the container
(scope, lifecycle callbacks, and so forth).

• References to other beans that are needed for the bean to do its work; these references are also called
collaborators or dependencies.

• Other configuration settings to set in the newly created object, for example, the number of connections
to use in a bean that manages a connection pool, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 4.1. The bean definition

Property Explained in...

class
the section called “Instantiating beans”

name
the section called “Naming beans”

scope
Section 4.5, “Bean scopes”

constructor arguments
the section called “Dependency injection”

properties
the section called “Dependency injection”

autowiring mode
the section called “Autowiring collaborators”

lazy-initialization mode
the section called “Lazy-initialized beans”

initialization method
the section called “Initialization callbacks”

destruction method
the section called “Destruction callbacks”

In addition to bean definitions that contain information on how to create a specific bean, the
ApplicationContext implementations also permit the registration of existing objects that are
created outside the container, by users. This is done by accessing the ApplicationContext's BeanFactory
via the method getBeanFactory() which returns the BeanFactory implementation
DefaultListableBeanFactory. DefaultListableBeanFactory supports this registration
through the methods registerSingleton(..) and registerBeanDefinition(..).
However, typical applications work solely with beans defined through metadata bean definitions.

Spring Framework

3.1 Reference Documentation 39

Naming beans

Every bean has one or more identifiers. These identifiers must be unique within the container that hosts
the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can be
considered aliases.

In XML-based configuration metadata, you use the id and/or name attributes to specify the bean
identifier(s). The id attribute allows you to specify exactly one id. Conventionally these names are
alphanumeric ('myBean', 'fooService', etc), but may special characters as well. If you want to introduce
other aliases to the bean, you can also specify them in the name attribute, separated by a comma (,),
semicolon (;), or white space. As a historical note, in versions prior to Spring 3.1, the id attribute was
typed as an xsd:ID, which constrained possible characters. As of 3.1, it is now xsd:string. Note
that bean id uniqueness is still enforced by the container, though no longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the
container generates a unique name for that bean. However, if you want to refer to that bean by name,
through the use of the ref element or Service Locator style lookup, you must provide a name.
Motivations for not supplying a name are related to using inner beans and autowiring collaborators.

Bean naming conventions

The convention is to use the standard Java convention for instance field names when naming beans.
That is, bean names start with a lowercase letter, and are camel-cased from then on. Examples of
such names would be (without quotes) 'accountManager', 'accountService',
'userDao', 'loginController', and so forth.

Naming beans consistently makes your configuration easier to read and understand, and if you are
using Spring AOP it helps a lot when applying advice to a set of beans related by name.

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a combination of up
to one name specified by the id attribute, and any number of other names in the name attribute. These
names can be equivalent aliases to the same bean, and are useful for some situations, such as allowing
each component in an application to refer to a common dependency by using a bean name that is specific
to that component itself.

Specifying all aliases where the bean is actually defined is not always adequate, however. It is sometimes
desirable to introduce an alias for a bean that is defined elsewhere. This is commonly the case in large
systems where configuration is split amongst each subsystem, each subsystem having its own set of
object definitions. In XML-based configuration metadata, you can use the <alias/> element to
accomplish this.

<alias name="fromName" alias="toName"/>

Spring Framework

3.1 Reference Documentation 40

In this case, a bean in the same container which is named fromName, may also after the use of this alias
definition, be referred to as toName.

For example, the configuration metadata for subsystem A may refer to a DataSource via the name
'subsystemA-dataSource. The configuration metadata for subsystem B may refer to a DataSource via the
name 'subsystemB-dataSource'. When composing the main application that uses both these subsystems
the main application refers to the DataSource via the name 'myApp-dataSource'. To have all three names
refer to the same object you add to the MyApp configuration metadata the following aliases definitions:

<alias name="subsystemA-dataSource" alias="subsystemB-dataSource"/>
<alias name="subsystemA-dataSource" alias="myApp-dataSource" />

Now each component and the main application can refer to the dataSource through a name that is unique
and guaranteed not to clash with any other definition (effectively creating a namespace), yet they refer to
the same bean.

Instantiating beans

A bean definition essentially is a recipe for creating one or more objects. The container looks at the recipe
for a named bean when asked, and uses the configuration metadata encapsulated by that bean definition to
create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the class attribute of the <bean/> element. This class attribute, which internally is a
Class property on a BeanDefinition instance, is usually mandatory. (For exceptions, see the
section called “Instantiation using an instance factory method” and Section 4.7, “Bean definition
inheritance”.) You use the Class property in one of two ways:

• Typically, to specify the bean class to be constructed in the case where the container itself directly
creates the bean by calling its constructor reflectively, somewhat equivalent to Java code using the new
operator.

• To specify the actual class containing the static factory method that will be invoked to create the
object, in the less common case where the container invokes a static, factory method on a class to
create the bean. The object type returned from the invocation of the static factory method may be
the same class or another class entirely.

Inner class names

If you want to configure a bean definition for a static nested class, you have to use the binary
name of the inner class.

For example, if you have a class called Foo in the com.example package, and this Foo class has
a static inner class called Bar, the value of the 'class' attribute on a bean definition would
be...

Spring Framework

3.1 Reference Documentation 41

com.example.Foo$Bar

Notice the use of the $ character in the name to separate the inner class name from the outer class
name.

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and compatible with
Spring. That is, the class being developed does not need to implement any specific interfaces or to be
coded in a specific fashion. Simply specifying the bean class should suffice. However, depending on what
type of IoC you use for that specific bean, you may need a default (empty) constructor.

The Spring IoC container can manage virtually any class you want it to manage; it is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument)
constructor and appropriate setters and getters modeled after the properties in the container. You can also
have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy
connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it as
well.

With XML-based configuration metadata you can specify your bean class as follows:

<bean id="exampleBean" class="examples.ExampleBean"/>

<bean name="anotherExample" class="examples.ExampleBeanTwo"/>

For details about the mechanism for supplying arguments to the constructor (if required) and setting
object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the class attribute to specify
the class containing the static factory method and an attribute named factory-method to specify
the name of the factory method itself. You should be able to call this method (with optional arguments as
described later) and return a live object, which subsequently is treated as if it had been created through a
constructor. One use for such a bean definition is to call static factories in legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method. The
definition does not specify the type (class) of the returned object, only the class containing the factory
method. In this example, the createInstance() method must be a static method.

<bean id="clientService"
class="examples.ClientService"
factory-method="createInstance"/>

public class ClientService {
private static ClientService clientService = new ClientService();
private ClientService() {}

Spring Framework

3.1 Reference Documentation 42

public static ClientService createInstance() {
return clientService;

}
}

For details about the mechanism for supplying (optional) arguments to the factory method and setting
object instance properties after the object is returned from the factory, see Dependencies and
configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method
invokes a non-static method of an existing bean from the container to create a new bean. To use this
mechanism, leave the class attribute empty, and in the factory-bean attribute, specify the name of
a bean in the current (or parent/ancestor) container that contains the instance method that is to be invoked
to create the object. Set the name of the factory method itself with the factory-method attribute.

<!-- the factory bean, which contains a method called createInstance() -->
<bean id="serviceLocator" class="examples.DefaultServiceLocator">
<!-- inject any dependencies required by this locator bean -->

</bean>

<!-- the bean to be created via the factory bean -->
<bean id="clientService"

factory-bean="serviceLocator"
factory-method="createClientServiceInstance"/>

public class DefaultServiceLocator {
private static ClientService clientService = new ClientServiceImpl();
private DefaultServiceLocator() {}

public ClientService createClientServiceInstance() {
return clientService;

}
}

One factory class can also hold more than one factory method as shown here:

<bean id="serviceLocator" class="examples.DefaultServiceLocator">
<!-- inject any dependencies required by this locator bean -->

</bean>
<bean id="clientService"

factory-bean="serviceLocator"
factory-method="createClientServiceInstance"/>

<bean id="accountService"
factory-bean="serviceLocator"
factory-method="createAccountServiceInstance"/>

public class DefaultServiceLocator {
private static ClientService clientService = new ClientServiceImpl();
private static AccountService accountService = new AccountServiceImpl();

private DefaultServiceLocator() {}

public ClientService createClientServiceInstance() {

Spring Framework

3.1 Reference Documentation 43

return clientService;
}

public AccountService createAccountServiceInstance() {
return accountService;

}
}

This approach shows that the factory bean itself can be managed and configured through dependency
injection (DI). See Dependencies and configuration in detail.

Note

In Spring documentation, factory bean refers to a bean that is configured in the Spring
container that will create objects through an instance or static factory method. By contrast,
FactoryBean (notice the capitalization) refers to a Spring-specific FactoryBean .

4.4 Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even
the simplest application has a few objects that work together to present what the end-user sees as a
coherent application. This next section explains how you go from defining a number of bean definitions
that stand alone to a fully realized application where objects collaborate to achieve a goal.

Dependency injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other
objects they work with, only through constructor arguments, arguments to a factory method, or properties
that are set on the object instance after it is constructed or returned from a factory method. The container
then injects those dependencies when it creates the bean. This process is fundamentally the inverse, hence
the name Inversion of Control (IoC), of the bean itself controlling the instantiation or location of its
dependencies on its own by using direct construction of classes, or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided with
their dependencies. The object does not look up its dependencies, and does not know the location or class
of the dependencies. As such, your classes become easier to test, in particular when the dependencies are
on interfaces or abstract base classes, which allow for stub or mock implementations to be used in unit
tests.

DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency
injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of

Spring Framework

3.1 Reference Documentation 44

arguments, each representing a dependency. Calling a static factory method with specific arguments
to construct the bean is nearly equivalent, and this discussion treats arguments to a constructor and to a
static factory method similarly. The following example shows a class that can only be
dependency-injected with constructor injection. Notice that there is nothing special about this class, it is a
POJO that has no dependencies on container specific interfaces, base classes or annotations.

public class SimpleMovieLister {

// the SimpleMovieLister has a dependency on a MovieFinder
private MovieFinder movieFinder;

// a constructor so that the Spring container can 'inject' a MovieFinder
public SimpleMovieLister(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}

// business logic that actually 'uses' the injected MovieFinder is omitted...
}

Constructor argument resolution

Constructor argument resolution matching occurs using the argument's type. If no potential ambiguity
exists in the constructor arguments of a bean definition, then the order in which the constructor arguments
are defined in a bean definition is the order in which those arguments are supplied to the appropriate
constructor when the bean is being instantiated. Consider the following class:

package x.y;

public class Foo {

public Foo(Bar bar, Baz baz) {
// ...

}
}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance. Thus the
following configuration works fine, and you do not need to specify the constructor argument indexes
and/or types explicitly in the <constructor-arg/> element.

<beans>
<bean id="foo" class="x.y.Foo">

<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>

</bean>

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

</beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with the
preceding example). When a simple type is used, such as <value>true<value>, Spring cannot
determine the type of the value, and so cannot match by type without help. Consider the following class:

package examples;

public class ExampleBean {

Spring Framework

3.1 Reference Documentation 45

// No. of years to the calculate the Ultimate Answer
private int years;

// The Answer to Life, the Universe, and Everything
private String ultimateAnswer;

public ExampleBean(int years, String ultimateAnswer) {
this.years = years;
this.ultimateAnswer = ultimateAnswer;

}
}

Constructor argument type matching

In the preceding scenario, the container can use type matching with simple types if you explicitly specify
the type of the constructor argument using the type attribute. For example:

<bean id="exampleBean" class="examples.ExampleBean">
<constructor-arg type="int" value="7500000"/>
<constructor-arg type="java.lang.String" value="42"/>
</bean>

Constructor argument index

Use the index attribute to specify explicitly the index of constructor arguments. For example:

<bean id="exampleBean" class="examples.ExampleBean">
<constructor-arg index="0" value="7500000"/>
<constructor-arg index="1" value="42"/>
</bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity
where a constructor has two arguments of the same type. Note that the index is 0 based.

Constructor argument name

As of Spring 3.0 you can also use the constructor parameter name for value disambiguation:

<bean id="exampleBean" class="examples.ExampleBean">
<constructor-arg name="years" value="7500000"/>
<constructor-arg name="ultimateanswer" value="42"/>
</bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag
enabled so that Spring can look up the parameter name from the constructor. If you can't compile your
code with debug flag (or don't want to) you can use @ConstructorProperties JDK annotation to
explicitly name your constructor arguments. The sample class would then have to look as follows:

package examples;

public class ExampleBean {

// Fields omitted

@ConstructorProperties({"years", "ultimateAnswer"})
public ExampleBean(int years, String ultimateAnswer) {

Spring Framework

3.1 Reference Documentation 46

http://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html

this.years = years;
this.ultimateAnswer = ultimateAnswer;

}
}

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a
no-argument constructor or no-argument static factory method to instantiate your bean.

The following example shows a class that can only be dependency-injected using pure setter injection.
This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces,
base classes or annotations.

public class SimpleMovieLister {

// the SimpleMovieLister has a dependency on the MovieFinder
private MovieFinder movieFinder;

// a setter method so that the Spring container can 'inject' a MovieFinder
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}

// business logic that actually 'uses' the injected MovieFinder is omitted...
}

The ApplicationContext supports constructor- and setter-based DI for the beans it manages. It also
supports setter-based DI after some dependencies are already injected through the constructor approach.
You configure the dependencies in the form of a BeanDefinition, which you use with
PropertyEditor instances to convert properties from one format to another. However, most Spring
users do not work with these classes directly (programmatically), but rather with an XML definition file
that is then converted internally into instances of these classes, and used to load an entire Spring IoC
container instance.

Constructor-based or setter-based DI?

Since you can mix both, Constructor- and Setter-based DI, it is a good rule of thumb to use
constructor arguments for mandatory dependencies and setters for optional dependencies. Note that
the use of a @Required annotation on a setter can be used to make setters required dependencies.

The Spring team generally advocates setter injection, because large numbers of constructor
arguments can get unwieldy, especially when properties are optional. Setter methods also make
objects of that class amenable to reconfiguration or re-injection later. Management through JMX
MBeans is a compelling use case.

Some purists favor constructor-based injection. Supplying all object dependencies means that the
object is always returned to client (calling) code in a totally initialized state. The disadvantage is
that the object becomes less amenable to reconfiguration and re-injection.

Spring Framework

3.1 Reference Documentation 47

Use the DI that makes the most sense for a particular class. Sometimes, when dealing with
third-party classes to which you do not have the source, the choice is made for you. A legacy class
may not expose any setter methods, and so constructor injection is the only available DI.

Dependency resolution process

The container performs bean dependency resolution as follows:

1. The ApplicationContext is created and initialized with configuration metadata that describes all
the beans. Configuration metadata can be specified via XML, Java code or annotations.

2. For each bean, its dependencies are expressed in the form of properties, constructor arguments, or
arguments to the static-factory method if you are using that instead of a normal constructor. These
dependencies are provided to the bean, when the bean is actually created.

3. Each property or constructor argument is an actual definition of the value to set, or a reference to
another bean in the container.

4. Each property or constructor argument which is a value is converted from its specified format to the
actual type of that property or constructor argument. By default Spring can convert a value supplied in
string format to all built-in types, such as int, long, String, boolean, etc.

The Spring container validates the configuration of each bean as the container is created, including the
validation of whether bean reference properties refer to valid beans. However, the bean properties
themselves are not set until the bean is actually created. Beans that are singleton-scoped and set to be
pre-instantiated (the default) are created when the container is created. Scopes are defined in Section 4.5,
“Bean scopes” Otherwise, the bean is created only when it is requested. Creation of a bean potentially
causes a graph of beans to be created, as the bean's dependencies and its dependencies' dependencies (and
so on) are created and assigned.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable circular
dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and class B
requires an instance of class A through constructor injection. If you configure beans for classes A
and B to be injected into each other, the Spring IoC container detects this circular reference at
runtime, and throws a BeanCurrentlyInCreationException.

One possible solution is to edit the source code of some classes to be configured by setters rather
than constructors. Alternatively, avoid constructor injection and use setter injection only. In other
words, although it is not recommended, you can configure circular dependencies with setter

Spring Framework

3.1 Reference Documentation 48

injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A and
bean B forces one of the beans to be injected into the other prior to being fully initialized itself (a
classic chicken/egg scenario).

You can generally trust Spring to do the right thing. It detects configuration problems, such as references
to non-existent beans and circular dependencies, at container load-time. Spring sets properties and
resolves dependencies as late as possible, when the bean is actually created. This means that a Spring
container which has loaded correctly can later generate an exception when you request an object if there
is a problem creating that object or one of its dependencies. For example, the bean throws an exception as
a result of a missing or invalid property. This potentially delayed visibility of some configuration issues is
why ApplicationContext implementations by default pre-instantiate singleton beans. At the cost of
some upfront time and memory to create these beans before they are actually needed, you discover
configuration issues when the ApplicationContext is created, not later. You can still override this
default behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the dependent
bean. This means that if bean A has a dependency on bean B, the Spring IoC container completely
configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated
(if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such as a
configured init method or the InitializingBean callback method) are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of a
Spring XML configuration file specifies some bean definitions:

<bean id="exampleBean" class="examples.ExampleBean">

<!-- setter injection using the nested <ref/> element -->
<property name="beanOne"><ref bean="anotherExampleBean"/></property>

<!-- setter injection using the neater 'ref' attribute -->
<property name="beanTwo" ref="yetAnotherBean"/>
<property name="integerProperty" value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

public class ExampleBean {

private AnotherBean beanOne;
private YetAnotherBean beanTwo;
private int i;

public void setBeanOne(AnotherBean beanOne) {
this.beanOne = beanOne;

Spring Framework

3.1 Reference Documentation 49

}

public void setBeanTwo(YetAnotherBean beanTwo) {
this.beanTwo = beanTwo;

}

public void setIntegerProperty(int i) {
this.i = i;

}
}

In the preceding example, setters are declared to match against the properties specified in the XML file.
The following example uses constructor-based DI:

<bean id="exampleBean" class="examples.ExampleBean">

<!-- constructor injection using the nested <ref/> element -->
<constructor-arg>
<ref bean="anotherExampleBean"/>

</constructor-arg>

<!-- constructor injection using the neater 'ref' attribute -->
<constructor-arg ref="yetAnotherBean"/>

<constructor-arg type="int" value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

public class ExampleBean {

private AnotherBean beanOne;
private YetAnotherBean beanTwo;
private int i;

public ExampleBean(
AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {
this.beanOne = anotherBean;
this.beanTwo = yetAnotherBean;
this.i = i;

}
}

The constructor arguments specified in the bean definition will be used as arguments to the constructor of
the ExampleBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to call a
static factory method to return an instance of the object:

<bean id="exampleBean" class="examples.ExampleBean"
factory-method="createInstance">

<constructor-arg ref="anotherExampleBean"/>
<constructor-arg ref="yetAnotherBean"/>
<constructor-arg value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

public class ExampleBean {

Spring Framework

3.1 Reference Documentation 50

// a private constructor
private ExampleBean(...) {

...
}

// a static factory method; the arguments to this method can be
// considered the dependencies of the bean that is returned,
// regardless of how those arguments are actually used.
public static ExampleBean createInstance (

AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {

ExampleBean eb = new ExampleBean (...);
// some other operations...
return eb;

}
}

Arguments to the static factory method are supplied via <constructor-arg/> elements, exactly
the same as if a constructor had actually been used. The type of the class being returned by the factory
method does not have to be of the same type as the class that contains the static factory method,
although in this example it is. An instance (non-static) factory method would be used in an essentially
identical fashion (aside from the use of the factory-bean attribute instead of the class attribute), so
details will not be discussed here.

Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators), or as values defined inline. Spring's XML-based
configuration metadata supports sub-element types within its <property/> and
<constructor-arg/> elements for this purpose.

Straight values (primitives, Strings, and so on)

The value attribute of the <property/> element specifies a property or constructor argument as a
human-readable string representation. As mentioned previously, JavaBeans PropertyEditors are
used to convert these string values from a String to the actual type of the property or argument.

<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">

<!-- results in a setDriverClassName(String) call -->
<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost:3306/mydb"/>
<property name="username" value="root"/>
<property name="password" value="masterkaoli"/>
</bean>

The following example uses the p-namespace for even more succinct XML configuration.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

Spring Framework

3.1 Reference Documentation 51

<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close"
p:driverClassName="com.mysql.jdbc.Driver"
p:url="jdbc:mysql://localhost:3306/mydb"
p:username="root"
p:password="masterkaoli"/>

</beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design time,
unless you use an IDE such as IntelliJ IDEA or the SpringSource Tool Suite (STS) that support automatic
property completion when you create bean definitions. Such IDE assistance is highly recommended.

You can also configure a java.util.Properties instance as:

<bean id="mappings"
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<!-- typed as a java.util.Properties -->
<property name="properties">

<value>
jdbc.driver.className=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/mydb

</value>
</property>

</bean>

The Spring container converts the text inside the <value/> element into a
java.util.Properties instance by using the JavaBeans PropertyEditor mechanism. This is a
nice shortcut, and is one of a few places where the Spring team do favor the use of the nested <value/>
element over the value attribute style.

The idref element

The idref element is simply an error-proof way to pass the id (string value - not a reference) of another
bean in the container to a <constructor-arg/> or <property/> element.

<bean id="theTargetBean" class="..."/>

<bean id="theClientBean" class="...">
<property name="targetName">

<idref bean="theTargetBean" />
</property>

</bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="theTargetBean" class="..." />

<bean id="client" class="...">
<property name="targetName" value="theTargetBean" />

</bean>

The first form is preferable to the second, because using the idref tag allows the container to validate at
deployment time that the referenced, named bean actually exists. In the second variation, no validation is

Spring Framework

3.1 Reference Documentation 52

http://www.jetbrains.com/idea/
http://www.springsource.com/products/sts

performed on the value that is passed to the targetName property of the client bean. Typos are only
discovered (with most likely fatal results) when the client bean is actually instantiated. If the client
bean is a prototype bean, this typo and the resulting exception may only be discovered long after the
container is deployed.

Additionally, if the referenced bean is in the same XML unit, and the bean name is the bean id, you can
use the local attribute, which allows the XML parser itself to validate the bean id earlier, at XML
document parse time.

<property name="targetName">
<!-- a bean with id 'theTargetBean' must exist; otherwise an exception will be thrown -->
<idref local="theTargetBean"/>

</property>

A common place (at least in versions earlier than Spring 2.0) where the <idref/> element brings value is
in the configuration of AOP interceptors in a ProxyFactoryBean bean definition. Using <idref/>
elements when you specify the interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

The ref element is the final element inside a <constructor-arg/> or <property/> definition
element. Here you set the value of the specified property of a bean to be a reference to another bean (a
collaborator) managed by the container. The referenced bean is a dependency of the bean whose property
will be set, and it is initialized on demand as needed before the property is set. (If the collaborator is a
singleton bean, it may be initialized already by the container.) All references are ultimately a reference to
another object. Scoping and validation depend on whether you specify the id/name of the other object
through the bean,local, or parent attributes.

Specifying the target bean through the bean attribute of the <ref/> tag is the most general form, and
allows creation of a reference to any bean in the same container or parent container, regardless of whether
it is in the same XML file. The value of the bean attribute may be the same as the id attribute of the
target bean, or as one of the values in the name attribute of the target bean.

<ref bean="someBean"/>

Specifying the target bean through the local attribute leverages the ability of the XML parser to
validate XML id references within the same file. The value of the local attribute must be the same as
the id attribute of the target bean. The XML parser issues an error if no matching element is found in the
same file. As such, using the local variant is the best choice (in order to know about errors as early as
possible) if the target bean is in the same XML file.

<ref local="someBean"/>

Specifying the target bean through the parent attribute creates a reference to a bean that is in a parent
container of the current container. The value of the parent attribute may be the same as either the id
attribute of the target bean, or one of the values in the name attribute of the target bean, and the target
bean must be in a parent container of the current one. You use this bean reference variant mainly when
you have a hierarchy of containers and you want to wrap an existing bean in a parent container with a

Spring Framework

3.1 Reference Documentation 53

proxy that will have the same name as the parent bean.

<!-- in the parent context -->
<bean id="accountService" class="com.foo.SimpleAccountService">
<!-- insert dependencies as required as here -->

</bean>

<!-- in the child (descendant) context -->
<bean id="accountService" <-- bean name is the same as the parent bean -->

class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="target">

<ref parent="accountService"/> <!-- notice how we refer to the parent bean -->
</property>

<!-- insert other configuration and dependencies as required here -->
</bean>

Inner beans

A <bean/> element inside the <property/> or <constructor-arg/> elements defines a
so-called inner bean.

<bean id="outer" class="...">
<!-- instead of using a reference to a target bean, simply define the target bean inline -->
<property name="target">
<bean class="com.example.Person"> <!-- this is the inner bean -->

<property name="name" value="Fiona Apple"/>
<property name="age" value="25"/>

</bean>
</property>
</bean>

An inner bean definition does not require a defined id or name; the container ignores these values. It also
ignores the scope flag. Inner beans are always anonymous and they are always scoped as prototypes. It
is not possible to inject inner beans into collaborating beans other than into the enclosing bean.

Collections

In the <list/>, <set/>, <map/>, and <props/> elements, you set the properties and arguments of
the Java Collection types List, Set, Map, and Properties, respectively.

<bean id="moreComplexObject" class="example.ComplexObject">
<!-- results in a setAdminEmails(java.util.Properties) call -->
<property name="adminEmails">
<props>

<prop key="administrator">administrator@example.org</prop>
<prop key="support">support@example.org</prop>
<prop key="development">development@example.org</prop>

</props>
</property>
<!-- results in a setSomeList(java.util.List) call -->
<property name="someList">
<list>

<value>a list element followed by a reference</value>
<ref bean="myDataSource" />

</list>
</property>
<!-- results in a setSomeMap(java.util.Map) call -->
<property name="someMap">
<map>

Spring Framework

3.1 Reference Documentation 54

<entry key="an entry" value="just some string"/>
<entry key ="a ref" value-ref="myDataSource"/>

</map>
</property>
<!-- results in a setSomeSet(java.util.Set) call -->
<property name="someSet">
<set>

<value>just some string</value>
<ref bean="myDataSource" />

</set>
</property>
</bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | null

Collection merging

As of Spring 2.0, the container supports the merging of collections. An application developer can define a
parent-style <list/>, <map/>, <set/> or <props/> element, and have child-style <list/>,
<map/>, <set/> or <props/> elements inherit and override values from the parent collection. That
is, the child collection's values are the result of merging the elements of the parent and child collections,
with the child's collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent and
child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

<beans>
<bean id="parent" abstract="true" class="example.ComplexObject">
<property name="adminEmails">

<props>
<prop key="administrator">administrator@example.com</prop>
<prop key="support">support@example.com</prop>

</props>
</property>

</bean>
<bean id="child" parent="parent">
<property name="adminEmails">

<!-- the merge is specified on the *child* collection definition -->
<props merge="true">

<prop key="sales">sales@example.com</prop>
<prop key="support">support@example.co.uk</prop>

</props>
</property>

</bean>
<beans>

Notice the use of the merge=true attribute on the <props/> element of the adminEmails property
of the child bean definition. When the child bean is resolved and instantiated by the container, the
resulting instance has an adminEmails Properties collection that contains the result of the merging
of the child's adminEmails collection with the parent's adminEmails collection.

administrator=administrator@example.com
sales=sales@example.com

Spring Framework

3.1 Reference Documentation 55

support=support@example.co.uk

The child Properties collection's value set inherits all property elements from the parent <props/>,
and the child's value for the support value overrides the value in the parent collection.

This merging behavior applies similarly to the <list/>, <map/>, and <set/> collection types. In the
specific case of the <list/> element, the semantics associated with the List collection type, that is,
the notion of an ordered collection of values, is maintained; the parent's values precede all of the child
list's values. In the case of the Map, Set, and Properties collection types, no ordering exists. Hence
no ordering semantics are in effect for the collection types that underlie the associated Map, Set, and
Properties implementation types that the container uses internally.

Limitations of collection merging

You cannot merge different collection types (such as a Map and a List), and if you do attempt to do so
an appropriate Exception is thrown. The merge attribute must be specified on the lower, inherited,
child definition; specifying the merge attribute on a parent collection definition is redundant and will not
result in the desired merging. The merging feature is available only in Spring 2.0 and later.

Strongly-typed collection (Java 5+ only)

In Java 5 and later, you can use strongly typed collections (using generic types). That is, it is possible to
declare a Collection type such that it can only contain String elements (for example). If you are
using Spring to dependency-inject a strongly-typed Collection into a bean, you can take advantage of
Spring's type-conversion support such that the elements of your strongly-typed Collection instances
are converted to the appropriate type prior to being added to the Collection.

public class Foo {

private Map<String, Float> accounts;

public void setAccounts(Map<String, Float> accounts) {
this.accounts = accounts;

}
}

<beans>
<bean id="foo" class="x.y.Foo">

<property name="accounts">
<map>

<entry key="one" value="9.99"/>
<entry key="two" value="2.75"/>
<entry key="six" value="3.99"/>

</map>
</property>

</bean>
</beans>

When the accounts property of the foo bean is prepared for injection, the generics information about
the element type of the strongly-typed Map<String, Float> is available by reflection. Thus Spring's
type conversion infrastructure recognizes the various value elements as being of type Float, and the

Spring Framework

3.1 Reference Documentation 56

string values 9.99, 2.75, and 3.99 are converted into an actual Float type.

Null and empty string values

Spring treats empty arguments for properties and the like as empty Strings. The following XML-based
configuration metadata snippet sets the email property to the empty String value ("")

<bean class="ExampleBean">
<property name="email" value=""/>
</bean>

The preceding example is equivalent to the following Java code: exampleBean.setEmail(""). The
<null/> element handles null values. For example:

<bean class="ExampleBean">
<property name="email"><null/></property>
</bean>

The above configuration is equivalent to the following Java code: exampleBean.setEmail(null).

XML shortcut with the p-namespace

The p-namespace enables you to use the bean element's attributes, instead of nested <property/>
elements, to describe your property values and/or collaborating beans.

Spring 2.0 and later supports extensible configuration formats with namespaces, which are based on an
XML Schema definition. The beans configuration format discussed in this chapter is defined in an XML
Schema document. However, the p-namespace is not defined in an XSD file and exists only in the core of
Spring.

The following example shows two XML snippets that resolve to the same result: The first uses standard
XML format and the second uses the p-namespace.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean name="classic" class="com.example.ExampleBean">
<property name="email" value="foo@bar.com"/>

</bean>

<bean name="p-namespace" class="com.example.ExampleBean"
p:email="foo@bar.com"/>

</beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring
to include a property declaration. As previously mentioned, the p-namespace does not have a schema
definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

Spring Framework

3.1 Reference Documentation 57

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean name="john-classic" class="com.example.Person">
<property name="name" value="John Doe"/>
<property name="spouse" ref="jane"/>

</bean>

<bean name="john-modern"
class="com.example.Person"
p:name="John Doe"
p:spouse-ref="jane"/>

<bean name="jane" class="com.example.Person">
<property name="name" value="Jane Doe"/>

</bean>
</beans>

As you can see, this example includes not only a property value using the p-namespace, but also uses a
special format to declare property references. Whereas the first bean definition uses <property
name="spouse" ref="jane"/> to create a reference from bean john to bean jane, the second
bean definition uses p:spouse-ref="jane" as an attribute to do the exact same thing. In this case
spouse is the property name, whereas the -ref part indicates that this is not a straight value but rather
a reference to another bean.

Note

The p-namespace is not as flexible as the standard XML format. For example, the format for
declaring property references clashes with properties that end in Ref, whereas the standard
XML format does not. We recommend that you choose your approach carefully and
communicate this to your team members, to avoid producing XML documents that use all
three approaches at the same time.

XML shortcut with the c-namespace

Similar to the the section called “XML shortcut with the p-namespace”, the c-namespace, newly
introduced in Spring 3.1, allows usage of inlined attributes for configuring the constructor arguments
rather then nested constructor-arg elements.

Let's review the examples from the section called “Constructor-based dependency injection” with the c
namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

Spring Framework

3.1 Reference Documentation 58

<-- 'traditional' declaration -->
<bean id="foo" class="x.y.Foo">

<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
<constructor-arg value="foo@bar.com"/>

</bean>

<-- 'c-namespace' declaration -->
<bean id="foo" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:email="foo@bar.com">

</beans>

The c: namespace uses the same conventions as the p: one (trailing -ref for bean references) for
setting the constructor arguments by their names. And just as well, it needs to be declared even though it
is not defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode was
compiled without debugging information), one can use fallback to the argument indexes:

<-- 'c-namespace' index declaration -->
<bean id="foo" class="x.y.Foo" c:_0-ref="bar" c:_1-ref="baz">

Note
Due to the XML grammar, the index notation requires the presence of the leading _ as XML
attribute names cannot start with a number (even though some IDE allow it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one
really needs to, we recommend using the name notation through-out your configuration.

Compound property names

You can use compound or nested property names when you set bean properties, as long as all components
of the path except the final property name are not null. Consider the following bean definition.

<bean id="foo" class="foo.Bar">
<property name="fred.bob.sammy" value="123" />
</bean>

The foo bean has a fred property, which has a bob property, which has a sammy property, and that
final sammy property is being set to the value 123. In order for this to work, the fred property of foo,
and the bob property of fred must not be null after the bean is constructed, or a
NullPointerException is thrown.

Using depends-on

If a bean is a dependency of another that usually means that one bean is set as a property of another.
Typically you accomplish this with the <ref/> element in XML-based configuration metadata.
However, sometimes dependencies between beans are less direct; for example, a static initializer in a
class needs to be triggered, such as database driver registration. The depends-on attribute can

Spring Framework

3.1 Reference Documentation 59

explicitly force one or more beans to be initialized before the bean using this element is initialized. The
following example uses the depends-on attribute to express a dependency on a single bean:

<bean id="beanOne" class="ExampleBean" depends-on="manager"/>

<bean id="manager" class="ManagerBean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the
depends-on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean id="beanOne" class="ExampleBean" depends-on="manager,accountDao">
<property name="manager" ref="manager" />
</bean>

<bean id="manager" class="ManagerBean" />
<bean id="accountDao" class="x.y.jdbc.JdbcAccountDao" />

Note

The depends-on attribute in the bean definition can specify both an initialization time
dependency and, in the case of singleton beans only, a corresponding destroy time
dependency. Dependent beans that define a depends-on relationship with a given bean are
destroyed first, prior to the given bean itself being destroyed. Thus depends-on can also
control shutdown order.

Lazy-initialized beans

By default, ApplicationContext implementations eagerly create and configure all singleton beans
as part of the initialization process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or even days
later. When this behavior is not desirable, you can prevent pre-instantiation of a singleton bean by
marking the bean definition as lazy-initialized. A lazy-initialized bean tells the IoC container to create a
bean instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the lazy-init attribute on the <bean/> element; for example:

<bean id="lazy" class="com.foo.ExpensiveToCreateBean" lazy-init="true"/>

<bean name="not.lazy" class="com.foo.AnotherBean"/>

When the preceding configuration is consumed by an ApplicationContext, the bean named lazy
is not eagerly pre-instantiated when the ApplicationContext is starting up, whereas the not.lazy
bean is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-initialized, the
ApplicationContext creates the lazy-initialized bean at startup, because it must satisfy the
singleton's dependencies. The lazy-initialized bean is injected into a singleton bean elsewhere that is not
lazy-initialized.

Spring Framework

3.1 Reference Documentation 60

2See the section called “Dependency injection”

You can also control lazy-initialization at the container level by using the default-lazy-init
attribute on the <beans/> element; for example:

<beans default-lazy-init="true">
<!-- no beans will be pre-instantiated... -->

</beans>

Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. You can allow Spring to
resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
ApplicationContext. Autowiring has the following advantages:

• Autowiring can significantly reduce the need to specify properties or constructor arguments. (Other
mechanisms such as a bean template discussed elsewhere in this chapter are also valuable in this
regard.)

• Autowiring can update a configuration as your objects evolve. For example, if you need to add a
dependency to a class, that dependency can be satisfied automatically without you needing to modify
the configuration. Thus autowiring can be especially useful during development, without negating the
option of switching to explicit wiring when the code base becomes more stable.

When using XML-based configuration metadata2, you specify autowire mode for a bean definition with
the autowire attribute of the <bean/> element. The autowiring functionality has five modes. You
specify autowiring per bean and thus can choose which ones to autowire.

Table 4.2. Autowiring modes

Mode Explanation

no
(Default) No autowiring. Bean references must be defined via a ref element.
Changing the default setting is not recommended for larger deployments, because
specifying collaborators explicitly gives greater control and clarity. To some extent, it
documents the structure of a system.

byName
Autowiring by property name. Spring looks for a bean with the same name as the
property that needs to be autowired. For example, if a bean definition is set to
autowire by name, and it contains a master property (that is, it has a setMaster(..)
method), Spring looks for a bean definition named master, and uses it to set the
property.

byType
Allows a property to be autowired if exactly one bean of the property type exists in the
container. If more than one exists, a fatal exception is thrown, which indicates that

Spring Framework

3.1 Reference Documentation 61

Mode Explanation

you may not use byType autowiring for that bean. If there are no matching beans,
nothing happens; the property is not set.

constructor
Analogous to byType, but applies to constructor arguments. If there is not exactly one
bean of the constructor argument type in the container, a fatal error is raised.

With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such cases all
autowire candidates within the container that match the expected type are provided to satisfy the
dependency. You can autowire strongly-typed Maps if the expected key type is String. An autowired
Maps values will consist of all bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after autowiring
completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in general, it
might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

• Explicit dependencies in property and constructor-arg settings always override autowiring.
You cannot autowire so-called simple properties such as primitives, Strings, and Classes (and
arrays of such simple properties). This limitation is by-design.

• Autowiring is less exact than explicit wiring. Although, as noted in the above table, Spring is careful to
avoid guessing in case of ambiguity that might have unexpected results, the relationships between your
Spring-managed objects are no longer documented explicitly.

• Wiring information may not be available to tools that may generate documentation from a Spring
container.

• Multiple bean definitions within the container may match the type specified by the setter method or
constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily a
problem. However for dependencies that expect a single value, this ambiguity is not arbitrarily
resolved. If no unique bean definition is available, an exception is thrown.

In the latter scenario, you have several options:

• Abandon autowiring in favor of explicit wiring.

• Avoid autowiring for a bean definition by setting its autowire-candidate attributes to false as

Spring Framework

3.1 Reference Documentation 62

described in the next section.

• Designate a single bean definition as the primary candidate by setting the primary attribute of its
<bean/> element to true.

• If you are using Java 5 or later, implement the more fine-grained control available with
annotation-based configuration, as described in Section 4.9, “Annotation-based container
configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring's XML format, set the
autowire-candidate attribute of the <bean/> element to false; the container makes that
specific bean definition unavailable to the autowiring infrastructure (including annotation style
configurations such as @Autowired).

You can also limit autowire candidates based on pattern-matching against bean names. The top-level
<beans/> element accepts one or more patterns within its default-autowire-candidates
attribute. For example, to limit autowire candidate status to any bean whose name ends with Repository,
provide a value of *Repository. To provide multiple patterns, define them in a comma-separated list. An
explicit value of true or false for a bean definitions autowire-candidate attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by autowiring. It
does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean itself
is not a candidate for autowiring other beans.

Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean needs to
collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, you typically handle the dependency by defining one bean as a property of the other.
A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use
non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates
the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with a new instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the ApplicationContextAware interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following is an
example of this approach:

// a class that uses a stateful Command-style class to perform some processing
package fiona.apple;

// Spring-API imports
import org.springframework.beans.BeansException;

Spring Framework

3.1 Reference Documentation 63

import org.springframework.context.Applicationcontext;
import org.springframework.context.ApplicationContextAware;

public class CommandManager implements ApplicationContextAware {

private ApplicationContext applicationContext;

public Object process(Map commandState) {
// grab a new instance of the appropriate Command
Command command = createCommand();
// set the state on the (hopefully brand new) Command instance
command.setState(commandState);
return command.execute();

}

protected Command createCommand() {
// notice the Spring API dependency!
return this.applicationContext.getBean("command", Command.class);

}

public void setApplicationContext(ApplicationContext applicationContext)
throws BeansException {

this.applicationContext = applicationContext;
}

}

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring IoC container, allows this use
case to be handled in a clean fashion.

You can read more about the motivation for Method Injection in this blog entry.

Lookup method injection

Lookup method injection is the ability of the container to override methods on container managed beans,
to return the lookup result for another named bean in the container. The lookup typically involves a
prototype bean as in the scenario described in the preceding section. The Spring Framework implements
this method injection by using bytecode generation from the CGLIB library to generate dynamically a
subclass that overrides the method.

Note

For this dynamic subclassing to work, you must have the CGLIB jar(s) in your classpath. The
class that the Spring container will subclass cannot be final, and the method to be
overridden cannot be final either. Also, testing a class that has an abstract method
requires you to subclass the class yourself and to supply a stub implementation of the
abstract method. Finally, objects that have been the target of method injection cannot be
serialized.

Looking at the CommandManager class in the previous code snippet, you see that the Spring container

Spring Framework

3.1 Reference Documentation 64

http://blog.springsource.com/2004/08/06/method-injection/

will dynamically override the implementation of the createCommand() method. Your
CommandManager class will not have any Spring dependencies, as can be seen in the reworked
example:

package fiona.apple;

// no more Spring imports!

public abstract class CommandManager {

public Object process(Object commandState) {
// grab a new instance of the appropriate Command interface
Command command = createCommand();
// set the state on the (hopefully brand new) Command instance
command.setState(commandState);
return command.execute();

}

// okay... but where is the implementation of this method?
protected abstract Command createCommand();

}

In the client class containing the method to be injected (the CommandManager in this case), the method
to be injected requires a signature of the following form:

<public|protected> [abstract] <return-type> theMethodName(no-arguments);

If the method is abstract, the dynamically-generated subclass implements the method. Otherwise, the
dynamically-generated subclass overrides the concrete method defined in the original class. For example:

<!-- a stateful bean deployed as a prototype (non-singleton) -->
<bean id="command" class="fiona.apple.AsyncCommand" scope="prototype">
<!-- inject dependencies here as required -->
</bean>

<!-- commandProcessor uses statefulCommandHelper -->
<bean id="commandManager" class="fiona.apple.CommandManager">
<lookup-method name="createCommand" bean="command"/>
</bean>

The bean identified as commandManager calls its own method createCommand() whenever it needs
a new instance of the command bean. You must be careful to deploy the command bean as a prototype, if
that is actually what is needed. If it is deployed as a singleton, the same instance of the command bean is
returned each time.

Tip

The interested reader may also find the ServiceLocatorFactoryBean (in the
org.springframework.beans.factory.config package) to be of use. The
approach used in ServiceLocatorFactoryBean is similar to that of another utility class,
ObjectFactoryCreatingFactoryBean, but it allows you to specify your own
lookup interface as opposed to a Spring-specific lookup interface. Consult the JavaDocs for
these classes as well as this blog entry for additional information ServiceLocatorFactoryBean.

Spring Framework

3.1 Reference Documentation 65

http://blog.arendsen.net/index.php/2006/10/05/on-the-servicelocatorfactorybean-dlas-and-the-sustainability-of-code-and-design/

Arbitrary method replacement

A less useful form of method injection than lookup method Injection is the ability to replace arbitrary
methods in a managed bean with another method implementation. Users may safely skip the rest of this
section until the functionality is actually needed.

With XML-based configuration metadata, you can use the replaced-method element to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with a
method computeValue, which we want to override:

public class MyValueCalculator {

public String computeValue(String input) {
// some real code...

}

// some other methods...

}

A class implementing the
org.springframework.beans.factory.support.MethodReplacer interface provides the
new method definition.

/** meant to be used to override the existing computeValue(String)
implementation in MyValueCalculator

*/
public class ReplacementComputeValue implements MethodReplacer {

public Object reimplement(Object o, Method m, Object[] args) throws Throwable {
// get the input value, work with it, and return a computed result
String input = (String) args[0];
...
return ...;

}
}

The bean definition to deploy the original class and specify the method override would look like this:

<bean id="myValueCalculator" class="x.y.z.MyValueCalculator">

<!-- arbitrary method replacement -->
<replaced-method name="computeValue" replacer="replacementComputeValue">
<arg-type>String</arg-type>

</replaced-method>
</bean>

<bean id="replacementComputeValue" class="a.b.c.ReplacementComputeValue"/>

You can use one or more contained <arg-type/> elements within the <replaced-method/>
element to indicate the method signature of the method being overridden. The signature for the arguments
is necessary only if the method is overloaded and multiple variants exist within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For
example, the following all match java.lang.String:

Spring Framework

3.1 Reference Documentation 66

java.lang.String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by allowing you to type only the shortest string that will match an
argument type.

4.5 Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class defined by
that bean definition. The idea that a bean definition is a recipe is important, because it means that, as with
a class, you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into an
object that is created from a particular bean definition, but also the scope of the objects created from a
particular bean definition. This approach is powerful and flexible in that you can choose the scope of the
objects you create through configuration instead of having to bake in the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring
Framework supports five scopes, three of which are available only if you use a web-aware
ApplicationContext.

The following scopes are supported out of the box. You can also create a custom scope.

Table 4.3. Bean scopes

Scope Description

singleton (Default) Scopes a single bean definition to a
single object instance per Spring IoC container.

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle of a
single HTTP request; that is, each HTTP request
has its own instance of a bean created off the back
of a single bean definition. Only valid in the
context of a web-aware Spring
ApplicationContext.

session Scopes a single bean definition to the lifecycle of
an HTTP Session. Only valid in the context of a
web-aware Spring ApplicationContext.

Spring Framework

3.1 Reference Documentation 67

Scope Description

global session Scopes a single bean definition to the lifecycle of a
global HTTP Session. Typically only valid
when used in a portlet context. Only valid in the
context of a web-aware Spring
ApplicationContext.

Thread-scoped beans

As of Spring 3.0, a thread scope is available, but is not registered by default. For more
information, see the documentation for SimpleThreadScope. For instructions on how to
register this or any other custom scope, see the section called “Using a custom scope”.

The singleton scope

Only one shared instance of a singleton bean is managed, and all requests for beans with an id or ids
matching that bean definition result in that one specific bean instance being returned by the Spring
container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring IoC
container creates exactly one instance of the object defined by that bean definition. This single instance is
stored in a cache of such singleton beans, and all subsequent requests and references for that named bean
return the cached object.

Spring Framework

3.1 Reference Documentation 68

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/support/SimpleThreadScope.html

Spring's concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four
(GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only one
instance of a particular class is created per ClassLoader. The scope of the Spring singleton is best
described as per container and per bean. This means that if you define one bean for a particular class in a
single Spring container, then the Spring container creates one and only one instance of the class defined
by that bean definition. The singleton scope is the default scope in Spring. To define a bean as a singleton
in XML, you would write, for example:

<bean id="accountService" class="com.foo.DefaultAccountService"/>

<!-- the following is equivalent, though redundant (singleton scope is the default) -->
<bean id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/>

The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance
every time a request for that specific bean is made. That is, the bean is injected into another bean or you
request it through a getBean() method call on the container. As a rule, use the prototype scope for all
stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically
configured as a prototype, because a typical DAO does not hold any conversational state; it was just
easier for this author to reuse the core of the singleton diagram.

The following example defines a bean as a prototype in XML:

<!-- using spring-beans-2.0.dtd -->
<bean id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/>

Spring Framework

3.1 Reference Documentation 69

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client,
with no further record of that prototype instance. Thus, although initialization lifecycle callback methods
are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle
callbacks are not called. The client code must clean up prototype-scoped objects and release expensive
resources that the prototype bean(s) are holding. To get the Spring container to release resources held by
prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans that
need to be cleaned up.

In some respects, the Spring container's role in regard to a prototype-scoped bean is a replacement for the
Java new operator. All lifecycle management past that point must be handled by the client. (For details on
the lifecycle of a bean in the Spring container, see the section called “Lifecycle callbacks”.)

Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that dependencies
are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean into a
singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into the
singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-scoped
bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-scoped
bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your singleton
bean, because that injection occurs only once, when the Spring container is instantiating the singleton
bean and resolving and injecting its dependencies. If you need a new instance of a prototype bean at
runtime more than once, see the section called “Method injection”

Request, session, and global session scopes

The request, session, and global session scopes are only available if you use a web-aware
Spring ApplicationContext implementation (such as XmlWebApplicationContext). If you
use these scopes with regular Spring IoC containers such as the
ClassPathXmlApplicationContext, you get an IllegalStateException complaining
about an unknown bean scope.

Initial web configuration

To support the scoping of beans at the request, session, and global session levels
(web-scoped beans), some minor initial configuration is required before you define your beans. (This
initial setup is not required for the standard scopes, singleton and prototype.)

How you accomplish this initial setup depends on your particular Servlet environment..

If you access scoped beans within Spring Web MVC, in effect, within a request that is processed by the

Spring Framework

3.1 Reference Documentation 70

Spring DispatcherServlet, or DispatcherPortlet, then no special setup is necessary:
DispatcherServlet and DispatcherPortlet already expose all relevant state.

If you use a Servlet 2.4+ web container, with requests processed outside of Spring's DispatcherServlet
(for example, when using JSF or Struts), you need to add the following
javax.servlet.ServletRequestListener to the declarations in your web applications
web.xml file:

<web-app>
...
<listener>
<listener-class>

org.springframework.web.context.request.RequestContextListener
</listener-class>

</listener>
...
</web-app>

If you use an older web container (Servlet 2.3), use the provided javax.servlet.Filter
implementation. The following snippet of XML configuration must be included in the web.xml file of
your web application if you want to access web-scoped beans in requests outside of Spring's
DispatcherServlet on a Servlet 2.3 container. (The filter mapping depends on the surrounding web
application configuration, so you must change it as appropriate.)

<web-app>
..
<filter>
<filter-name>requestContextFilter</filter-name>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>requestContextFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
...
</web-app>

DispatcherServlet, RequestContextListener and RequestContextFilter all do
exactly the same thing, namely bind the HTTP request object to the Thread that is servicing that
request. This makes beans that are request- and session-scoped available further down the call chain.

Request scope

Consider the following bean definition:

<bean id="loginAction" class="com.foo.LoginAction" scope="request"/>

The Spring container creates a new instance of the LoginAction bean by using the loginAction
bean definition for each and every HTTP request. That is, the loginAction bean is scoped at the
HTTP request level. You can change the internal state of the instance that is created as much as you want,
because other instances created from the same loginAction bean definition will not see these changes
in state; they are particular to an individual request. When the request completes processing, the bean that

Spring Framework

3.1 Reference Documentation 71

is scoped to the request is discarded.

Session scope

Consider the following bean definition:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

The Spring container creates a new instance of the UserPreferences bean by using the
userPreferences bean definition for the lifetime of a single HTTP Session. In other words, the
userPreferences bean is effectively scoped at the HTTP Session level. As with
request-scoped beans, you can change the internal state of the instance that is created as much as
you want, knowing that other HTTP Session instances that are also using instances created from the
same userPreferences bean definition do not see these changes in state, because they are particular
to an individual HTTP Session. When the HTTP Session is eventually discarded, the bean that is
scoped to that particular HTTP Session is also discarded.

Global session scope

Consider the following bean definition:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="globalSession"/>

The global session scope is similar to the standard HTTP Session scope (described above), and
applies only in the context of portlet-based web applications. The portlet specification defines the notion
of a global Session that is shared among all portlets that make up a single portlet web application.
Beans defined at the global session scope are scoped (or bound) to the lifetime of the global portlet
Session.

If you write a standard Servlet-based web application and you define one or more beans as having
global session scope, the standard HTTP Session scope is used, and no error is raised.

Scoped beans as dependencies

The Spring IoC container manages not only the instantiation of your objects (beans), but also the wiring
up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean
into another bean, you must inject an AOP proxy in place of the scoped bean. That is, you need to inject a
proxy object that exposes the same public interface as the scoped object but that can also retrieve the real,
target object from the relevant scope (for example, an HTTP request) and delegate method calls onto the
real object.

Note

You do not need to use the <aop:scoped-proxy/> in conjunction with beans that are
scoped as singletons or prototypes. If you try to create a scoped proxy for a
singleton bean, the BeanCreationException is raised.

Spring Framework

3.1 Reference Documentation 72

The configuration in the following example is only one line, but it is important to understand the “why”
as well as the “how” behind it.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<!-- an HTTP Session-scoped bean exposed as a proxy -->
<bean id="userPreferences" class="com.foo.UserPreferences" scope="session">

<!-- instructs the container to proxy the surrounding bean -->
<aop:scoped-proxy/>

</bean>

<!-- a singleton-scoped bean injected with a proxy to the above bean -->
<bean id="userService" class="com.foo.SimpleUserService">

<!-- a reference to the proxied userPreferences bean -->
<property name="userPreferences" ref="userPreferences"/>

</bean>
</beans>

To create such a proxy, you insert a child <aop:scoped-proxy/> element into a scoped bean
definition. (If you choose class-based proxying, you also need the CGLIB library in your classpath. See
the section called “Choosing the type of proxy to create” and Appendix C, XML Schema-based
configuration.) Why do definitions of beans scoped at the request, session, globalSession and
custom-scope levels require the <aop:scoped-proxy/> element ? Let's examine the following
singleton bean definition and contrast it with what you need to define for the aforementioned scopes. (The
following userPreferences bean definition as it stands is incomplete.)

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

<bean id="userManager" class="com.foo.UserManager">
<property name="userPreferences" ref="userPreferences"/>

</bean>

In the preceding example, the singleton bean userManager is injected with a reference to the HTTP
Session-scoped bean userPreferences. The salient point here is that the userManager bean is
a singleton: it will be instantiated exactly once per container, and its dependencies (in this case only one,
the userPreferences bean) are also injected only once. This means that the userManager bean
will only operate on the exact same userPreferences object, that is, the one that it was originally
injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-lived scoped
bean, for example injecting an HTTP Session-scoped collaborating bean as a dependency into
singleton bean. Rather, you need a single userManager object, and for the lifetime of an HTTP
Session, you need a userPreferences object that is specific to said HTTP Session. Thus the
container creates an object that exposes the exact same public interface as the UserPreferences class

Spring Framework

3.1 Reference Documentation 73

(ideally an object that is a UserPreferences instance) which can fetch the real UserPreferences
object from the scoping mechanism (HTTP request, Session, etc.). The container injects this proxy
object into the userManager bean, which is unaware that this UserPreferences reference is a
proxy. In this example, when a UserManager instance invokes a method on the dependency-injected
UserPreferences object, it actually is invoking a method on the proxy. The proxy then fetches the
real UserPreferences object from (in this case) the HTTP Session, and delegates the method
invocation onto the retrieved real UserPreferences object.

Thus you need the following, correct and complete, configuration when injecting request-,
session-, and globalSession-scoped beans into collaborating objects:

<bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
<aop:scoped-proxy/>

</bean>

<bean id="userManager" class="com.foo.UserManager">
<property name="userPreferences" ref="userPreferences"/>

</bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop:scoped-proxy/> element, a CGLIB-based class proxy is created. This means that you need to
have the CGLIB library in the classpath of your application.

Note: CGLIB proxies only intercept public method calls! Do not call non-public methods on such a
proxy; they will not be delegated to the scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based proxies for
such scoped beans, by specifying false for the value of the proxy-target-class attribute of the
<aop:scoped-proxy/> element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to effect such proxying. However, it also means that the
class of the scoped bean must implement at least one interface, and that all collaborators into which the
scoped bean is injected must reference the bean through one of its interfaces.

<!-- DefaultUserPreferences implements the UserPreferences interface -->
<bean id="userPreferences" class="com.foo.DefaultUserPreferences" scope="session">
<aop:scoped-proxy proxy-target-class="false"/>

</bean>

<bean id="userManager" class="com.foo.UserManager">
<property name="userPreferences" ref="userPreferences"/>

</bean>

For more detailed information about choosing class-based or interface-based proxying, see Section 8.6,
“Proxying mechanisms”.

Custom scopes

As of Spring 2.0, the bean scoping mechanism is extensible. You can define your own scopes, or even

Spring Framework

3.1 Reference Documentation 74

redefine existing scopes, although the latter is considered bad practice and you cannot override the
built-in singleton and prototype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
org.springframework.beans.factory.config.Scope interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope implementations that are
supplied with the Spring Framework itself and the Scope Javadoc, which explains the methods you need
to implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from the scope, and
allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope implementation,
for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance
of the bean, after having bound it to the session for future reference).

Object get(String name, ObjectFactory objectFactory)

The following method removes the object from the underlying scope. The session scope implementation
for example, removes the session-scoped bean from the underlying session. The object should be
returned, but you can return null if the object with the specified name is not found.

Object remove(String name)

The following method registers the callbacks the scope should execute when it is destroyed or when the
specified object in the scope is destroyed. Refer to the Javadoc or a Spring scope implementation for
more information on destruction callbacks.

void registerDestructionCallback(String name, Runnable destructionCallback)

The following method obtains the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session scoped implementation, this identifier can be the session identifier.

String getConversationId()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring
container aware of your new scope(s). The following method is the central method to register a new
Scope with the Spring container:

void registerScope(String scopeName, Scope scope);

This method is declared on the ConfigurableBeanFactory interface, which is available on most of

Spring Framework

3.1 Reference Documentation 75

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/Scope.html

the concrete ApplicationContext implementations that ship with Spring via the BeanFactory
property.

The first argument to the registerScope(..) method is the unique name associated with a scope;
examples of such names in the Spring container itself are singleton and prototype. The second
argument to the registerScope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

Note

The example below uses SimpleThreadScope which is included with Spring, but not
registered by default. The instructions would be the same for your own custom Scope
implementations.

Scope threadScope = new SimpleThreadScope();
beanFactory.registerScope("thread", threadScope);

You then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
You can also do the Scope registration declaratively, using the CustomScopeConfigurer class:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">

<map>
<entry key="thread">

<bean class="org.springframework.context.support.SimpleThreadScope"/>
</entry>

</map>
</property>

</bean>

<bean id="bar" class="x.y.Bar" scope="thread">
<property name="name" value="Rick"/>
<aop:scoped-proxy/>

</bean>

<bean id="foo" class="x.y.Foo">
<property name="bar" ref="bar"/>

</bean>

</beans>

Spring Framework

3.1 Reference Documentation 76

Note

When you place <aop:scoped-proxy/> in a FactoryBean implementation, it is the factory
bean itself that is scoped, not the object returned from getObject().

4.6 Customizing the nature of a bean

Lifecycle callbacks

To interact with the container's management of the bean lifecycle, you can implement the Spring
InitializingBean and DisposableBean interfaces. The container calls
afterPropertiesSet() for the former and destroy() for the latter to allow the bean to perform
certain actions upon initialization and destruction of your beans. You can also achieve the same
integration with the container without coupling your classes to Spring interfaces through the use of
init-method and destroy method object definition metadata.

Internally, the Spring Framework uses BeanPostProcessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle
behavior Spring does not offer out-of-the-box, you can implement a BeanPostProcessor yourself.
For more information, see Section 4.8, “Container Extension Points”.

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement
the Lifecycle interface so that those objects can participate in the startup and shutdown process as
driven by the container's own lifecycle.

The lifecycle callback interfaces are described in this section.

Initialization callbacks

The org.springframework.beans.factory.InitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container. The
InitializingBean interface specifies a single method:

void afterPropertiesSet() throws Exception;

It is recommended that you do not use the InitializingBean interface because it unnecessarily
couples the code to Spring. Alternatively, specify a POJO initialization method. In the case of
XML-based configuration metadata, you use the init-method attribute to specify the name of the
method that has a void no-argument signature. For example, the following definition:

<bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>

public class ExampleBean {

Spring Framework

3.1 Reference Documentation 77

public void init() {
// do some initialization work

}
}

...is exactly the same as...

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

public class AnotherExampleBean implements InitializingBean {

public void afterPropertiesSet() {
// do some initialization work

}
}

... but does not couple the code to Spring.

Destruction callbacks

Implementing the org.springframework.beans.factory.DisposableBean interface
allows a bean to get a callback when the container containing it is destroyed. The DisposableBean
interface specifies a single method:

void destroy() throws Exception;

It is recommended that you do not use the DisposableBean callback interface because it
unnecessarily couples the code to Spring. Alternatively, specify a generic method that is supported by
bean definitions. With XML-based configuration metadata, you use the destroy-method attribute on
the <bean/>. For example, the following definition:

<bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>

public class ExampleBean {

public void cleanup() {
// do some destruction work (like releasing pooled connections)

}
}

...is exactly the same as...

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

public class AnotherExampleBean implements DisposableBean {

public void destroy() {
// do some destruction work (like releasing pooled connections)

}
}

... but does not couple the code to Spring.

Spring Framework

3.1 Reference Documentation 78

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and DisposableBean callback interfaces, you typically write methods with
names such as init(), initialize(), dispose(), and so on. Ideally, the names of such lifecycle
callback methods are standardized across a project so that all developers use the same method names and
ensure consistency.

You can configure the Spring container to look for named initialization and destroy callback method
names on every bean. This means that you, as an application developer, can write your application classes
and use an initialization callback called init(), without having to configure an
init-method="init" attribute with each bean definition. The Spring IoC container calls that
method when the bean is created (and in accordance with the standard lifecycle callback contract
described previously). This feature also enforces a consistent naming convention for initialization and
destroy method callbacks.

Suppose that your initialization callback methods are named init() and destroy callback methods are
named destroy(). Your class will resemble the class in the following example.

public class DefaultBlogService implements BlogService {

private BlogDao blogDao;

public void setBlogDao(BlogDao blogDao) {
this.blogDao = blogDao;

}

// this is (unsurprisingly) the initialization callback method
public void init() {

if (this.blogDao == null) {
throw new IllegalStateException("The [blogDao] property must be set.");

}
}

}

<beans default-init-method="init">

<bean id="blogService" class="com.foo.DefaultBlogService">
<property name="blogDao" ref="blogDao" />

</bean>

</beans>

The presence of the default-init-method attribute on the top-level <beans/> element attribute
causes the Spring IoC container to recognize a method called init on beans as the initialization method
callback. When a bean is created and assembled, if the bean class has such a method, it is invoked at the
appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the
default-destroy-method attribute on the top-level <beans/> element.

Where existing bean classes already have callback methods that are named at variance with the

Spring Framework

3.1 Reference Documentation 79

convention, you can override the default by specifying (in XML, that is) the method name using the
init-method and destroy-method attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after a
bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target bean
is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the target
bean and the proxy are defined separately, your code can even interact with the raw target bean,
bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because
doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange
semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the
InitializingBean and DisposableBean callback interfaces; custom init() and destroy()
methods; and the @PostConstruct and @PreDestroy annotations. You can combine these
mechanisms to control a given bean.

Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is
configured with a different method name, then each configured method is executed in the
order listed below. However, if the same method name is configured - for example, init()
for an initialization method - for more than one of these lifecycle mechanisms, that method is
executed once, as explained in the preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are
called as follows:

• Methods annotated with @PostConstruct

• afterPropertiesSet() as defined by the InitializingBean callback interface

• A custom configured init() method

Destroy methods are called in the same order:

• Methods annotated with @PreDestroy

• destroy() as defined by the DisposableBean callback interface

• A custom configured destroy() method

Startup and shutdown callbacks

Spring Framework

3.1 Reference Documentation 80

The Lifecycle interface defines the essential methods for any object that has its own lifecycle
requirements (e.g. starts and stops some background process):

public interface Lifecycle {

void start();

void stop();

boolean isRunning();

}

Any Spring-managed object may implement that interface. Then, when the ApplicationContext itself
starts and stops, it will cascade those calls to all Lifecycle implementations defined within that context. It
does this by delegating to a LifecycleProcessor:

public interface LifecycleProcessor extends Lifecycle {

void onRefresh();

void onClose();

}

Notice that the LifecycleProcessor is itself an extension of the Lifecycle interface. It also adds
two other methods for reacting to the context being refreshed and closed.

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists
between any two objects, the dependent side will start after its dependency, and it will stop before its
dependency. However, at times the direct dependencies are unknown. You may only know that objects of
a certain type should start prior to objects of another type. In those cases, the SmartLifecycle
interface defines another option, namely the getPhase() method as defined on its super-interface,
Phased.

public interface Phased {

int getPhase();

}

public interface SmartLifecycle extends Lifecycle, Phased {

boolean isAutoStartup();

void stop(Runnable callback);

}

When starting, the objects with the lowest phase start first, and when stopping, the reverse order is
followed. Therefore, an object that implements SmartLifecycle and whose getPhase() method
returns Integer.MIN_VALUE would be among the first to start and the last to stop. At the other end of
the spectrum, a phase value of Integer.MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When considering the

Spring Framework

3.1 Reference Documentation 81

phase value, it's also important to know that the default phase for any "normal" Lifecycle object that
does not implement SmartLifecycle would be 0. Therefore, any negative phase value would indicate
that an object should start before those standard components (and stop after them), and vice versa for any
positive phase value.

As you can see the stop method defined by SmartLifecycle accepts a callback. Any implementation
must invoke that callback's run() method after that implementation's shutdown process is complete. That
enables asynchronous shutdown where necessary since the default implementation of the
LifecycleProcessor interface, DefaultLifecycleProcessor, will wait up to its timeout
value for the group of objects within each phase to invoke that callback. The default per-phase timeout is
30 seconds. You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the
following would be sufficient:

<bean id="lifecycleProcessor" class="org.springframework.context.support.DefaultLifecycleProcessor">
<!-- timeout value in milliseconds -->
<property name="timeoutPerShutdownPhase" value="10000"/>

</bean>

As mentioned, the LifecycleProcessor interface defines callback methods for the refreshing and
closing of the context as well. The latter will simply drive the shutdown process as if stop() had been
called explicitly, but it will happen when the context is closing. The 'refresh' callback on the other hand
enables another feature of SmartLifecycle beans. When the context is refreshed (after all objects
have been instantiated and initialized), that callback will be invoked, and at that point the default lifecycle
processor will check the boolean value returned by each SmartLifecycle object's
isAutoStartup() method. If "true", then that object will be started at that point rather than waiting
for an explicit invocation of the context's or its own start() method (unlike the context refresh, the context
start does not happen automatically for a standard context implementation). The "phase" value as well as
any "depends-on" relationships will determine the startup order in the same way as described above.

Shutting down the Spring IoC container gracefully in non-web applications

Note

This section applies only to non-web applications. Spring's web-based
ApplicationContext implementations already have code in place to shut down the
Spring IoC container gracefully when the relevant web application is shut down.

If you are using Spring's IoC container in a non-web application environment; for example, in a rich
client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a graceful
shutdown and calls the relevant destroy methods on your singleton beans so that all resources are
released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call the registerShutdownHook() method that is declared on the
AbstractApplicationContext class:

import org.springframework.context.support.AbstractApplicationContext;

Spring Framework

3.1 Reference Documentation 82

import org.springframework.context.support.ClassPathXmlApplicationContext;

public final class Boot {

public static void main(final String[] args) throws Exception {
AbstractApplicationContext ctx

= new ClassPathXmlApplicationContext(new String []{"beans.xml"});

// add a shutdown hook for the above context...
ctx.registerShutdownHook();

// app runs here...

// main method exits, hook is called prior to the app shutting down...
}

}

ApplicationContextAware and BeanNameAware

When an ApplicationContext creates a class that implements the
org.springframework.context.ApplicationContextAware interface, the class is
provided with a reference to that ApplicationContext.

public interface ApplicationContextAware {

void setApplicationContext(ApplicationContext applicationContext) throws BeansException;
}

Thus beans can manipulate programmatically the ApplicationContext that created them, through
the ApplicationContext interface, or by casting the reference to a known subclass of this interface,
such as ConfigurableApplicationContext, which exposes additional functionality. One use
would be the programmatic retrieval of other beans. Sometimes this capability is useful; however, in
general you should avoid it, because it couples the code to Spring and does not follow the Inversion of
Control style, where collaborators are provided to beans as properties. Other methods of the
ApplicationContext provide access to file resources, publishing application events, and accessing a
MessageSource. These additional features are described in Section 4.14, “Additional Capabilities of the
ApplicationContext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the ApplicationContext.
The "traditional" constructor and byType autowiring modes (as described in the section called
“Autowiring collaborators”) can provide a dependency of type ApplicationContext for a
constructor argument or setter method parameter, respectively. For more flexibility, including the ability
to autowire fields and multiple parameter methods, use the new annotation-based autowiring features. If
you do, the ApplicationFactory is autowired into a field, constructor argument, or method
parameter that is expecting the BeanFactory type if the field, constructor, or method in question
carries the @Autowired annotation. For more information, see the section called “@Autowired”.

When an ApplicationContext creates a class that implements the
org.springframework.beans.factory.BeanNameAware interface, the class is provided
with a reference to the name defined in its associated object definition.

public interface BeanNameAware {

Spring Framework

3.1 Reference Documentation 83

void setBeanName(string name) throws BeansException;
}

The callback is invoked after population of normal bean properties but before an initialization callback
such as InitializingBeans afterPropertiesSet or a custom init-method.

Other Aware interfaces

Besides ApplicationContextAware and BeanNameAware discussed above, Spring offers a range
of Aware interfaces that allow beans to indicate to the container that they require a certain infrastructure
dependency. The most important Aware interfaces are summarized below - as a general rule, the name is
a good indication of the dependency type:

Table 4.4. Aware interfaces

Name Injected Dependency Explained in...

ApplicationContextAware Declaring
ApplicationContext

the section called
“ApplicationContextAware and
BeanNameAware”

ApplicationEventPublisherAwareEvent publisher of the enclosing
ApplicationContext

Section 4.14, “Additional
Capabilities of the
ApplicationContext”

BeanClassLoaderAware Class loader used to load the
bean classes.

the section called “Instantiating
beans”

BeanFactoryAware Declaring BeanFactory the section called
“ApplicationContextAware and
BeanNameAware”

BeanNameAware Name of the declaring bean the section called
“ApplicationContextAware and
BeanNameAware”

BootstrapContextAware Resource adapter
BootstrapContext the
container runs in. Typically
available only in JCA aware
ApplicationContexts

Chapter 24, JCA CCI

Spring Framework

3.1 Reference Documentation 84

Name Injected Dependency Explained in...

LoadTimeWeaverAware Defined weaver for processing
class definition at load time

the section called “Load-time
weaving with AspectJ in the
Spring Framework”

MessageSourceAware Configured strategy for resolving
messages (with support for
parametrization and
internationalization)

Section 4.14, “Additional
Capabilities of the
ApplicationContext”

NotificationPublisherAwareSpring JMX notification
publisher

Section 23.7, “Notifications”

PortletConfigAware Current PortletConfig the
container runs in. Valid only in a
web-aware Spring
ApplicationContext

Chapter 19, Portlet MVC
Framework

PortletContextAware Current PortletContext the
container runs in. Valid only in a
web-aware Spring
ApplicationContext

Chapter 19, Portlet MVC
Framework

ResourceLoaderAware Configured loader for low-level
access to resources

Chapter 5, Resources

ServletConfigAware Current ServletConfig the
container runs in. Valid only in a
web-aware Spring
ApplicationContext

Chapter 16, Web MVC
framework

ServletContextAware Current ServletContext the
container runs in. Valid only in a
web-aware Spring
ApplicationContext

Chapter 16, Web MVC
framework

Note again that usage of these interfaces ties your code to the Spring API and does not follow the
Inversion of Control style. As such, they are recommended for infrastructure beans that require
programmatic access to the container.

Spring Framework

3.1 Reference Documentation 85

4.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments,
property values, and container-specific information such as initialization method, static factory method
name, and so on. A child bean definition inherits configuration data from a parent definition. The child
definition can override some values, or add others, as needed. Using parent and child bean definitions can
save a lot of typing. Effectively, this is a form of templating.

If you work with an ApplicationContext interface programmatically, child bean definitions are
represented by the ChildBeanDefinition class. Most users do not work with them on this level,
instead configuring bean definitions declaratively in something like the
ClassPathXmlApplicationContext. When you use XML-based configuration metadata, you
indicate a child bean definition by using the parent attribute, specifying the parent bean as the value of
this attribute.

<bean id="inheritedTestBean" abstract="true"
class="org.springframework.beans.TestBean">

<property name="name" value="parent"/>
<property name="age" value="1"/>

</bean>

<bean id="inheritsWithDifferentClass"
class="org.springframework.beans.DerivedTestBean"
parent="inheritedTestBean" init-method="initialize">

<property name="name" value="override"/>
<!-- the age property value of 1 will be inherited from parent -->

</bean>

A child bean definition uses the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is, it must
accept the parent's property values.

A child bean definition inherits constructor argument values, property values, and method overrides from
the parent, with the option to add new values. Any initialization method, destroy method, and/or static
factory method settings that you specify will override the corresponding parent settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, scope, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the abstract
attribute. If the parent definition does not specify a class, explicitly marking the parent bean definition as
abstract is required, as follows:

<bean id="inheritedTestBeanWithoutClass" abstract="true">
<property name="name" value="parent"/>
<property name="age" value="1"/>

</bean>

<bean id="inheritsWithClass" class="org.springframework.beans.DerivedTestBean"
parent="inheritedTestBeanWithoutClass" init-method="initialize">

Spring Framework

3.1 Reference Documentation 86

<property name="name" value="override"/>
<!-- age will inherit the value of 1 from the parent bean definition-->

</bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is also explicitly marked
as abstract. When a definition is abstract like this, it is usable only as a pure template bean
definition that serves as a parent definition for child definitions. Trying to use such an abstract parent
bean on its own, by referring to it as a ref property of another bean or doing an explicit getBean() call
with the parent bean id, returns an error. Similarly, the container's internal
preInstantiateSingletons() method ignores bean definitions that are defined as abstract.

Note

ApplicationContext pre-instantiates all singletons by default. Therefore, it is important
(at least for singleton beans) that if you have a (parent) bean definition which you intend to
use only as a template, and this definition specifies a class, you must make sure to set the
abstract attribute to true, otherwise the application context will actually (attempt to)
pre-instantiate the abstract bean.

4.8 Container Extension Points

Typically, an application developer does not need to subclass ApplicationContext implementation
classes. Instead, the Spring IoC container can be extended by plugging in implementations of special
integration interfaces. The next few sections describe these integration interfaces.

Customizing beans using a BeanPostProcessor

The BeanPostProcessor interface defines callback methods that you can implement to provide your
own (or override the container's default) instantiation logic, dependency-resolution logic, and so forth. If
you want to implement some custom logic after the Spring container finishes instantiating, configuring,
and initializing a bean, you can plug in one or more BeanPostProcessor implementations.

You can configure multiple BeanPostProcessor instances, and you can control the order in which
these BeanPostProcessors execute by setting the order property. You can set this property only if
the BeanPostProcessor implements the Ordered interface; if you write your own
BeanPostProcessor you should consider implementing the Ordered interface too. For further
details, consult the Javadoc for the BeanPostProcessor and Ordered interfaces. See also the note
below on programmatic registration of BeanPostProcessors

Note

BeanPostProcessors operate on bean (or object) instances; that is to say, the Spring IoC
container instantiates a bean instance and then BeanPostProcessors do their work.

Spring Framework

3.1 Reference Documentation 87

BeanPostProcessors are scoped per-container. This is only relevant if you are using
container hierarchies. If you define a BeanPostProcessor in one container, it will only
post-process the beans in that container. In other words, beans that are defined in one
container are not post-processed by a BeanPostProcessor defined in another container,
even if both containers are part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you instead
need to use a BeanFactoryPostProcessor as described in the section called
“Customizing configuration metadata with a BeanFactoryPostProcessor”.

The org.springframework.beans.factory.config.BeanPostProcessor interface
consists of exactly two callback methods. When such a class is registered as a post-processor with the
container, for each bean instance that is created by the container, the post-processor gets a callback from
the container both before container initialization methods (such as InitializingBean's afterPropertiesSet()
and any declared init method) are called as well as after any bean initialization callbacks. The
post-processor can take any action with the bean instance, including ignoring the callback completely. A
bean post-processor typically checks for callback interfaces or may wrap a bean with a proxy. Some
Spring AOP infrastructure classes are implemented as bean post-processors in order to provide
proxy-wrapping logic.

An ApplicationContext automatically detects any beans that are defined in the configuration
metadata which implement the BeanPostProcessor interface. The ApplicationContext
registers these beans as post-processors so that they can be called later upon bean creation. Bean
post-processors can be deployed in the container just like any other beans.

Programmatically registering BeanPostProcessors

While the recommended approach for BeanPostProcessor registration is through
ApplicationContext auto-detection (as described above), it is also possible to register
them programmatically against an ApplicationContext using the
addBeanPostProcessor method. This can be useful when needing to evaluate
conditional logic before registration, or even for copying bean post processors across contexts
in a hierarchy. Note however that BeanPostProcessors added programmatically do not
respect the Ordered interface. Here it is the order of registration that dictates the order of
execution. Note also that BeanPostProcessors registered programmatically are always
processed before those registered through auto-detection, regardless of any explicit ordering.

BeanPostProcessors and AOP auto-proxying

Classes that implement the BeanPostProcessor interface are special and are treated
differently by the container. All BeanPostProcessors and beans that they reference
directly are instantiated on startup, as part of the special startup phase of the
ApplicationContext. Next, all BeanPostProcessors are registered in a sorted

Spring Framework

3.1 Reference Documentation 88

fashion and applied to all further beans in the container. Because AOP auto-proxying is
implemented as a BeanPostProcessor itself, neither BeanPostProcessors nor the
beans they reference directly are eligible for auto-proxying, and thus do not have aspects
woven into them.

For any such bean, you should see an informational log message: “Bean foo is not eligible for
getting processed by all BeanPostProcessor interfaces (for example: not eligible for
auto-proxying)”.

The following examples show how to write, register, and use BeanPostProcessors in an
ApplicationContext.

Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom BeanPostProcessor
implementation that invokes the toString() method of each bean as it is created by the container and
prints the resulting string to the system console.

Find below the custom BeanPostProcessor implementation class definition:

package scripting;

import org.springframework.beans.factory.config.BeanPostProcessor;
import org.springframework.beans.BeansException;

public class InstantiationTracingBeanPostProcessor implements BeanPostProcessor {

// simply return the instantiated bean as-is
public Object postProcessBeforeInitialization(Object bean, String beanName)

throws BeansException {
return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterInitialization(Object bean, String beanName)
throws BeansException {

System.out.println("Bean '" + beanName + "' created : " + bean.toString());
return bean;

}
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:lang="http://www.springframework.org/schema/lang"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-lang-3.0.xsd">

<lang:groovy id="messenger"
script-source="classpath:org/springframework/scripting/groovy/Messenger.groovy">

<lang:property name="message" value="Fiona Apple Is Just So Dreamy."/>
</lang:groovy>

<!--
when the above bean (messenger) is instantiated, this custom

Spring Framework

3.1 Reference Documentation 89

BeanPostProcessor implementation will output the fact to the system console
-->

<bean class="scripting.InstantiationTracingBeanPostProcessor"/>

</beans>

Notice how the InstantiationTracingBeanPostProcessor is simply defined. It does not
even have a name, and because it is a bean it can be dependency-injected just like any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring 2.0 dynamic
language support is detailed in the chapter entitled Chapter 27, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.scripting.Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
ApplicationContext ctx = new ClassPathXmlApplicationContext("scripting/beans.xml");
Messenger messenger = (Messenger) ctx.getBean("messenger");
System.out.println(messenger);

}
}

The output of the preceding application resembles the following:

Bean 'messenger' created : org.springframework.scripting.groovy.GroovyMessenger@272961
org.springframework.scripting.groovy.GroovyMessenger@272961

Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom BeanPostProcessor
implementation is a common means of extending the Spring IoC container. An example is Spring's
RequiredAnnotationBeanPostProcessor — a BeanPostProcessor implementation that
ships with the Spring distribution which ensures that JavaBean properties on beans that are marked with
an (arbitrary) annotation are actually (configured to be) dependency-injected with a value.

Customizing configuration metadata with a
BeanFactoryPostProcessor

The next extension point that we will look at is the
org.springframework.beans.factory.config.BeanFactoryPostProcessor. The
semantics of this interface are similar to those of the BeanPostProcessor, with one major difference:
BeanFactoryPostProcessors operate on the bean configuration metadata; that is, the Spring IoC
container allows BeanFactoryPostProcessors to read the configuration metadata and potentially
change it before the container instantiates any beans other than BeanFactoryPostProcessors.

You can configure multiple BeanFactoryPostProcessors, and you can control the order in which
these BeanFactoryPostProcessors execute by setting the order property. However, you can

Spring Framework

3.1 Reference Documentation 90

only set this property if the BeanFactoryPostProcessor implements the Ordered interface. If
you write your own BeanFactoryPostProcessor, you should consider implementing the
Ordered interface too. Consult the Javadoc for the BeanFactoryPostProcessor and Ordered
interfaces for more details.

Note

If you want to change the actual bean instances (i.e., the objects that are created from the
configuration metadata), then you instead need to use a BeanPostProcessor (described
above in the section called “Customizing beans using a BeanPostProcessor”). While it is
technically possible to work with bean instances within a BeanFactoryPostProcessor
(e.g., using BeanFactory.getBean()), doing so causes premature bean instantiation,
violating the standard container lifecycle. This may cause negative side effects such as
bypassing bean post processing.

Also, BeanFactoryPostProcessors are scoped per-container. This is only relevant if
you are using container hierarchies. If you define a BeanFactoryPostProcessor in
one container, it will only be applied to the bean definitions in that container. Bean definitions
in one container will not be post-processed by BeanFactoryPostProcessors in
another container, even if both containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
ApplicationContext, in order to apply changes to the configuration metadata that define the
container. Spring includes a number of predefined bean factory post-processors, such as
PropertyOverrideConfigurer and PropertyPlaceholderConfigurer. A custom
BeanFactoryPostProcessor can also be used, for example, to register custom property editors.

An ApplicationContext automatically detects any beans that are deployed into it that implement
the BeanFactoryPostProcessor interface. It uses these beans as bean factory post-processors, at
the appropriate time. You can deploy these post-processor beans as you would any other bean.

Note

As with BeanPostProcessors, you typically do not want to configure
BeanFactoryPostProcessors for lazy initialization. If no other bean references a
Bean(Factory)PostProcessor, that post-processor will not get instantiated at all.
Thus, marking it for lazy initialization will be ignored, and the
Bean(Factory)PostProcessor will be instantiated eagerly even if you set the
default-lazy-init attribute to true on the declaration of your <beans /> element.

Example: the PropertyPlaceholderConfigurer

You use the PropertyPlaceholderConfigurer to externalize property values from a bean
definition in a separate file using the standard Java Properties format. Doing so enables the person
deploying an application to customize environment-specific properties such as database URLs and

Spring Framework

3.1 Reference Documentation 91

passwords, without the complexity or risk of modifying the main XML definition file or files for the
container.

Consider the following XML-based configuration metadata fragment, where a DataSource with
placeholder values is defined. The example shows properties configured from an external Properties
file. At runtime, a PropertyPlaceholderConfigurer is applied to the metadata that will replace
some properties of the DataSource. The values to replace are specified as placeholders of the form
${property-name} which follows the Ant / log4j / JSP EL style.

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="locations" value="classpath:com/foo/jdbc.properties"/>

</bean>

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">

<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>

The actual values come from another file in the standard Java Properties format:

jdbc.driverClassName=org.hsqldb.jdbcDriver
jdbc.url=jdbc:hsqldb:hsql://production:9002
jdbc.username=sa
jdbc.password=root

Therefore, the string ${jdbc.username} is replaced at runtime with the value 'sa', and the same
applies for other placeholder values that match keys in the properties file. The
PropertyPlaceholderConfigurer checks for placeholders in most properties and attributes of a
bean definition. Furthermore, the placeholder prefix and suffix can be customized.

With the context namespace introduced in Spring 2.5, it is possible to configure property placeholders
with a dedicated configuration element. One or more locations can be provided as a comma-separated list
in the location attribute.

<context:property-placeholder location="classpath:com/foo/jdbc.properties"/>

The PropertyPlaceholderConfigurer not only looks for properties in the Properties file
you specify. By default it also checks against the Java System properties if it cannot find a property in
the specified properties files. You can customize this behavior by setting the
systemPropertiesMode property of the configurer with one of the following three supported integer
values:

• never (0): Never check system properties

• fallback (1): Check system properties if not resolvable in the specified properties files. This is the
default.

• override (2): Check system properties first, before trying the specified properties files. This allows

Spring Framework

3.1 Reference Documentation 92

system properties to override any other property source.

Consult the Javadoc for the PropertyPlaceholderConfigurer for more information.

Class name substitution

You can use the PropertyPlaceholderConfigurer to substitute class names, which
is sometimes useful when you have to pick a particular implementation class at runtime. For
example:

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="locations">

<value>classpath:com/foo/strategy.properties</value>
</property>
<property name="properties">

<value>custom.strategy.class=com.foo.DefaultStrategy</value>
</property>

</bean>

<bean id="serviceStrategy" class="${custom.strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean fails when it
is about to be created, which is during the preInstantiateSingletons() phase of an
ApplicationContext for a non-lazy-init bean.

Example: the PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
PropertyPlaceholderConfigurer, but unlike the latter, the original definitions can have default
values or no values at all for bean properties. If an overriding Properties file does not have an entry
for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious from the
XML definition file that the override configurer is being used. In case of multiple
PropertyOverrideConfigurer instances that define different values for the same bean property,
the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

beanName.property=value

For example:

dataSource.driverClassName=com.mysql.jdbc.Driver
dataSource.url=jdbc:mysql:mydb

This example file can be used with a container definition that contains a bean called dataSource, which
has driver and url properties.

Spring Framework

3.1 Reference Documentation 93

Compound property names are also supported, as long as every component of the path except the final
property being overridden is already non-null (presumably initialized by the constructors). In this
example...

foo.fred.bob.sammy=123

... the sammy property of the bob property of the fred property of the foo bean is set to the scalar
value 123.

Note

Specified override values are always literal values; they are not translated into bean
references. This convention also applies when the original value in the XML bean definition
specifies a bean reference.

With the context namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element:

<context:property-override location="classpath:override.properties"/>

Customizing instantiation logic with a FactoryBean

Implement the org.springframework.beans.factory.FactoryBean interface for objects
that are themselves factories.

The FactoryBean interface is a point of pluggability into the Spring IoC container's instantiation logic.
If you have complex initialization code that is better expressed in Java as opposed to a (potentially)
verbose amount of XML, you can create your own FactoryBean, write the complex initialization
inside that class, and then plug your custom FactoryBean into the container.

The FactoryBean interface provides three methods:

• Object getObject(): returns an instance of the object this factory creates. The instance can
possibly be shared, depending on whether this factory returns singletons or prototypes.

• boolean isSingleton(): returns true if this FactoryBean returns singletons, false
otherwise.

• Class getObjectType(): returns the object type returned by the getObject() method or
null if the type is not known in advance.

The FactoryBean concept and interface is used in a number of places within the Spring Framework;
more than 50 implementations of the FactoryBean interface ship with Spring itself.

When you need to ask a container for an actual FactoryBean instance itself instead of the bean it

Spring Framework

3.1 Reference Documentation 94

produces, preface the bean's id with the ampersand symbol (&) when calling the getBean() method of
the ApplicationContext. So for a given FactoryBean with an id of myBean, invoking
getBean("myBean") on the container returns the product of the FactoryBean; whereas, invoking
getBean("&myBean") returns the FactoryBean instance itself.

4.9 Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this approach is
'better' than XML. The short answer is it depends. The long answer is that each approach has its
pros and cons, and usually it is up to the developer to decide which strategy suits her better. Due to
the way they are defined, annotations provide a lot of context in their declaration, leading to shorter
and more concise configuration. However, XML excels at wiring up components without touching
their source code or recompiling them. Some developers prefer having the wiring close to the
source while others argue that annotated classes are no longer POJOs and, furthermore, that the
configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It's worth
pointing out that through its JavaConfig option, Spring allows annotations to be used in a
non-invasive way, without touching the target components source code and that in terms of tooling,
all configuration styles are supported by the SpringSource Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on the bytecode
metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to
describe a bean wiring, the developer moves the configuration into the component class itself by using
annotations on the relevant class, method, or field declaration. As mentioned in the section called
“Example: The RequiredAnnotationBeanPostProcessor”, using a BeanPostProcessor in conjunction
with annotations is a common means of extending the Spring IoC container. For example, Spring 2.0
introduced the possibility of enforcing required properties with the @Required annotation. Spring 2.5
made it possible to follow that same general approach to drive Spring's dependency injection. Essentially,
the @Autowired annotation provides the same capabilities as described in the section called
“Autowiring collaborators” but with more fine-grained control and wider applicability. Spring 2.5 also
added support for JSR-250 annotations such as @PostConstruct, and @PreDestroy. Spring 3.0
added support for JSR-330 (Dependency Injection for Java) annotations contained in the javax.inject
package such as @Inject and @Named. Details about those annotations can be found in the relevant
section.

Note
Annotation injection is performed before XML injection, thus the latter configuration will
override the former for properties wired through both approaches.

As always, you can register them as individual bean definitions, but they can also be implicitly registered

Spring Framework

3.1 Reference Documentation 95

http://www.springsource.com/products/sts

by including the following tag in an XML-based Spring configuration (notice the inclusion of the
context namespace):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:annotation-config/>

</beans>

(The implicitly registered post-processors include AutowiredAnnotationBeanPostProcessor,
CommonAnnotationBeanPostProcessor,
PersistenceAnnotationBeanPostProcessor, as well as the aforementioned
RequiredAnnotationBeanPostProcessor.)

Note

<context:annotation-config/> only looks for annotations on beans in the same
application context in which it is defined. This means that, if you put
<context:annotation-config/> in a WebApplicationContext for a
DispatcherServlet, it only checks for @Autowired beans in your controllers, and not
your services. See Section 16.2, “The DispatcherServlet” for more information.

@Required

The @Required annotation applies to bean property setter methods, as in the following example:

public class SimpleMovieLister {

private MovieFinder movieFinder;

@Required
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}

// ...
}

This annotation simply indicates that the affected bean property must be populated at configuration time,
through an explicit property value in a bean definition or through autowiring. The container throws an
exception if the affected bean property has not been populated; this allows for eager and explicit failure,
avoiding NullPointerExceptions or the like later on. It is still recommended that you put
assertions into the bean class itself, for example, into an init method. Doing so enforces those required
references and values even when you use the class outside of a container.

Spring Framework

3.1 Reference Documentation 96

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

@Autowired

As expected, you can apply the @Autowired annotation to "traditional" setter methods:

public class SimpleMovieLister {

private MovieFinder movieFinder;

@Autowired
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}

// ...
}

Note

JSR 330's @Inject annotation can be used in place of Spring's @Autowired annotation in
the examples below. See here for more details

You can also apply the annotation to methods with arbitrary names and/or multiple arguments:

public class MovieRecommender {

private MovieCatalog movieCatalog;

private CustomerPreferenceDao customerPreferenceDao;

@Autowired
public void prepare(MovieCatalog movieCatalog,

CustomerPreferenceDao customerPreferenceDao) {
this.movieCatalog = movieCatalog;
this.customerPreferenceDao = customerPreferenceDao;

}

// ...
}

You can apply @Autowired to constructors and fields:

public class MovieRecommender {

@Autowired
private MovieCatalog movieCatalog;

private CustomerPreferenceDao customerPreferenceDao;

@Autowired
public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {

this.customerPreferenceDao = customerPreferenceDao;
}

// ...
}

It is also possible to provide all beans of a particular type from the ApplicationContext by adding

Spring Framework

3.1 Reference Documentation 97

the annotation to a field or method that expects an array of that type:

public class MovieRecommender {

@Autowired
private MovieCatalog[] movieCatalogs;

// ...
}

The same applies for typed collections:

public class MovieRecommender {

private Set<MovieCatalog> movieCatalogs;

@Autowired
public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) {

this.movieCatalogs = movieCatalogs;
}

// ...
}

Even typed Maps can be autowired as long as the expected key type is String. The Map values will
contain all beans of the expected type, and the keys will contain the corresponding bean names:

public class MovieRecommender {

private Map<String, MovieCatalog> movieCatalogs;

@Autowired
public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) {

this.movieCatalogs = movieCatalogs;
}

// ...
}

By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to
treat annotated methods, constructors, and fields as indicating required dependencies. This behavior can
be changed as demonstrated below.

public class SimpleMovieLister {

private MovieFinder movieFinder;

@Autowired(required=false)
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}

// ...
}

Note

Only one annotated constructor per-class can be marked as required, but multiple
non-required constructors can be annotated. In that case, each is considered among the

Spring Framework

3.1 Reference Documentation 98

candidates and Spring uses the greediest constructor whose dependencies can be satisfied,
that is the constructor that has the largest number of arguments.

@Autowired's required attribute is recommended over the @Required annotation. The
required attribute indicates that the property is not required for autowiring purposes, the
property is ignored if it cannot be autowired. @Required, on the other hand, is stronger in
that it enforces the property that was set by any means supported by the container. If no value
is injected, a corresponding exception is raised.

You can also use @Autowired for interfaces that are well-known resolvable dependencies:
BeanFactory, ApplicationContext, Environment, ResourceLoader,
ApplicationEventPublisher, and MessageSource. These interfaces and their extended
interfaces, such as ConfigurableApplicationContext or ResourcePatternResolver, are
automatically resolved, with no special setup necessary.

public class MovieRecommender {

@Autowired
private ApplicationContext context;

public MovieRecommender() {
}

// ...
}

Note

@Autowired, @Inject, @Resource, and @Value annotations are handled by a Spring
BeanPostProcessor implementations which in turn means that you cannot apply these
annotations within your own BeanPostProcessor or
BeanFactoryPostProcessor types (if any). These types must be 'wired up' explicitly
via XML or using a Spring @Bean method.

Fine-tuning annotation-based autowiring with qualifiers

Because autowiring by type may lead to multiple candidates, it is often necessary to have more control
over the selection process. One way to accomplish this is with Spring's @Qualifier annotation. You
can associate qualifier values with specific arguments, narrowing the set of type matches so that a specific
bean is chosen for each argument. In the simplest case, this can be a plain descriptive value:

public class MovieRecommender {

@Autowired
@Qualifier("main")
private MovieCatalog movieCatalog;

// ...
}

Spring Framework

3.1 Reference Documentation 99

The @Qualifier annotation can also be specified on individual constructor arguments or method
parameters:

public class MovieRecommender {

private MovieCatalog movieCatalog;

private CustomerPreferenceDao customerPreferenceDao;

@Autowired
public void prepare(@Qualifier("main") MovieCatalog movieCatalog,

CustomerPreferenceDao customerPreferenceDao) {
this.movieCatalog = movieCatalog;
this.customerPreferenceDao = customerPreferenceDao;

}

// ...
}

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with
the constructor argument that is qualified with the same value.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:annotation-config/>

<bean class="example.SimpleMovieCatalog">
<qualifier value="main"/>
<!-- inject any dependencies required by this bean -->

</bean>

<bean class="example.SimpleMovieCatalog">
<qualifier value="action"/>
<!-- inject any dependencies required by this bean -->

</bean>

<bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

For a fallback match, the bean name is considered a default qualifier value. Thus you can define the bean
with an id "main" instead of the nested qualifier element, leading to the same matching result. However,
although you can use this convention to refer to specific beans by name, @Autowired is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main" or "EMEA" or
"persistent", expressing characteristics of a specific component that are independent from the bean id,
which may be auto-generated in case of an anonymous bean definition like the one in the preceding
example.

Qualifiers also apply to typed collections, as discussed above, for example, to Set<MovieCatalog>.

Spring Framework

3.1 Reference Documentation 100

In this case, all matching beans according to the declared qualifiers are injected as a collection. This
implies that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For
example, you can define multiple MovieCatalog beans with the same qualifier value "action"; all of
which would be injected into a Set<MovieCatalog> annotated with @Qualifier("action").

Tip

If you intend to express annotation-driven injection by name, do not primarily use
@Autowired, even if is technically capable of referring to a bean name through
@Qualifier values. Instead, use the JSR-250 @Resource annotation, which is
semantically defined to identify a specific target component by its unique name, with the
declared type being irrelevant for the matching process.

As a specific consequence of this semantic difference, beans that are themselves defined as a
collection or map type cannot be injected through @Autowired, because type matching is
not properly applicable to them. Use @Resource for such beans, referring to the specific
collection or map bean by unique name.

@Autowired applies to fields, constructors, and multi-argument methods, allowing for
narrowing through qualifier annotations at the parameter level. By contrast, @Resource is
supported only for fields and bean property setter methods with a single argument. As a
consequence, stick with qualifiers if your injection target is a constructor or a multi-argument
method.

You can create your own custom qualifier annotations. Simply define an annotation and provide the
@Qualifier annotation within your definition:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Genre {

String value();
}

Then you can provide the custom qualifier on autowired fields and parameters:

public class MovieRecommender {

@Autowired
@Genre("Action")
private MovieCatalog actionCatalog;

private MovieCatalog comedyCatalog;

@Autowired
public void setComedyCatalog(@Genre("Comedy") MovieCatalog comedyCatalog) {

this.comedyCatalog = comedyCatalog;
}

// ...
}

Spring Framework

3.1 Reference Documentation 101

Next, provide the information for the candidate bean definitions. You can add <qualifier/> tags as
sub-elements of the <bean/> tag and then specify the type and value to match your custom qualifier
annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a
convenience if no risk of conflicting names exists, you can use the short class name. Both approaches are
demonstrated in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:annotation-config/>

<bean class="example.SimpleMovieCatalog">
<qualifier type="Genre" value="Action"/>
<!-- inject any dependencies required by this bean -->

</bean>

<bean class="example.SimpleMovieCatalog">
<qualifier type="example.Genre" value="Comedy"/>
<!-- inject any dependencies required by this bean -->

</bean>

<bean id="movieRecommender" class="example.MovieRecommender"/>

</beans>

In Section 4.10, “Classpath scanning and managed components”, you will see an annotation-based
alternative to providing the qualifier metadata in XML. Specifically, see the section called “Providing
qualifier metadata with annotations”.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when the
annotation serves a more generic purpose and can be applied across several different types of
dependencies. For example, you may provide an offline catalog that would be searched when no Internet
connection is available. First define the simple annotation:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Offline {

}

Then add the annotation to the field or property to be autowired:

public class MovieRecommender {

@Autowired
@Offline
private MovieCatalog offlineCatalog;

// ...
}

Spring Framework

3.1 Reference Documentation 102

Now the bean definition only needs a qualifier type:

<bean class="example.SimpleMovieCatalog">
<qualifier type="Offline"/>
<!-- inject any dependencies required by this bean -->

</bean>

You can also define custom qualifier annotations that accept named attributes in addition to or instead of
the simple value attribute. If multiple attribute values are then specified on a field or parameter to be
autowired, a bean definition must match all such attribute values to be considered an autowire candidate.
As an example, consider the following annotation definition:

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface MovieQualifier {

String genre();

Format format();
}

In this case Format is an enum:

public enum Format {

VHS, DVD, BLURAY
}

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
genre and format.

public class MovieRecommender {

@Autowired
@MovieQualifier(format=Format.VHS, genre="Action")
private MovieCatalog actionVhsCatalog;

@Autowired
@MovieQualifier(format=Format.VHS, genre="Comedy")
private MovieCatalog comedyVhsCatalog;

@Autowired
@MovieQualifier(format=Format.DVD, genre="Action")
private MovieCatalog actionDvdCatalog;

@Autowired
@MovieQualifier(format=Format.BLURAY, genre="Comedy")
private MovieCatalog comedyBluRayCatalog;

// ...
}

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates
that bean meta attributes may be used instead of the <qualifier/> sub-elements. If available, the
<qualifier/> and its attributes take precedence, but the autowiring mechanism falls back on the
values provided within the <meta/> tags if no such qualifier is present, as in the last two bean

Spring Framework

3.1 Reference Documentation 103

definitions in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:annotation-config/>

<bean class="example.SimpleMovieCatalog">
<qualifier type="MovieQualifier">

<attribute key="format" value="VHS"/>
<attribute key="genre" value="Action"/>

</qualifier>
<!-- inject any dependencies required by this bean -->

</bean>

<bean class="example.SimpleMovieCatalog">
<qualifier type="MovieQualifier">

<attribute key="format" value="VHS"/>
<attribute key="genre" value="Comedy"/>

</qualifier>
<!-- inject any dependencies required by this bean -->

</bean>

<bean class="example.SimpleMovieCatalog">
<meta key="format" value="DVD"/>
<meta key="genre" value="Action"/>
<!-- inject any dependencies required by this bean -->

</bean>

<bean class="example.SimpleMovieCatalog">
<meta key="format" value="BLURAY"/>
<meta key="genre" value="Comedy"/>
<!-- inject any dependencies required by this bean -->

</bean>

</beans>

CustomAutowireConfigurer

The CustomAutowireConfigurer is a BeanFactoryPostProcessor that enables you to
register your own custom qualifier annotation types even if they are not annotated with Spring's
@Qualifier annotation.

<bean id="customAutowireConfigurer"
class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer">

<property name="customQualifierTypes">
<set>

<value>example.CustomQualifier</value>
</set>

</property>
</bean>

The particular implementation of AutowireCandidateResolver that is activated for the
application context depends on the Java version. In versions earlier than Java 5, the qualifier annotations

Spring Framework

3.1 Reference Documentation 104

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

are not supported, and therefore autowire candidates are solely determined by the
autowire-candidate value of each bean definition as well as by any
default-autowire-candidates pattern(s) available on the <beans/> element. In Java 5 or
later, the presence of @Qualifier annotations and any custom annotations registered with the
CustomAutowireConfigurer will also play a role.

Regardless of the Java version, when multiple beans qualify as autowire candidates, the determination of
a "primary" candidate is the same: if exactly one bean definition among the candidates has a primary
attribute set to true, it will be selected.

@Resource

Spring also supports injection using the JSR-250 @Resource annotation on fields or bean property
setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans or
JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@Resource takes a name attribute, and by default Spring interprets that value as the bean name to be
injected. In other words, it follows by-name semantics, as demonstrated in this example:

public class SimpleMovieLister {

private MovieFinder movieFinder;

@Resource(name="myMovieFinder")
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}

}

If no name is specified explicitly, the default name is derived from the field name or setter method. In
case of a field, it takes the field name; in case of a setter method, it takes the bean property name. So the
following example is going to have the bean with name "movieFinder" injected into its setter method:

public class SimpleMovieLister {

private MovieFinder movieFinder;

@Resource
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}

}

Note

The name provided with the annotation is resolved as a bean name by the
ApplicationContext of which the CommonAnnotationBeanPostProcessor is
aware. The names can be resolved through JNDI if you configure Spring's
SimpleJndiBeanFactory explicitly. However, it is recommended that you rely on the
default behavior and simply use Spring's JNDI lookup capabilities to preserve the level of
indirection.

Spring Framework

3.1 Reference Documentation 105

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

In the exclusive case of @Resource usage with no explicit name specified, and similar to
@Autowired, @Resource finds a primary type match instead of a specific named bean and resolves
well-known resolvable dependencies: the BeanFactory, ApplicationContext,
ResourceLoader, ApplicationEventPublisher, and MessageSource interfaces.

Thus in the following example, the customerPreferenceDao field first looks for a bean named
customerPreferenceDao, then falls back to a primary type match for the type
CustomerPreferenceDao. The "context" field is injected based on the known resolvable
dependency type ApplicationContext.

public class MovieRecommender {

@Resource
private CustomerPreferenceDao customerPreferenceDao;

@Resource
private ApplicationContext context;

public MovieRecommender() {
}

// ...
}

@PostConstruct and @PreDestroy

The CommonAnnotationBeanPostProcessor not only recognizes the @Resource annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these annotations
offers yet another alternative to those described in initialization callbacks and destruction callbacks.
Provided that the CommonAnnotationBeanPostProcessor is registered within the Spring
ApplicationContext, a method carrying one of these annotations is invoked at the same point in the
lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method. In
the example below, the cache will be pre-populated upon initialization and cleared upon destruction.

public class CachingMovieLister {

@PostConstruct
public void populateMovieCache() {

// populates the movie cache upon initialization...
}

@PreDestroy
public void clearMovieCache() {

// clears the movie cache upon destruction...
}

}

Note

For details about the effects of combining various lifecycle mechanisms, see the section
called “Combining lifecycle mechanisms”.

Spring Framework

3.1 Reference Documentation 106

4.10 Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each
BeanDefinition within the Spring container. The previous section (Section 4.9, “Annotation-based
container configuration”) demonstrates how to provide a lot of the configuration metadata through
source-level annotations. Even in those examples, however, the "base" bean definitions are explicitly
defined in the XML file, while the annotations only drive the dependency injection. This section describes
an option for implicitly detecting the candidate components by scanning the classpath. Candidate
components are classes that match against a filter criteria and have a corresponding bean definition
registered with the container. This removes the need to use XML to perform bean registration, instead
you can use annotations (for example @Component), AspectJ type expressions, or your own custom filter
criteria to select which classes will have bean definitions registered with the container.

Note

Starting with Spring 3.0, many features provided by the Spring JavaConfig project are part of
the core Spring Framework. This allows you to define beans using Java rather than using the
traditional XML files. Take a look at the @Configuration, @Bean, @Import, and
@DependsOn annotations for examples of how to use these new features.

@Component and further stereotype annotations

In Spring 2.0 and later, the @Repository annotation is a marker for any class that fulfills the role or
stereotype (also known as Data Access Object or DAO) of a repository. Among the uses of this marker is
the automatic translation of exceptions as described in the section called “Exception translation”.

Spring 2.5 introduces further stereotype annotations: @Component, @Service, and @Controller.
@Component is a generic stereotype for any Spring-managed component. @Repository, @Service,
and @Controller are specializations of @Component for more specific use cases, for example, in the
persistence, service, and presentation layers, respectively. Therefore, you can annotate your component
classes with @Component, but by annotating them with @Repository, @Service, or
@Controller instead, your classes are more properly suited for processing by tools or associating with
aspects. For example, these stereotype annotations make ideal targets for pointcuts. It is also possible that
@Repository, @Service, and @Controller may carry additional semantics in future releases of
the Spring Framework. Thus, if you are choosing between using @Component or @Service for your
service layer, @Service is clearly the better choice. Similarly, as stated above, @Repository is
already supported as a marker for automatic exception translation in your persistence layer.

Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding BeanDefinitions with
the ApplicationContext. For example, the following two classes are eligible for such

Spring Framework

3.1 Reference Documentation 107

http://www.springsource.org/javaconfig

autodetection:

@Service
public class SimpleMovieLister {

private MovieFinder movieFinder;

@Autowired
public SimpleMovieLister(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}

}

@Repository
public class JpaMovieFinder implements MovieFinder {
// implementation elided for clarity

}

To autodetect these classes and register the corresponding beans, you need to include the following
element in XML, where the base-package element is a common parent package for the two classes.
(Alternatively, you can specify a comma-separated list that includes the parent package of each class.)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:component-scan base-package="org.example"/>

</beans>

Note

The scanning of classpath packages requires the presence of corresponding directory entries
in the classpath. When you build JARs with Ant, make sure that you do not activate the
files-only switch of the JAR task.

Furthermore, the AutowiredAnnotationBeanPostProcessor and
CommonAnnotationBeanPostProcessor are both included implicitly when you use the
component-scan element. That means that the two components are autodetected and wired together - all
without any bean configuration metadata provided in XML.

Note

You can disable the registration of AutowiredAnnotationBeanPostProcessor and
CommonAnnotationBeanPostProcessor by including the annotation-config attribute
with a value of false.

Spring Framework

3.1 Reference Documentation 108

Using filters to customize scanning

By default, classes annotated with @Component, @Repository, @Service, @Controller, or a
custom annotation that itself is annotated with @Component are the only detected candidate
components. However, you can modify and extend this behavior simply by applying custom filters. Add
them as include-filter or exclude-filter sub-elements of the component-scan element. Each filter
element requires the type and expression attributes. The following table describes the filtering
options.

Table 4.5. Filter Types

Filter
Type

Example Expression Description

annotation org.example.SomeAnnotation An annotation to be present at the type level in
target components.

assignable org.example.SomeClass A class (or interface) that the target components
are assignable to (extend/implement).

aspectj org.example..*Service+ An AspectJ type expression to be matched by the
target components.

regex org\.example\.Default.* A regex expression to be matched by the target
components class names.

custom org.example.MyTypeFilter A custom implementation of the
org.springframework.core.type
.TypeFilter interface.

The following example shows the XML configuration ignoring all @Repository annotations and using
"stub" repositories instead.

<beans>

<context:component-scan base-package="org.example">
<context:include-filter type="regex" expression=".*Stub.*Repository"/>
<context:exclude-filter type="annotation"

expression="org.springframework.stereotype.Repository"/>
</context:component-scan>

</beans>

Note

You can also disable the default filters by providing use-default-filters="false" as an attribute
of the <component-scan/> element. This will in effect disable automatic detection of classes
annotated with @Component, @Repository, @Service, or @Controller.

Spring Framework

3.1 Reference Documentation 109

Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with the
same @Bean annotation used to define bean metadata within @Configuration annotated classes.
Here is a simple example:

@Component
public class FactoryMethodComponent {

@Bean @Qualifier("public")
public TestBean publicInstance() {

return new TestBean("publicInstance");
}

public void doWork() {
// Component method implementation omitted

}
}

This class is a Spring component that has application-specific code contained in its doWork() method.
However, it also contributes a bean definition that has a factory method referring to the method
publicInstance(). The @Bean annotation identifies the factory method and other bean definition
properties, such as a qualifier value through the @Qualifier annotation. Other method level
annotations that can be specified are @Scope, @Lazy, and custom qualifier annotations. Autowired
fields and methods are supported as previously discussed, with additional support for autowiring of
@Bean methods:

@Component
public class FactoryMethodComponent {

private static int i;

@Bean @Qualifier("public")
public TestBean publicInstance() {

return new TestBean("publicInstance");
}

// use of a custom qualifier and autowiring of method parameters

@Bean
protected TestBean protectedInstance(@Qualifier("public") TestBean spouse,

@Value("#{privateInstance.age}") String country) {
TestBean tb = new TestBean("protectedInstance", 1);
tb.setSpouse(tb);
tb.setCountry(country);
return tb;

}

@Bean @Scope(BeanDefinition.SCOPE_SINGLETON)
private TestBean privateInstance() {

return new TestBean("privateInstance", i++);
}

@Bean @Scope(value = WebApplicationContext.SCOPE_SESSION,
proxyMode = ScopedProxyMode.TARGET_CLASS)

public TestBean requestScopedInstance() {
return new TestBean("requestScopedInstance", 3);

}
}

Spring Framework

3.1 Reference Documentation 110

The example autowires the String method parameter country to the value of the Age property on
another bean named privateInstance. A Spring Expression Language element defines the value of
the property through the notation #{ <expression> }. For @Value annotations, an expression
resolver is preconfigured to look for bean names when resolving expression text.

The @Bean methods in a Spring component are processed differently than their counterparts inside a
Spring @Configuration class. The difference is that @Component classes are not enhanced with
CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which
invoking methods or fields within @Configuration classes @Bean methods create bean metadata
references to collaborating objects. Methods are not invoked with normal Java semantics. In contrast,
calling a method or field within a @Component classes @Bean method has standard Java semantics.

Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by the
BeanNameGenerator strategy known to that scanner. By default, any Spring stereotype annotation
(@Component, @Repository, @Service, and @Controller) that contains a name value will
thereby provide that name to the corresponding bean definition.

If such an annotation contains no name value or for any other detected component (such as those
discovered by custom filters), the default bean name generator returns the uncapitalized non-qualified
class name. For example, if the following two components were detected, the names would be
myMovieLister and movieFinderImpl:

@Service("myMovieLister")
public class SimpleMovieLister {
// ...

}

@Repository
public class MovieFinderImpl implements MovieFinder {
// ...

}

Note

If you do not want to rely on the default bean-naming strategy, you can provide a custom
bean-naming strategy. First, implement the BeanNameGenerator interface, and be sure to
include a default no-arg constructor. Then, provide the fully-qualified class name when
configuring the scanner:

<beans>

<context:component-scan base-package="org.example"
name-generator="org.example.MyNameGenerator" />

</beans>

Spring Framework

3.1 Reference Documentation 111

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/support/BeanNameGenerator.html

As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever the
container is responsible for wiring.

Providing a scope for autodetected components

As with Spring-managed components in general, the default and most common scope for autodetected
components is singleton. However, sometimes you need other scopes, which Spring 2.5 provides with a
new @Scope annotation. Simply provide the name of the scope within the annotation:

@Scope("prototype")
@Repository
public class MovieFinderImpl implements MovieFinder {
// ...

}

Note

To provide a custom strategy for scope resolution rather than relying on the annotation-based
approach, implement the ScopeMetadataResolver interface, and be sure to include a
default no-arg constructor. Then, provide the fully-qualified class name when configuring the
scanner:

<beans>

<context:component-scan base-package="org.example"
scope-resolver="org.example.MyScopeResolver" />

</beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped objects.
The reasoning is described in the section called “Scoped beans as dependencies”. For this purpose, a
scoped-proxy attribute is available on the component-scan element. The three possible values are: no,
interfaces, and targetClass. For example, the following configuration will result in standard JDK dynamic
proxies:

<beans>

<context:component-scan base-package="org.example"
scoped-proxy="interfaces" />

</beans>

Providing qualifier metadata with annotations

The @Qualifier annotation is discussed in the section called “Fine-tuning annotation-based autowiring
with qualifiers”. The examples in that section demonstrate the use of the @Qualifier annotation and
custom qualifier annotations to provide fine-grained control when you resolve autowire candidates.

Spring Framework

3.1 Reference Documentation 112

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/annotation/ScopeMetadataResolver.html

Because those examples were based on XML bean definitions, the qualifier metadata was provided on the
candidate bean definitions using the qualifier or meta sub-elements of the bean element in the
XML. When relying upon classpath scanning for autodetection of components, you provide the qualifier
metadata with type-level annotations on the candidate class. The following three examples demonstrate
this technique:

@Component
@Qualifier("Action")
public class ActionMovieCatalog implements MovieCatalog {
// ...

}

@Component
@Genre("Action")
public class ActionMovieCatalog implements MovieCatalog {
// ...

}

@Component
@Offline
public class CachingMovieCatalog implements MovieCatalog {
// ...

}

Note

As with most annotation-based alternatives, keep in mind that the annotation metadata is
bound to the class definition itself, while the use of XML allows for multiple beans of the
same type to provide variations in their qualifier metadata, because that metadata is provided
per-instance rather than per-class.

4.11 Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency Injection).
Those annotations are scanned in the same way as the Spring annotations. You just need to have the
relevant jars in your classpath.

Note

If you are using Maven, the javax.inject artifact is available in the standard Maven
repository (http://repo1.maven.org/maven2/javax/inject/javax.inject/1/). You can add the
following dependency to your file pom.xml:

<dependency>
<groupId>javax.inject</groupId>
<artifactId>javax.inject</artifactId>
<version>1</version>

</dependency>

Spring Framework

3.1 Reference Documentation 113

http://repo1.maven.org/maven2/javax/inject/javax.inject/1/

Dependency Injection with @Inject and @Named

Instead of @Autowired, @javax.inject.Inject may be used as follows:

import javax.inject.Inject;

public class SimpleMovieLister {

private MovieFinder movieFinder;

@Inject
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}
// ...

}

As with @Autowired, it is possible to use @Inject at the class-level, field-level, method-level and
constructor-argument level. If you would like to use a qualified name for the dependency that should be
injected, you should use the @Named annotation as follows:

import javax.inject.Inject;
import javax.inject.Named;

public class SimpleMovieLister {

private MovieFinder movieFinder;

@Inject
public void setMovieFinder(@Named("main") MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}
// ...

}

@Named: a standard equivalent to the @Component annotation

Instead of @Component, @javax.inject.Named may be used as follows:

import javax.inject.Inject;
import javax.inject.Named;

@Named("movieListener")
public class SimpleMovieLister {

private MovieFinder movieFinder;

@Inject
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}
// ...

}

It is very common to use @Component without specifying a name for the component. @Named can be
used in a similar fashion:

Spring Framework

3.1 Reference Documentation 114

import javax.inject.Inject;
import javax.inject.Named;

@Named
public class SimpleMovieLister {

private MovieFinder movieFinder;

@Inject
public void setMovieFinder(MovieFinder movieFinder) {

this.movieFinder = movieFinder;
}
// ...

}

When using @Named, it is possible to use component-scanning in the exact same way as when using
Spring annotations:

<beans>
<context:component-scan base-package="org.example"/>

</beans>

Limitations of the standard approach

When working with standard annotations, it is important to know that some significant features are not
available as shown in the table below:

Table 4.6. Spring annotations vs. standard annotations

Spring javax.inject.* javax.inject restrictions / comments

@Autowired @Inject @Inject has no 'required' attribute

@Component @Named —

@Scope("singleton") @Singleton
The JSR-330 default scope is like Spring's
prototype. However, in order to keep it consistent
with Spring's general defaults, a JSR-330 bean
declared in the Spring container is a singleton by
default. In order to use a scope other than
singleton, you should use Spring's @Scope
annotation.

javax.inject also provides a @Scope annotation.
Nevertheless, this one is only intended to be used for
creating your own annotations.

@Qualifier @Named —

@Value — no equivalent

Spring Framework

3.1 Reference Documentation 115

http://download.oracle.com/javaee/6/api/javax/inject/Scope.html

Spring javax.inject.* javax.inject restrictions / comments

@Required — no equivalent

@Lazy — no equivalent

4.12 Java-based container configuration

Basic concepts: @Configuration and @Bean

The central artifact in Spring's new Java-configuration support is the @Configuration-annotated
class. These classes consist principally of @Bean-annotated methods that define instantiation,
configuration, and initialization logic for objects to be managed by the Spring IoC container.

Annotating a class with the @Configuration indicates that the class can be used by the Spring IoC
container as a source of bean definitions. The simplest possible @Configuration class would read as
follows:

@Configuration
public class AppConfig {
@Bean
public MyService myService() {

return new MyServiceImpl();
}

}

For those more familiar with Spring <beans/> XML, the AppConfig class above would be equivalent
to:

<beans>
<bean id="myService" class="com.acme.services.MyServiceImpl"/>

</beans>

As you can see, the @Bean annotation plays the same role as the <bean/> element. The @Bean
annotation will be discussed in depth in the sections below. First, however, we'll cover the various ways
of creating a spring container using Java-based configuration.

Instantiating the Spring container using
AnnotationConfigApplicationContext

The sections below document Spring's AnnotationConfigApplicationContext, new in Spring
3.0. This versatile ApplicationContext implementation is capable of accepting not only
@Configuration classes as input, but also plain @Component classes and classes annotated with
JSR-330 metadata.

When @Configuration classes are provided as input, the @Configuration class itself is

Spring Framework

3.1 Reference Documentation 116

registered as a bean definition, and all declared @Bean methods within the class are also registered as
bean definitions.

When @Component and JSR-330 classes are provided, they are registered as bean definitions, and it is
assumed that DI metadata such as @Autowired or @Inject are used within those classes where
necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
ClassPathXmlApplicationContext, @Configuration classes may be used as input when
instantiating an AnnotationConfigApplicationContext. This allows for completely XML-free
usage of the Spring container:

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
MyService myService = ctx.getBean(MyService.class);
myService.doStuff();

}

As mentioned above, AnnotationConfigApplicationContext is not limited to working only
with @Configuration classes. Any @Component or JSR-330 annotated class may be supplied as
input to the constructor. For example:

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(MyServiceImpl.class, Dependency1.class, Dependency2.class);
MyService myService = ctx.getBean(MyService.class);
myService.doStuff();

}

The above assumes that MyServiceImpl, Dependency1 and Dependency2 use Spring
dependency injection annotations such as @Autowired.

Building the container programmatically using register(Class<?>...)

An AnnotationConfigApplicationContext may be instantiated using a no-arg constructor and
then configured using the register() method. This approach is particularly useful when
programmatically building an AnnotationConfigApplicationContext.

public static void main(String[] args) {
AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
ctx.register(AppConfig.class, OtherConfig.class);
ctx.register(AdditionalConfig.class);
ctx.refresh();
MyService myService = ctx.getBean(MyService.class);
myService.doStuff();

}

Enabling component scanning with scan(String...)

Experienced Spring users will be familiar with the following commonly-used XML declaration from
Spring's context: namespace

<beans>

Spring Framework

3.1 Reference Documentation 117

<context:component-scan base-package="com.acme"/>
</beans>

In the example above, the com.acme package will be scanned, looking for any @Component-annotated
classes, and those classes will be registered as Spring bean definitions within the container.
AnnotationConfigApplicationContext exposes the scan(String...) method to allow
for the same component-scanning functionality:

public static void main(String[] args) {
AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext();
ctx.scan("com.acme");
ctx.refresh();
MyService myService = ctx.getBean(MyService.class);

}

Note

Remember that @Configuration classes are meta-annotated with @Component, so they
are candidates for component-scanning! In the example above, assuming that AppConfig is
declared within the com.acme package (or any package underneath), it will be picked up
during the call to scan(), and upon refresh() all its @Bean methods will be processed
and registered as bean definitions within the container.

Support for web applications with AnnotationConfigWebApplicationContext

A WebApplicationContext variant of AnnotationConfigApplicationContext is
available with AnnotationConfigWebApplicationContext. This implementation may be used
when configuring the Spring ContextLoaderListener servlet listener, Spring MVC
DispatcherServlet, etc. What follows is a web.xml snippet that configures a typical Spring MVC
web application. Note the use of the contextClass context-param and init-param:

<web-app>
<!-- Configure ContextLoaderListener to use AnnotationConfigWebApplicationContext

instead of the default XmlWebApplicationContext -->
<context-param>

<param-name>contextClass</param-name>
<param-value>

org.springframework.web.context.support.AnnotationConfigWebApplicationContext
</param-value>

</context-param>

<!-- Configuration locations must consist of one or more comma- or space-delimited
fully-qualified @Configuration classes. Fully-qualified packages may also be
specified for component-scanning -->

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>com.acme.AppConfig</param-value>

</context-param>

<!-- Bootstrap the root application context as usual using ContextLoaderListener -->
<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

<!-- Declare a Spring MVC DispatcherServlet as usual -->

Spring Framework

3.1 Reference Documentation 118

<servlet>
<servlet-name>dispatcher</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<!-- Configure DispatcherServlet to use AnnotationConfigWebApplicationContext

instead of the default XmlWebApplicationContext -->
<init-param>

<param-name>contextClass</param-name>
<param-value>

org.springframework.web.context.support.AnnotationConfigWebApplicationContext
</param-value>

</init-param>
<!-- Again, config locations must consist of one or more comma- or space-delimited

and fully-qualified @Configuration classes -->
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>com.acme.web.MvcConfig</param-value>

</init-param>
</servlet>

<!-- map all requests for /app/* to the dispatcher servlet -->
<servlet-mapping>

<servlet-name>dispatcher</servlet-name>
<url-pattern>/app/*</url-pattern>

</servlet-mapping>
</web-app>

Composing Java-based configurations

Using the @Import annotation

Much as the <import/> element is used within Spring XML files to aid in modularizing configurations,
the @Import annotation allows for loading @Bean definitions from another configuration class:

@Configuration
public class ConfigA {
public @Bean A a() { return new A(); }

}

@Configuration
@Import(ConfigA.class)
public class ConfigB {
public @Bean B b() { return new B(); }

}

Now, rather than needing to specify both ConfigA.class and ConfigB.class when instantiating
the context, only ConfigB needs to be supplied explicitly:

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(ConfigB.class);

// now both beans A and B will be available...
A a = ctx.getBean(A.class);
B b = ctx.getBean(B.class);

}

This approach simplifies container instantiation, as only one class needs to be dealt with, rather than
requiring the developer to remember a potentially large number of @Configuration classes during
construction.

Spring Framework

3.1 Reference Documentation 119

Injecting dependencies on imported @Bean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have dependencies on
one another across configuration classes. When using XML, this is not an issue, per se, because there is
no compiler involved, and one can simply declare ref="someBean" and trust that Spring will work it
out during container initialization. Of course, when using @Configuration classes, the Java compiler
places constraints on the configuration model, in that references to other beans must be valid Java syntax.

Fortunately, solving this problem is simple. Remember that @Configuration classes are ultimately
just another bean in the container - this means that they can take advantage of @Autowired injection
metadata just like any other bean!

Let's consider a more real-world scenario with several @Configuration classes, each depending on
beans declared in the others:

@Configuration
public class ServiceConfig {
private @Autowired AccountRepository accountRepository;

public @Bean TransferService transferService() {
return new TransferServiceImpl(accountRepository);

}
}

@Configuration
public class RepositoryConfig {
private @Autowired DataSource dataSource;

public @Bean AccountRepository accountRepository() {
return new JdbcAccountRepository(dataSource);

}
}

@Configuration
@Import({ServiceConfig.class, RepositoryConfig.class})
public class SystemTestConfig {
public @Bean DataSource dataSource() { /* return new DataSource */ }

}

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
// everything wires up across configuration classes...
TransferService transferService = ctx.getBean(TransferService.class);
transferService.transfer(100.00, "A123", "C456");

}

Fully-qualifying imported beans for ease of navigation

In the scenario above, using @Autowired works well and provides the desired modularity, but
determining exactly where the autowired bean definitions are declared is still somewhat ambiguous. For
example, as a developer looking at ServiceConfig, how do you know exactly where the
@Autowired AccountRepository bean is declared? It's not explicit in the code, and this may be
just fine. Remember that the SpringSource Tool Suite provides tooling that can render graphs showing
how everything is wired up - that may be all you need. Also, your Java IDE can easily find all
declarations and uses of the AccountRepository type, and will quickly show you the location of

Spring Framework

3.1 Reference Documentation 120

http://www.springsource.com/products/sts

@Bean methods that return that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within your
IDE from one @Configuration class to another, consider autowiring the configuration classes
themselves:

@Configuration
public class ServiceConfig {
private @Autowired RepositoryConfig repositoryConfig;

public @Bean TransferService transferService() {
// navigate 'through' the config class to the @Bean method!
return new TransferServiceImpl(repositoryConfig.accountRepository());

}
}

In the situation above, it is completely explicit where AccountRepository is defined. However,
ServiceConfig is now tightly coupled to RepositoryConfig; that's the tradeoff. This tight
coupling can be somewhat mitigated by using interface-based or abstract class-based
@Configuration classes. Consider the following:

@Configuration
public class ServiceConfig {
private @Autowired RepositoryConfig repositoryConfig;

public @Bean TransferService transferService() {
return new TransferServiceImpl(repositoryConfig.accountRepository());

}
}

@Configuration
public interface RepositoryConfig {
@Bean AccountRepository accountRepository();

}

@Configuration
public class DefaultRepositoryConfig implements RepositoryConfig {
public @Bean AccountRepository accountRepository() {

return new JdbcAccountRepository(...);
}

}

@Configuration
@Import({ServiceConfig.class, DefaultRepositoryConfig.class}) // import the concrete config!
public class SystemTestConfig {
public @Bean DataSource dataSource() { /* return DataSource */ }

}

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class);
TransferService transferService = ctx.getBean(TransferService.class);
transferService.transfer(100.00, "A123", "C456");

}

Now ServiceConfig is loosely coupled with respect to the concrete
DefaultRepositoryConfig, and built-in IDE tooling is still useful: it will be easy for the developer
to get a type hierarchy of RepositoryConfig implementations. In this way, navigating
@Configuration classes and their dependencies becomes no different than the usual process of
navigating interface-based code.

Spring Framework

3.1 Reference Documentation 121

Combining Java and XML configuration

Spring's @Configuration class support does not aim to be a 100% complete replacement for Spring
XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the container. In
cases where XML is convenient or necessary, you have a choice: either instantiate the container in an
"XML-centric" way using, for example, ClassPathXmlApplicationContext, or in a
"Java-centric" fashion using AnnotationConfigApplicationContext and the
@ImportResource annotation to import XML as needed.

XML-centric use of @Configuration classes

It may be preferable to bootstrap the Spring container from XML and include @Configuration
classes in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be
easier to create @Configuration classes on an as-needed basis and include them from the existing
XML files. Below you'll find the options for using @Configuration classes in this kind of
"XML-centric" situation.

Declaring @Configuration classes as plain Spring <bean/> elements

Remember that @Configuration classes are ultimately just bean definitions in the container. In this
example, we create a @Configuration class named AppConfig and include it within
system-test-config.xml as a <bean/>definition. Because
<context:annotation-config/> is switched on, the container will recognize the
@Configuration annotation, and process the @Bean methods declared in AppConfig properly.

@Configuration
public class AppConfig {
private @Autowired DataSource dataSource;

public @Bean AccountRepository accountRepository() {
return new JdbcAccountRepository(dataSource);

}

public @Bean TransferService transferService() {
return new TransferService(accountRepository());

}
}

system-test-config.xml
<beans>
<!-- enable processing of annotations such as @Autowired and @Configuration -->
<context:annotation-config/>
<context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>

<bean class="com.acme.AppConfig"/>

<bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>
</beans>

jdbc.properties

Spring Framework

3.1 Reference Documentation 122

jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa
jdbc.password=

public static void main(String[] args) {
ApplicationContext ctx = new ClassPathXmlApplicationContext("classpath:/com/acme/system-test-config.xml");
TransferService transferService = ctx.getBean(TransferService.class);
// ...

}

Note

In system-test-config.xml above, the AppConfig<bean/> does not declare an
id element. While it would be acceptable to do so, it is unnecessary given that no other bean
will ever refer to it, and it is unlikely that it will be explicitly fetched from the container by
name. Likewise with the DataSource bean - it is only ever autowired by type, so an
explicit bean id is not strictly required.

Using <context:component-scan/> to pick up @Configuration classes

Because @Configuration is meta-annotated with @Component, @Configuration-annotated
classes are automatically candidates for component scanning. Using the same scenario as above, we can
redefine system-test-config.xml to take advantage of component-scanning. Note that in this
case, we don't need to explicitly declare <context:annotation-config/>, because
<context:component-scan/> enables all the same functionality.

system-test-config.xml
<beans>
<!-- picks up and registers AppConfig as a bean definition -->
<context:component-scan base-package="com.acme"/>
<context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>

<bean class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>
</beans>

@Configuration class-centric use of XML with @ImportResource

In applications where @Configuration classes are the primary mechanism for configuring the
container, it will still likely be necessary to use at least some XML. In these scenarios, simply use
@ImportResource and define only as much XML as is needed. Doing so achieves a "Java-centric"
approach to configuring the container and keeps XML to a bare minimum.

@Configuration
@ImportResource("classpath:/com/acme/properties-config.xml")
public class AppConfig {
private @Value("${jdbc.url}") String url;
private @Value("${jdbc.username}") String username;
private @Value("${jdbc.password}") String password;

public @Bean DataSource dataSource() {

Spring Framework

3.1 Reference Documentation 123

return new DriverManagerDataSource(url, username, password);
}

}

properties-config.xml
<beans>
<context:property-placeholder location="classpath:/com/acme/jdbc.properties"/>

</beans>

jdbc.properties
jdbc.url=jdbc:hsqldb:hsql://localhost/xdb
jdbc.username=sa
jdbc.password=

public static void main(String[] args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class);
TransferService transferService = ctx.getBean(TransferService.class);
// ...

}

Using the @Bean annotation

@Bean is a method-level annotation and a direct analog of the XML <bean/> element. The annotation
supports some of the attributes offered by <bean/>, such as: init-method, destroy-method,
autowiring and name.

You can use the @Bean annotation in a @Configuration-annotated or in a @Component-annotated
class.

Declaring a bean

To declare a bean, simply annotate a method with the @Bean annotation. You use this method to register
a bean definition within an ApplicationContext of the type specified as the method's return value.
By default, the bean name will be the same as the method name. The following is a simple example of a
@Bean method declaration:

@Configuration
public class AppConfig {

@Bean
public TransferService transferService() {

return new TransferServiceImpl();
}

}

The preceding configuration is exactly equivalent to the following Spring XML:

<beans>
<bean id="transferService" class="com.acme.TransferServiceImpl"/>

</beans>

Both declarations make a bean named transferService available in the ApplicationContext,

Spring Framework

3.1 Reference Documentation 124

bound to an object instance of type TransferServiceImpl:

transferService -> com.acme.TransferServiceImpl

Injecting dependencies

When @Beans have dependencies on one another, expressing that dependency is as simple as having one
bean method call another:

@Configuration
public class AppConfig {

@Bean
public Foo foo() {

return new Foo(bar());
}

@Bean
public Bar bar() {

return new Bar();
}

}

In the example above, the foo bean receives a reference to bar via constructor injection.

Receiving lifecycle callbacks

Beans declared in a @Configuration-annotated class support the regular lifecycle callbacks. Any
classes defined with the @Bean annotation can use the @PostConstruct and @PreDestroy
annotations from JSR-250, see JSR-250 annotations for further details.

The regular Spring lifecycle callbacks are fully supported as well. If a bean implements
InitializingBean, DisposableBean, or Lifecycle, their respective methods are called by
the container.

The standard set of *Aware interfaces such as BeanFactoryAware, BeanNameAware,
MessageSourceAware, ApplicationContextAware, and so on are also fully supported.

The @Bean annotation supports specifying arbitrary initialization and destruction callback methods,
much like Spring XML's init-method and destroy-method attributes on the bean element:

public class Foo {
public void init() {

// initialization logic
}

}

public class Bar {
public void cleanup() {

// destruction logic
}

}

Spring Framework

3.1 Reference Documentation 125

@Configuration
public class AppConfig {
@Bean(initMethod = "init")
public Foo foo() {

return new Foo();
}
@Bean(destroyMethod = "cleanup")
public Bar bar() {

return new Bar();
}

}

Of course, in the case of Foo above, it would be equally as valid to call the init() method directly
during construction:

@Configuration
public class AppConfig {
@Bean
public Foo foo() {

Foo foo = new Foo();
foo.init();
return foo;

}

// ...
}

Tip

When you work directly in Java, you can do anything you like with your objects and do not
always need to rely on the container lifecycle!

Specifying bean scope

Using the @Scope annotation

You can specify that your beans defined with the @Bean annotation should have a specific scope. You
can use any of the standard scopes specified in the Bean Scopes section.

The default scope is singleton, but you can override this with the @Scope annotation:

@Configuration
public class MyConfiguration {
@Bean
@Scope("prototype")
public Encryptor encryptor() {

// ...
}

}

@Scope and scoped-proxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies. The easiest
way to create such a proxy when using the XML configuration is the <aop:scoped-proxy/>

Spring Framework

3.1 Reference Documentation 126

element. Configuring your beans in Java with a @Scope annotation offers equivalent support with the
proxyMode attribute. The default is no proxy (ScopedProxyMode.NO), but you can specify
ScopedProxyMode.TARGET_CLASS or ScopedProxyMode.INTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding link) to our
@Bean using Java, it would look like the following:

// an HTTP Session-scoped bean exposed as a proxy
@Bean
@Scope(value = "session", proxyMode = ScopedProxyMode.TARGET_CLASS)
public UserPreferences userPreferences() {
return new UserPreferences();

}

@Bean
public Service userService() {
UserService service = new SimpleUserService();
// a reference to the proxied userPreferences bean
service.setUserPreferences(userPreferences());
return service;

}

Lookup method injection

As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is useful in
cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java for this
type of configuration provides a natural means for implementing this pattern.

public abstract class CommandManager {
public Object process(Object commandState) {

// grab a new instance of the appropriate Command interface
Command command = createCommand();

// set the state on the (hopefully brand new) Command instance
command.setState(commandState);
return command.execute();

}

// okay... but where is the implementation of this method?
protected abstract Command createCommand();

}

Using Java-configuration support , you can create a subclass of CommandManager where the abstract
createCommand() method is overridden in such a way that it looks up a new (prototype) command
object:

@Bean
@Scope("prototype")
public AsyncCommand asyncCommand() {
AsyncCommand command = new AsyncCommand();
// inject dependencies here as required
return command;

}

@Bean
public CommandManager commandManager() {
// return new anonymous implementation of CommandManager with command() overridden
// to return a new prototype Command object
return new CommandManager() {

Spring Framework

3.1 Reference Documentation 127

protected Command createCommand() {
return asyncCommand();

}
}

}

Customizing bean naming

By default, configuration classes use a @Bean method's name as the name of the resulting bean. This
functionality can be overridden, however, with the name attribute.

@Configuration
public class AppConfig {

@Bean(name = "myFoo")
public Foo foo() {

return new Foo();
}

}

Bean aliasing

As discussed in the section called “Naming beans”, it is sometimes desirable to give a single bean
multiple names, otherwise known as bean aliasing. The name attribute of the @Bean annotation accepts
a String array for this purpose.

@Configuration
public class AppConfig {

@Bean(name = { "dataSource", "subsystemA-dataSource", "subsystemB-dataSource" })
public DataSource dataSource() {

// instantiate, configure and return DataSource bean...
}

}

Further information about how Java-based configuration works
internally

The following example shows a @Bean annotated method being called twice:

@Configuration
public class AppConfig {

@Bean
public ClientService clientService1() {

ClientServiceImpl clientService = new ClientServiceImpl();
clientService.setClientDao(clientDao());
return clientService;

}
@Bean
public ClientService clientService2() {

ClientServiceImpl clientService = new ClientServiceImpl();
clientService.setClientDao(clientDao());

Spring Framework

3.1 Reference Documentation 128

return clientService;
}

@Bean
public ClientDao clientDao() {

return new ClientDaoImpl();
}

}

clientDao() has been called once in clientService1() and once in clientService2().
Since this method creates a new instance of ClientDaoImpl and returns it, you would normally expect
having 2 instances (one for each service). That definitely would be problematic: in Spring, instantiated
beans have a singleton scope by default. This is where the magic comes in: All @Configuration
classes are subclassed at startup-time with CGLIB. In the subclass, the child method checks the container
first for any cached (scoped) beans before it calls the parent method and creates a new instance.

Note

The behavior could be different according to the scope of your bean. We are talking about
singletons here.

Note

Beware that, in order for JavaConfig to work, you must include the CGLIB jar in your list of
dependencies.

Note

There are a few restrictions due to the fact that CGLIB dynamically adds features at
startup-time:

• Configuration classes should not be final

• They should have a constructor with no arguments

4.13 Registering a LoadTimeWeaver

The context namespace introduced in Spring 2.5 provides a load-time-weaver element.

<beans>

<context:load-time-weaver/>

</beans>

Adding this element to an XML-based Spring configuration file activates a Spring LoadTimeWeaver

Spring Framework

3.1 Reference Documentation 129

for the ApplicationContext. Any bean within that ApplicationContext may implement
LoadTimeWeaverAware, thereby receiving a reference to the load-time weaver instance. This is
particularly useful in combination with Spring's JPA support where load-time weaving may be necessary
for JPA class transformation. Consult the LocalContainerEntityManagerFactoryBean
Javadoc for more detail. For more on AspectJ load-time weaving, see the section called “Load-time
weaving with AspectJ in the Spring Framework”.

4.14 Additional Capabilities of the ApplicationContext

As was discussed in the chapter introduction, the org.springframework.beans.factory
package provides basic functionality for managing and manipulating beans, including in a programmatic
way. The org.springframework.context package adds the ApplicationContext interface,
which extends the BeanFactory interface, in addition to extending other interfaces to provide
additional functionality in a more application framework-oriented style. Many people use the
ApplicationContext in a completely declarative fashion, not even creating it programmatically, but
instead relying on support classes such as ContextLoader to automatically instantiate an
ApplicationContext as part of the normal startup process of a J2EE web application.

To enhance BeanFactory functionality in a more framework-oriented style the context package also
provides the following functionality:

• Access to messages in i18n-style, through the MessageSource interface.

• Access to resources, such as URLs and files, through the ResourceLoader interface.

• Event publication to beans implementing the ApplicationListener interface, through the use of
the ApplicationEventPublisher interface.

• Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, such
as the web layer of an application, through the HierarchicalBeanFactory interface.

Internationalization using MessageSource

The ApplicationContext interface extends an interface called MessageSource, and therefore
provides internationalization (i18n) functionality. Spring also provides the interface
HierarchicalMessageSource, which can resolve messages hierarchically. Together these
interfaces provide the foundation upon which Spring effects message resolution. The methods defined on
these interfaces include:

• String getMessage(String code, Object[] args, String default, Locale
loc): The basic method used to retrieve a message from the MessageSource. When no message is
found for the specified locale, the default message is used. Any arguments passed in become
replacement values, using the MessageFormat functionality provided by the standard library.

• String getMessage(String code, Object[] args, Locale loc): Essentially the

Spring Framework

3.1 Reference Documentation 130

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

same as the previous method, but with one difference: no default message can be specified; if the
message cannot be found, a NoSuchMessageException is thrown.

• String getMessage(MessageSourceResolvable resolvable, Locale locale):
All properties used in the preceding methods are also wrapped in a class named
MessageSourceResolvable, which you can use with this method.

When an ApplicationContext is loaded, it automatically searches for a MessageSource bean
defined in the context. The bean must have the name messageSource. If such a bean is found, all calls
to the preceding methods are delegated to the message source. If no message source is found, the
ApplicationContext attempts to find a parent containing a bean with the same name. If it does, it
uses that bean as the MessageSource. If the ApplicationContext cannot find any source for
messages, an empty DelegatingMessageSource is instantiated in order to be able to accept calls to
the methods defined above.

Spring provides two MessageSource implementations, ResourceBundleMessageSource and
StaticMessageSource. Both implement HierarchicalMessageSource in order to do nested
messaging. The StaticMessageSource is rarely used but provides programmatic ways to add
messages to the source. The ResourceBundleMessageSource is shown in the following example:

<beans>
<bean id="messageSource"

class="org.springframework.context.support.ResourceBundleMessageSource">
<property name="basenames">

<list>
<value>format</value>
<value>exceptions</value>
<value>windows</value>

</list>
</property>

</bean>
</beans>

In the example it is assumed you have three resource bundles defined in your classpath called format,
exceptions and windows. Any request to resolve a message will be handled in the JDK standard
way of resolving messages through ResourceBundles. For the purposes of the example, assume the
contents of two of the above resource bundle files are...

in format.properties
message=Alligators rock!

in exceptions.properties
argument.required=The '{0}' argument is required.

A program to execute the MessageSource functionality is shown in the next example. Remember that
all ApplicationContext implementations are also MessageSource implementations and so can
be cast to the MessageSource interface.

public static void main(String[] args) {
MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
String message = resources.getMessage("message", null, "Default", null);
System.out.println(message);

Spring Framework

3.1 Reference Documentation 131

}

The resulting output from the above program will be...

Alligators rock!

So to summarize, the MessageSource is defined in a file called beans.xml, which exists at the root
of your classpath. The messageSource bean definition refers to a number of resource bundles through
its basenames property. The three files that are passed in the list to the basenames property exist as
files at the root of your classpath and are called format.properties,
exceptions.properties, and windows.properties respectively.

The next example shows arguments passed to the message lookup; these arguments will be converted into
Strings and inserted into placeholders in the lookup message.

<beans>

<!-- this MessageSource is being used in a web application -->
<bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource">

<property name="basename" value="test-messages"/>
</bean>

<!-- lets inject the above MessageSource into this POJO -->
<bean id="example" class="com.foo.Example">

<property name="messages" ref="messageSource"/>
</bean>

</beans>

public class Example {

private MessageSource messages;

public void setMessages(MessageSource messages) {
this.messages = messages;

}

public void execute() {
String message = this.messages.getMessage("argument.required",

new Object [] {"userDao"}, "Required", null);
System.out.println(message);

}

}

The resulting output from the invocation of the execute() method will be...

The userDao argument is required.

With regard to internationalization (i18n), Spring's various MessageResource implementations follow
the same locale resolution and fallback rules as the standard JDK ResourceBundle. In short, and
continuing with the example messageSource defined previously, if you want to resolve messages
against the British (en-GB) locale, you would create files called format_en_GB.properties,
exceptions_en_GB.properties, and windows_en_GB.properties respectively.

Spring Framework

3.1 Reference Documentation 132

Typically, locale resolution is managed by the surrounding environment of the application. In this
example, the locale against which (British) messages will be resolved is specified manually.

in exceptions_en_GB.properties
argument.required=Ebagum lad, the '{0}' argument is required, I say, required.

public static void main(final String[] args) {
MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
String message = resources.getMessage("argument.required",

new Object [] {"userDao"}, "Required", Locale.UK);
System.out.println(message);

}

The resulting output from the running of the above program will be...

Ebagum lad, the 'userDao' argument is required, I say, required.

You can also use the MessageSourceAware interface to acquire a reference to any
MessageSource that has been defined. Any bean that is defined in an ApplicationContext that
implements the MessageSourceAware interface is injected with the application context's
MessageSource when the bean is created and configured.

Note

As an alternative to ResourceBundleMessageSource, Spring provides a
ReloadableResourceBundleMessageSource class. This variant supports the same
bundle file format but is more flexible than the standard JDK based
ResourceBundleMessageSource implementation. In particular, it allows for reading
files from any Spring resource location (not just from the classpath) and supports hot
reloading of bundle property files (while efficiently caching them in between). Check out the
ReloadableResourceBundleMessageSource javadoc for details.

Standard and Custom Events

Event handling in the ApplicationContext is provided through the ApplicationEvent class
and ApplicationListener interface. If a bean that implements the ApplicationListener
interface is deployed into the context, every time an ApplicationEvent gets published to the
ApplicationContext, that bean is notified. Essentially, this is the standard Observer design pattern.
Spring provides the following standard events:

Table 4.7. Built-in Events

Event Explanation

ContextRefreshedEventPublished when the ApplicationContext is initialized or refreshed,
for example, using the refresh() method on the
ConfigurableApplicationContext interface. "Initialized" here

Spring Framework

3.1 Reference Documentation 133

Event Explanation

means that all beans are loaded, post-processor beans are detected and
activated, singletons are pre-instantiated, and the
ApplicationContext object is ready for use. As long as the context
has not been closed, a refresh can be triggered multiple times, provided
that the chosen ApplicationContext actually supports such "hot"
refreshes. For example, XmlWebApplicationContext supports hot
refreshes, but GenericApplicationContext does not.

ContextStartedEvent Published when the ApplicationContext is started, using the
start() method on the ConfigurableApplicationContext
interface. "Started" here means that all Lifecycle beans receive an
explicit start signal. Typically this signal is used to restart beans after an
explicit stop, but it may also be used to start components that have not
been configured for autostart , for example, components that have not
already started on initialization.

ContextStoppedEvent Published when the ApplicationContext is stopped, using the
stop() method on the ConfigurableApplicationContext
interface. "Stopped" here means that all Lifecycle beans receive an
explicit stop signal. A stopped context may be restarted through a
start() call.

ContextClosedEvent Published when the ApplicationContext is closed, using the
close() method on the ConfigurableApplicationContext
interface. "Closed" here means that all singleton beans are destroyed. A
closed context reaches its end of life; it cannot be refreshed or restarted.

RequestHandledEvent A web-specific event telling all beans that an HTTP request has been
serviced. This event is published after the request is complete. This event
is only applicable to web applications using Spring's
DispatcherServlet.

You can also create and publish your own custom events. This example demonstrates a simple class that
extends Spring's ApplicationEvent base class:

public class BlackListEvent extends ApplicationEvent {
private final String address;
private final String test;

public BlackListEvent(Object source, String address, String test) {
super(source);
this.address = address;
this.test = test;

}

// accessor and other methods...
}

Spring Framework

3.1 Reference Documentation 134

To publish a custom ApplicationEvent, call the publishEvent() method on an
ApplicationEventPublisher. Typically this is done by creating a class that implements
ApplicationEventPublisherAware and registering it as a Spring bean. The following example
demonstrates such a class:

public class EmailService implements ApplicationEventPublisherAware {

private List<String> blackList;
private ApplicationEventPublisher publisher;

public void setBlackList(List<String> blackList) {
this.blackList = blackList;

}

public void setApplicationEventPublisher(ApplicationEventPublisher publisher) {
this.publisher = publisher;

}

public void sendEmail(String address, String text) {
if (blackList.contains(address)) {

BlackListEvent event = new BlackListEvent(this, address, text);
publisher.publishEvent(event);
return;

}
// send email...

}
}

At configuration time, the Spring container will detect that EmailService implements
ApplicationEventPublisherAware and will automatically call
setApplicationEventPublisher(). In reality, the parameter passed in will be the Spring
container itself; you're simply interacting with the application context via its
ApplicationEventPublisher interface.

To receive the custom ApplicationEvent, create a class that implements
ApplicationListener and register it as a Spring bean. The following example demonstrates such a
class:

public class BlackListNotifier implements ApplicationListener<BlackListEvent> {

private String notificationAddress;

public void setNotificationAddress(String notificationAddress) {
this.notificationAddress = notificationAddress;

}

public void onApplicationEvent(BlackListEvent event) {
// notify appropriate parties via notificationAddress...

}
}

Notice that ApplicationListener is generically parameterized with the type of your custom event,
BlackListEvent. This means that the onApplicationEvent() method can remain type-safe,
avoiding any need for downcasting. You may register as many event listeners as you wish, but note that
by default event listeners receive events synchronously. This means the publishEvent() method
blocks until all listeners have finished processing the event. One advantage of this synchronous and

Spring Framework

3.1 Reference Documentation 135

single-threaded approach is that when a listener receives an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for event publication
becomes necessary, refer to the JavaDoc for Spring's ApplicationEventMulticaster interface.

The following example shows the bean definitions used to register and configure each of the classes
above:

<bean id="emailService" class="example.EmailService">
<property name="blackList">

<list>
<value>known.spammer@example.org</value>
<value>known.hacker@example.org</value>
<value>john.doe@example.org</value>

</list>
</property>

</bean>

<bean id="blackListNotifier" class="example.BlackListNotifier">
<property name="notificationAddress" value="blacklist@example.org"/>

</bean>

Putting it all together, when the sendEmail() method of the emailService bean is called, if there
are any emails that should be blacklisted, a custom event of type BlackListEvent is published. The
blackListNotifier bean is registered as an ApplicationListener and thus receives the
BlackListEvent, at which point it can notify appropriate parties.

Note

Spring's eventing mechanism is designed for simple communication between Spring beans
within the same application context. However, for more sophisticated enterprise integration
needs, the separately-maintained Spring Integration project provides complete support for
building lightweight, pattern-oriented, event-driven architectures that build upon the
well-known Spring programming model.

Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize
themselves with Spring's Resource abstraction, as described in the chapter Chapter 5, Resources.

An application context is a ResourceLoader, which can be used to load Resources. A Resource
is essentially a more feature rich version of the JDK class java.net.URL, in fact, the implementations
of the Resource wrap an instance of java.net.URL where appropriate. A Resource can obtain
low-level resources from almost any location in a transparent fashion, including from the classpath, a
filesystem location, anywhere describable with a standard URL, and some other variations. If the resource
location string is a simple path without any special prefixes, where those resources come from is specific
and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special callback
interface, ResourceLoaderAware, to be automatically called back at initialization time with the

Spring Framework

3.1 Reference Documentation 136

http://springsource.org/spring-integration
http://www.enterpriseintegrationpatterns.com

application context itself passed in as the ResourceLoader. You can also expose properties of type
Resource, to be used to access static resources; they will be injected into it like any other properties.
You can specify those Resource properties as simple String paths, and rely on a special JavaBean
PropertyEditor that is automatically registered by the context, to convert those text strings to actual
Resource objects when the bean is deployed.

The location path or paths supplied to an ApplicationContext constructor are actually resource
strings, and in simple form are treated appropriately to the specific context implementation.
ClassPathXmlApplicationContext treats a simple location path as a classpath location. You can
also use location paths (resource strings) with special prefixes to force loading of definitions from the
classpath or a URL, regardless of the actual context type.

Convenient ApplicationContext instantiation for web applications

You can create ApplicationContext instances declaratively by using, for example, a
ContextLoader. Of course you can also create ApplicationContext instances programmatically
by using one of the ApplicationContext implementations.

The ContextLoader mechanism comes in two flavors: the ContextLoaderListener and the
ContextLoaderServlet. They have the same functionality but differ in that the listener version is
not reliable in Servlet 2.3 containers. In the Servlet 2.4 specification, Servlet context listeners must
execute immediately after the Servlet context for the web application is created and is available to service
the first request (and also when the Servlet context is about to be shut down). As such a Servlet context
listener is an ideal place to initialize the Spring ApplicationContext. All things being equal, you
should probably prefer ContextLoaderListener; for more information on compatibility, have a
look at the Javadoc for the ContextLoaderServlet.

You can register an ApplicationContext using the ContextLoaderListener as follows:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/daoContext.xml /WEB-INF/applicationContext.xml</param-value>
</context-param>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

<!-- or use the ContextLoaderServlet instead of the above listener
<servlet>
<servlet-name>context</servlet-name>
<servlet-class>org.springframework.web.context.ContextLoaderServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
-->

The listener inspects the contextConfigLocation parameter. If the parameter does not exist, the
listener uses /WEB-INF/applicationContext.xml as a default. When the parameter does exist,
the listener separates the String by using predefined delimiters (comma, semicolon and whitespace) and
uses the values as locations where application contexts will be searched. Ant-style path patterns are
supported as well. Examples are /WEB-INF/*Context.xml for all files with names ending with

Spring Framework

3.1 Reference Documentation 137

"Context.xml", residing in the "WEB-INF" directory, and /WEB-INF/**/*Context.xml, for all
such files in any subdirectory of "WEB-INF".

You can use ContextLoaderServlet instead of ContextLoaderListener. The Servlet uses
the contextConfigLocation parameter just as the listener does.

Deploying a Spring ApplicationContext as a J2EE RAR file

In Spring 2.5 and later, it is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating
the context and all of its required bean classes and library JARs in a J2EE RAR deployment unit. This is
the equivalent of bootstrapping a standalone ApplicationContext, just hosted in J2EE environment, being
able to access the J2EE servers facilities. RAR deployment is a more natural alternative to scenario of
deploying a headless WAR file, in effect, a WAR file without any HTTP entry points that is used only for
bootstrapping a Spring ApplicationContext in a J2EE environment.

RAR deployment is ideal for application contexts that do not need HTTP entry points but rather consist
only of message endpoints and scheduled jobs. Beans in such a context can use application server
resources such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS
ConnectionFactory instances, and may also register with the platform's JMX server - all through Spring's
standard transaction management and JNDI and JMX support facilities. Application components can also
interact with the application server's JCA WorkManager through Spring's TaskExecutor abstraction.

Check out the JavaDoc of the SpringContextResourceAdapter class for the configuration details involved
in RAR deployment.

For a simple deployment of a Spring ApplicationContext as a J2EE RAR file: package all application
classes into a RAR file, which is a standard JAR file with a different file extension. Add all required
library JARs into the root of the RAR archive. Add a "META-INF/ra.xml" deployment descriptor (as
shown in SpringContextResourceAdapters JavaDoc) and the corresponding Spring XML bean
definition file(s) (typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into
your application server's deployment directory.

Note

Such RAR deployment units are usually self-contained; they do not expose components to the
outside world, not even to other modules of the same application. Interaction with a
RAR-based ApplicationContext usually occurs through JMS destinations that it shares with
other modules. A RAR-based ApplicationContext may also, for example, schedule some jobs,
reacting to new files in the file system (or the like). If it needs to allow synchronous access
from the outside, it could for example export RMI endpoints, which of course may be used by
other application modules on the same machine.

4.15 The BeanFactory

Spring Framework

3.1 Reference Documentation 138

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/jca/context/SpringContextResourceAdapter.html

The BeanFactory provides the underlying basis for Spring's IoC functionality but it is only used
directly in integration with other third-party frameworks and is now largely historical in nature for most
users of Spring. The BeanFactory and related interfaces, such as BeanFactoryAware,
InitializingBean, DisposableBean, are still present in Spring for the purposes of backward
compatibility with the large number of third-party frameworks that integrate with Spring. Often
third-party components that can not use more modern equivalents such as @PostConstruct or
@PreDestroy in order to remain compatible with JDK 1.4 or to avoid a dependency on JSR-250.

This section provides additional background into the differences between the BeanFactory and
ApplicationContext and how one might access the IoC container directly through a classic
singleton lookup.

BeanFactory or ApplicationContext?

Use an ApplicationContext unless you have a good reason for not doing so.

Because the ApplicationContext includes all functionality of the BeanFactory, it is generally
recommended over the BeanFactory, except for a few situations such as in an Applet where
memory consumption might be critical and a few extra kilobytes might make a difference. However, for
most typical enterprise applications and systems, the ApplicationContext is what you will want to
use. Spring 2.0 and later makes heavy use of the BeanPostProcessor extension point (to effect
proxying and so on). If you use only a plain BeanFactory, a fair amount of support such as
transactions and AOP will not take effect, at least not without some extra steps on your part. This
situation could be confusing because nothing is actually wrong with the configuration.

The following table lists features provided by the BeanFactory and ApplicationContext
interfaces and implementations.

Table 4.8. Feature Matrix

Feature BeanFactory ApplicationContext

Bean instantiation/wiring Yes Yes

Automatic
BeanPostProcessor
registration

No Yes

Automatic
BeanFactoryPostProcessor
registration

No Yes

Convenient MessageSource
access (for i18n)

No Yes

Spring Framework

3.1 Reference Documentation 139

Feature BeanFactory ApplicationContext

ApplicationEvent
publication

No Yes

To explicitly register a bean post-processor with a BeanFactory implementation, you must write code
like this:

ConfigurableBeanFactory factory = new XmlBeanFactory(...);

// now register any needed BeanPostProcessor instances
MyBeanPostProcessor postProcessor = new MyBeanPostProcessor();
factory.addBeanPostProcessor(postProcessor);

// now start using the factory

To explicitly register a BeanFactoryPostProcessor when using a BeanFactory
implementation, you must write code like this:

XmlBeanFactory factory = new XmlBeanFactory(new FileSystemResource("beans.xml"));

// bring in some property values from a Properties file
PropertyPlaceholderConfigurer cfg = new PropertyPlaceholderConfigurer();
cfg.setLocation(new FileSystemResource("jdbc.properties"));

// now actually do the replacement
cfg.postProcessBeanFactory(factory);

In both cases, the explicit registration step is inconvenient, which is one reason why the various
ApplicationContext implementations are preferred above plain BeanFactory implementations
in the vast majority of Spring-backed applications, especially when using
BeanFactoryPostProcessors and BeanPostProcessors. These mechanisms implement
important functionality such as property placeholder replacement and AOP.

Glue code and the evil singleton

It is best to write most application code in a dependency-injection (DI) style, where that code is served
out of a Spring IoC container, has its own dependencies supplied by the container when it is created, and
is completely unaware of the container. However, for the small glue layers of code that are sometimes
needed to tie other code together, you sometimes need a singleton (or quasi-singleton) style access to a
Spring IoC container. For example, third-party code may try to construct new objects directly
(Class.forName() style), without the ability to get these objects out of a Spring IoC container. If the
object constructed by the third-party code is a small stub or proxy, which then uses a singleton style
access to a Spring IoC container to get a real object to delegate to, then inversion of control has still been
achieved for the majority of the code (the object coming out of the container). Thus most code is still
unaware of the container or how it is accessed, and remains decoupled from other code, with all ensuing
benefits. EJBs may also use this stub/proxy approach to delegate to a plain Java implementation object,
retrieved from a Spring IoC container. While the Spring IoC container itself ideally does not have to be a

Spring Framework

3.1 Reference Documentation 140

singleton, it may be unrealistic in terms of memory usage or initialization times (when using beans in the
Spring IoC container such as a Hibernate SessionFactory) for each bean to use its own,
non-singleton Spring IoC container.

Looking up the application context in a service locator style is sometimes the only option for accessing
shared Spring-managed components, such as in an EJB 2.1 environment, or when you want to share a
single ApplicationContext as a parent to WebApplicationContexts across WAR files. In this case you
should look into using the utility class ContextSingletonBeanFactoryLocator locator that is
described in this SpringSource team blog entry.

Spring Framework

3.1 Reference Documentation 141

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
http://blog.springsource.com/2007/06/11/using-a-shared-parent-application-context-in-a-multi-war-spring-application/

5. Resources

5.1 Introduction

Java's standard java.net.URL class and standard handlers for various URL prefixes unfortunately are
not quite adequate enough for all access to low-level resources. For example, there is no standardized
URL implementation that may be used to access a resource that needs to be obtained from the classpath,
or relative to a ServletContext. While it is possible to register new handlers for specialized URL
prefixes (similar to existing handlers for prefixes such as http:), this is generally quite complicated, and
the URL interface still lacks some desirable functionality, such as a method to check for the existence of
the resource being pointed to.

5.2 The Resource interface

Spring's Resource interface is meant to be a more capable interface for abstracting access to low-level
resources.

public interface Resource extends InputStreamSource {

boolean exists();

boolean isOpen();

URL getURL() throws IOException;

File getFile() throws IOException;

Resource createRelative(String relativePath) throws IOException;

String getFilename();

String getDescription();
}

public interface InputStreamSource {

InputStream getInputStream() throws IOException;
}

Some of the most important methods from the Resource interface are:

• getInputStream(): locates and opens the resource, returning an InputStream for reading from
the resource. It is expected that each invocation returns a fresh InputStream. It is the responsibility
of the caller to close the stream.

• exists(): returns a boolean indicating whether this resource actually exists in physical form.

• isOpen(): returns a boolean indicating whether this resource represents a handle with an open

Spring Framework

3.1 Reference Documentation 142

stream. If true, the InputStream cannot be read multiple times, and must be read once only and
then closed to avoid resource leaks. Will be false for all usual resource implementations, with the
exception of InputStreamResource.

• getDescription(): returns a description for this resource, to be used for error output when
working with the resource. This is often the fully qualified file name or the actual URL of the resource.

Other methods allow you to obtain an actual URL or File object representing the resource (if the
underlying implementation is compatible, and supports that functionality).

The Resource abstraction is used extensively in Spring itself, as an argument type in many method
signatures when a resource is needed. Other methods in some Spring APIs (such as the constructors to
various ApplicationContext implementations), take a String which in unadorned or simple form
is used to create a Resource appropriate to that context implementation, or via special prefixes on the
String path, allow the caller to specify that a specific Resource implementation must be created and
used.

While the Resource interface is used a lot with Spring and by Spring, it's actually very useful to use as
a general utility class by itself in your own code, for access to resources, even when your code doesn't
know or care about any other parts of Spring. While this couples your code to Spring, it really only
couples it to this small set of utility classes, which are serving as a more capable replacement for URL,
and can be considered equivalent to any other library you would use for this purpose.

It is important to note that the Resource abstraction does not replace functionality: it wraps it where
possible. For example, a UrlResource wraps a URL, and uses the wrapped URL to do its work.

5.3 Built-in Resource implementations

There are a number of Resource implementations that come supplied straight out of the box in Spring:

UrlResource

The UrlResource wraps a java.net.URL, and may be used to access any object that is normally
accessible via a URL, such as files, an HTTP target, an FTP target, etc. All URLs have a standardized
String representation, such that appropriate standardized prefixes are used to indicate one URL type
from another. This includes file: for accessing filesystem paths, http: for accessing resources via the
HTTP protocol, ftp: for accessing resources via FTP, etc.

A UrlResource is created by Java code explicitly using the UrlResource constructor, but will often
be created implicitly when you call an API method which takes a String argument which is meant to
represent a path. For the latter case, a JavaBeans PropertyEditor will ultimately decide which type
of Resource to create. If the path string contains a few well-known (to it, that is) prefixes such as
classpath:, it will create an appropriate specialized Resource for that prefix. However, if it doesn't
recognize the prefix, it will assume the this is just a standard URL string, and will create a

Spring Framework

3.1 Reference Documentation 143

UrlResource.

ClassPathResource

This class represents a resource which should be obtained from the classpath. This uses either the thread
context class loader, a given class loader, or a given class for loading resources.

This Resource implementation supports resolution as java.io.File if the class path resource
resides in the file system, but not for classpath resources which reside in a jar and have not been expanded
(by the servlet engine, or whatever the environment is) to the filesystem. To address this the various
Resource implementations always support resolution as a java.net.URL.

A ClassPathResource is created by Java code explicitly using the ClassPathResource
constructor, but will often be created implicitly when you call an API method which takes a String
argument which is meant to represent a path. For the latter case, a JavaBeans PropertyEditor will
recognize the special prefix classpath:on the string path, and create a ClassPathResource in
that case.

FileSystemResource

This is a Resource implementation for java.io.File handles. It obviously supports resolution as a
File, and as a URL.

ServletContextResource

This is a Resource implementation for ServletContext resources, interpreting relative paths
within the relevant web application's root directory.

This always supports stream access and URL access, but only allows java.io.File access when the
web application archive is expanded and the resource is physically on the filesystem. Whether or not it's
expanded and on the filesystem like this, or accessed directly from the JAR or somewhere else like a DB
(it's conceivable) is actually dependent on the Servlet container.

InputStreamResource

A Resource implementation for a given InputStream. This should only be used if no specific
Resource implementation is applicable. In particular, prefer ByteArrayResource or any of the
file-based Resource implementations where possible.

In contrast to other Resource implementations, this is a descriptor for an already opened resource -
therefore returning true from isOpen(). Do not use it if you need to keep the resource descriptor
somewhere, or if you need to read a stream multiple times.

Spring Framework

3.1 Reference Documentation 144

ByteArrayResource

This is a Resource implementation for a given byte array. It creates a ByteArrayInputStream for
the given byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
InputStreamResource.

5.4 The ResourceLoader

The ResourceLoader interface is meant to be implemented by objects that can return (i.e. load)
Resource instances.

public interface ResourceLoader {
Resource getResource(String location);

}

All application contexts implement the ResourceLoader interface, and therefore all application
contexts may be used to obtain Resource instances.

When you call getResource() on a specific application context, and the location path specified
doesn't have a specific prefix, you will get back a Resource type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
ClassPathXmlApplicationContext instance:

Resource template = ctx.getResource("some/resource/path/myTemplate.txt");

What would be returned would be a ClassPathResource; if the same method was executed against a
FileSystemXmlApplicationContext instance, you'd get back a FileSystemResource. For
a WebApplicationContext, you'd get back a ServletContextResource, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force ClassPathResource to be used, regardless of the application
context type, by specifying the special classpath: prefix:

Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt");

Similarly, one can force a UrlResource to be used by specifying any of the standard java.net.URL
prefixes:

Resource template = ctx.getResource("file:/some/resource/path/myTemplate.txt");

Resource template = ctx.getResource("http://myhost.com/resource/path/myTemplate.txt");

The following table summarizes the strategy for converting Strings to Resources:

Spring Framework

3.1 Reference Documentation 145

Table 5.1. Resource strings

Prefix Example Explanation

classpath: classpath:com/myapp/config.xmlLoaded from the classpath.

file: file:/data/config.xml Loaded as a URL, from the
filesystem. 1

http: http://myserver/logo.pngLoaded as a URL.

(none) /data/config.xml Depends on the underlying
ApplicationContext.

1But see also the section called “FileSystemResource caveats”.

5.5 The ResourceLoaderAware interface

The ResourceLoaderAware interface is a special marker interface, identifying objects that expect to
be provided with a ResourceLoader reference.

public interface ResourceLoaderAware {

void setResourceLoader(ResourceLoader resourceLoader);
}

When a class implements ResourceLoaderAware and is deployed into an application context (as a
Spring-managed bean), it is recognized as ResourceLoaderAware by the application context. The
application context will then invoke the setResourceLoader(ResourceLoader), supplying
itself as the argument (remember, all application contexts in Spring implement the ResourceLoader
interface).

Of course, since an ApplicationContext is a ResourceLoader, the bean could also implement
the ApplicationContextAware interface and use the supplied application context directly to load
resources, but in general, it's better to use the specialized ResourceLoader interface if that's all that's
needed. The code would just be coupled to the resource loading interface, which can be considered a
utility interface, and not the whole Spring ApplicationContext interface.

As of Spring 2.5, you can rely upon autowiring of the ResourceLoader as an alternative to
implementing the ResourceLoaderAware interface. The "traditional" constructor and byType
autowiring modes (as described in the section called “Autowiring collaborators”) are now capable of
providing a dependency of type ResourceLoader for either a constructor argument or setter method
parameter respectively. For more flexibility (including the ability to autowire fields and multiple
parameter methods), consider using the new annotation-based autowiring features. In that case, the

Spring Framework

3.1 Reference Documentation 146

ResourceLoader will be autowired into a field, constructor argument, or method parameter that is
expecting the ResourceLoader type as long as the field, constructor, or method in question carries the
@Autowired annotation. For more information, see the section called “@Autowired”.

5.6 Resources as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic
process, it probably makes sense for the bean to use the ResourceLoader interface to load resources.
Consider as an example the loading of a template of some sort, where the specific resource that is needed
depends on the role of the user. If the resources are static, it makes sense to eliminate the use of the
ResourceLoader interface completely, and just have the bean expose the Resource properties it
needs, and expect that they will be injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a
special JavaBeans PropertyEditor which can convert String paths to Resource objects. So if
myBean has a template property of type Resource, it can be configured with a simple string for that
resource, as follows:

<bean id="myBean" class="...">
<property name="template" value="some/resource/path/myTemplate.txt"/>

</bean>

Note that the resource path has no prefix, so because the application context itself is going to be used as
the ResourceLoader, the resource itself will be loaded via a ClassPathResource,
FileSystemResource, or ServletContextResource (as appropriate) depending on the exact
type of the context.

If there is a need to force a specific Resource type to be used, then a prefix may be used. The following
two examples show how to force a ClassPathResource and a UrlResource (the latter being used
to access a filesystem file).

<property name="template" value="classpath:some/resource/path/myTemplate.txt">

<property name="template" value="file:/some/resource/path/myTemplate.txt"/>

5.7 Application contexts and Resource paths

Constructing application contexts

An application context constructor (for a specific application context type) generally takes a string or
array of strings as the location path(s) of the resource(s) such as XML files that make up the definition of
the context.

When such a location path doesn't have a prefix, the specific Resource type built from that path and

Spring Framework

3.1 Reference Documentation 147

used to load the bean definitions, depends on and is appropriate to the specific application context. For
example, if you create a ClassPathXmlApplicationContext as follows:

ApplicationContext ctx = new ClassPathXmlApplicationContext("conf/appContext.xml");

The bean definitions will be loaded from the classpath, as a ClassPathResource will be used. But if
you create a FileSystemXmlApplicationContext as follows:

ApplicationContext ctx =
new FileSystemXmlApplicationContext("conf/appContext.xml");

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location path will
override the default type of Resource created to load the definition. So this
FileSystemXmlApplicationContext...

ApplicationContext ctx =
new FileSystemXmlApplicationContext("classpath:conf/appContext.xml");

... will actually load its bean definitions from the classpath. However, it is still a
FileSystemXmlApplicationContext. If it is subsequently used as a ResourceLoader, any
unprefixed paths will still be treated as filesystem paths.

Constructing ClassPathXmlApplicationContext instances - shortcuts

The ClassPathXmlApplicationContext exposes a number of constructors to enable convenient
instantiation. The basic idea is that one supplies merely a string array containing just the filenames of the
XML files themselves (without the leading path information), and one also supplies a Class; the
ClassPathXmlApplicationContext will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

com/
foo/

services.xml
daos.xml
MessengerService.class

A ClassPathXmlApplicationContext instance composed of the beans defined in the
'services.xml' and 'daos.xml' could be instantiated like so...

ApplicationContext ctx = new ClassPathXmlApplicationContext(
new String[] {"services.xml", "daos.xml"}, MessengerService.class);

Please do consult the Javadocs for the ClassPathXmlApplicationContext class for details of the
various constructors.

Spring Framework

3.1 Reference Documentation 148

Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as shown above)
which has a one-to-one mapping to a target Resource, or alternately may contain the special "classpath*:"
prefix and/or internal Ant-style regular expressions (matched using Spring's PathMatcher utility).
Both of the latter are effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can
'publish' context definition fragments to a well-known location path, and when the final application
context is created using the same path prefixed via classpath*:, all component fragments will be
picked up automatically.

Note that this wildcarding is specific to use of resource paths in application context constructors (or when
using the PathMatcher utility class hierarchy directly), and is resolved at construction time. It has
nothing to do with the Resource type itself. It's not possible to use the classpath*: prefix to
construct an actual Resource, as a resource points to just one resource at a time.

Ant-style Patterns

When the path location contains an Ant-style pattern, for example:

/WEB-INF/*-context.xml
com/mycompany/**/applicationContext.xml
file:C:/some/path/*-context.xml
classpath:com/mycompany/**/applicationContext.xml

... the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces a
Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL is not a
"jar:" URL or container-specific variant (e.g. "zip:" in WebLogic, "wsjar" in WebSphere, etc.), then a
java.io.File is obtained from it and used to resolve the wildcard by traversing the filesystem. In the
case of a jar URL, the resolver either gets a java.net.JarURLConnection from it or manually
parses the jar URL and then traverses the contents of the jar file to resolve the wildcards.

Implications on portability

If the specified path is already a file URL (either explicitly, or implicitly because the base
ResourceLoader is a filesystem one, then wildcarding is guaranteed to work in a completely portable
fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path
segment URL via a Classloader.getResource() call. Since this is just a node of the path (not the
file at the end) it is actually undefined (in the ClassLoader Javadocs) exactly what sort of a URL is
returned in this case. In practice, it is always a java.io.File representing the directory, where the
classpath resource resolves to a filesystem location, or a jar URL of some sort, where the classpath
resource resolves to a jar location. Still, there is a portability concern on this operation.

If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to get a

Spring Framework

3.1 Reference Documentation 149

java.net.JarURLConnection from it, or manually parse the jar URL, to be able to walk the
contents of the jar, and resolve the wildcard. This will work in most environments, but will fail in others,
and it is strongly recommended that the wildcard resolution of resources coming from jars be thoroughly
tested in your specific environment before you rely on it.

The classpath*: prefix

When constructing an XML-based application context, a location string may use the special
classpath*: prefix:

ApplicationContext ctx =
new ClassPathXmlApplicationContext("classpath*:conf/appContext.xml");

This special prefix specifies that all classpath resources that match the given name must be obtained
(internally, this essentially happens via a ClassLoader.getResources(...) call), and then
merged to form the final application context definition.

Classpath*: portability

The wildcard classpath relies on the getResources() method of the underlying
classloader. As most application servers nowadays supply their own classloader
implementation, the behavior might differ especially when dealing with jar files. A simple
test to check if classpath* works is to use the classloader to load a file from within a jar
on the classpath:
getClass().getClassLoader().getResources("<someFileInsideTheJar>").
Try this test with files that have the same name but are placed inside two different locations.
In case an inappropriate result is returned, check the application server documentation for
settings that might affect the classloader behavior.

The "classpath*:" prefix can also be combined with a PathMatcher pattern in the rest of the
location path, for example "classpath*:META-INF/*-beans.xml". In this case, the resolution
strategy is fairly simple: a ClassLoader.getResources() call is used on the last non-wildcard path segment
to get all the matching resources in the class loader hierarchy, and then off each resource the same
PathMatcher resoltion strategy described above is used for the wildcard subpath.

Other notes relating to wildcards

Please note that "classpath*:" when combined with Ant-style patterns will only work reliably with at
least one root directory before the pattern starts, unless the actual target files reside in the file system.
This means that a pattern like "classpath*:*.xml" will not retrieve files from the root of jar files but
rather only from the root of expanded directories. This originates from a limitation in the JDK's
ClassLoader.getResources() method which only returns file system locations for a passed-in
empty string (indicating potential roots to search).

Ant-style patterns with "classpath:" resources are not guaranteed to find matching resources if the
root package to search is available in multiple class path locations. This is because a resource such as

Spring Framework

3.1 Reference Documentation 150

com/mycompany/package1/service-context.xml

may be in only one location, but when a path such as

classpath:com/mycompany/**/service-context.xml

is used to try to resolve it, the resolver will work off the (first) URL returned by
getResource("com/mycompany");. If this base package node exists in multiple classloader
locations, the actual end resource may not be underneath. Therefore, preferably, use "classpath*:"
with the same Ant-style pattern in such a case, which will search all class path locations that contain the
root package.

FileSystemResource caveats

A FileSystemResource that is not attached to a FileSystemApplicationContext (that is, a
FileSystemApplicationContext is not the actual ResourceLoader) will treat absolute vs.
relative paths as you would expect. Relative paths are relative to the current working directory, while
absolute paths are relative to the root of the filesystem.

For backwards compatibility (historical) reasons however, this changes when the
FileSystemApplicationContext is the ResourceLoader. The
FileSystemApplicationContext simply forces all attached FileSystemResource instances
to treat all location paths as relative, whether they start with a leading slash or not. In practice, this means
the following are equivalent:

ApplicationContext ctx =
new FileSystemXmlApplicationContext("conf/context.xml");

ApplicationContext ctx =
new FileSystemXmlApplicationContext("/conf/context.xml");

As are the following: (Even though it would make sense for them to be different, as one case is relative
and the other absolute.)

FileSystemXmlApplicationContext ctx = ...;
ctx.getResource("some/resource/path/myTemplate.txt");

FileSystemXmlApplicationContext ctx = ...;
ctx.getResource("/some/resource/path/myTemplate.txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths with
FileSystemResource / FileSystemXmlApplicationContext, and just force the use of a
UrlResource, by using the file: URL prefix.

// actual context type doesn't matter, the Resource will always be UrlResource
ctx.getResource("file:/some/resource/path/myTemplate.txt");

// force this FileSystemXmlApplicationContext to load its definition via a UrlResource

Spring Framework

3.1 Reference Documentation 151

ApplicationContext ctx =
new FileSystemXmlApplicationContext("file:/conf/context.xml");

Spring Framework

3.1 Reference Documentation 152

6. Validation, Data Binding, and Type Conversion

6.1 Introduction

There are pros and cons for considering validation as business logic, and Spring offers a design for
validation (and data binding) that does not exclude either one of them. Specifically validation should not
be tied to the web tier, should be easy to localize and it should be possible to plug in any validator
available. Considering the above, Spring has come up with a Validator interface that is both basic
ands eminently usable in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an
application (or whatever objects you use to process user input). Spring provides the so-called
DataBinder to do exactly that. The Validator and the DataBinder make up the validation
package, which is primarily used in but not limited to the MVC framework.

The BeanWrapper is a fundamental concept in the Spring Framework and is used in a lot of places.
However, you probably will not have the need to use the BeanWrapper directly. Because this is
reference documentation however, we felt that some explanation might be in order. We will explain the
BeanWrapper in this chapter since, if you were going to use it at all, you would most likely do so when
trying to bind data to objects.

Spring's DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse and format
property values. The PropertyEditor concept is part of the JavaBeans specification, and is also
explained in this chapter. Spring 3 introduces a "core.convert" package that provides a general type
conversion facility, as well as a higher-level "format" package for formatting UI field values. These new
packages may be used as simpler alternatives to PropertyEditors, and will also be discussed in this
chapter.

6.2 Validation using Spring's Validator interface

Spring features a Validator interface that you can use to validate objects. The Validator interface
works using an Errors object so that while validating, validators can report validation failures to the
Errors object.

Let's consider a small data object:

public class Person {

private String name;
private int age;

// the usual getters and setters...
}

Spring Framework

3.1 Reference Documentation 153

We're going to provide validation behavior for the Person class by implementing the following two
methods of the org.springframework.validation.Validator interface:

• supports(Class) - Can this Validator validate instances of the supplied Class?
• validate(Object, org.springframework.validation.Errors) - validates the given

object and in case of validation errors, registers those with the given Errors object

Implementing a Validator is fairly straightforward, especially when you know of the
ValidationUtils helper class that the Spring Framework also provides.

public class PersonValidator implements Validator {

/**
* This Validator validates just Person instances
*/
public boolean supports(Class clazz) {

return Person.class.equals(clazz);
}

public void validate(Object obj, Errors e) {
ValidationUtils.rejectIfEmpty(e, "name", "name.empty");
Person p = (Person) obj;
if (p.getAge() < 0) {

e.rejectValue("age", "negativevalue");
} else if (p.getAge() > 110) {

e.rejectValue("age", "too.darn.old");
}

}
}

As you can see, the static rejectIfEmpty(..) method on the ValidationUtils class is used
to reject the 'name' property if it is null or the empty string. Have a look at the Javadoc for the
ValidationUtils class to see what functionality it provides besides the example shown previously.

While it is certainly possible to implement a single Validator class to validate each of the nested
objects in a rich object, it may be better to encapsulate the validation logic for each nested class of object
in its own Validator implementation. A simple example of a 'rich' object would be a Customer that
is composed of two String properties (a first and second name) and a complex Address object.
Address objects may be used independently of Customer objects, and so a distinct
AddressValidator has been implemented. If you want your CustomerValidator to reuse the
logic contained within the AddressValidator class without resorting to copy-and-paste, you can
dependency-inject or instantiate an AddressValidator within your CustomerValidator, and
use it like so:

public class CustomerValidator implements Validator {

private final Validator addressValidator;

public CustomerValidator(Validator addressValidator) {
if (addressValidator == null) {

throw new IllegalArgumentException(
"The supplied [Validator] is required and must not be null.");

}
if (!addressValidator.supports(Address.class)) {

throw new IllegalArgumentException(
"The supplied [Validator] must support the validation of [Address] instances.");

}

Spring Framework

3.1 Reference Documentation 154

this.addressValidator = addressValidator;
}

/**
* This Validator validates Customer instances, and any subclasses of Customer too
*/
public boolean supports(Class clazz) {

return Customer.class.isAssignableFrom(clazz);
}

public void validate(Object target, Errors errors) {
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "field.required");
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "surname", "field.required");
Customer customer = (Customer) target;
try {

errors.pushNestedPath("address");
ValidationUtils.invokeValidator(this.addressValidator, customer.getAddress(), errors);

} finally {
errors.popNestedPath();

}
}

}

Validation errors are reported to the Errors object passed to the validator. In case of Spring Web MVC
you can use <spring:bind/> tag to inspect the error messages, but of course you can also inspect the
errors object yourself. More information about the methods it offers can be found from the Javadoc.

6.3 Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errors is
the last thing we need to discuss. In the example we've shown above, we rejected the name and the age
field. If we're going to output the error messages by using a MessageSource, we will do so using the
error code we've given when rejecting the field ('name' and 'age' in this case). When you call (either
directly, or indirectly, using for example the ValidationUtils class) rejectValue or one of the
other reject methods from the Errors interface, the underlying implementation will not only register
the code you've passed in, but also a number of additional error codes. What error codes it registers is
determined by the MessageCodesResolver that is used. By default, the
DefaultMessageCodesResolver is used, which for example not only registers a message with the
code you gave, but also messages that include the field name you passed to the reject method. So in case
you reject a field using rejectValue("age", "too.darn.old"), apart from the
too.darn.old code, Spring will also register too.darn.old.age and
too.darn.old.age.int (so the first will include the field name and the second will include the type
of the field); this is done as a convenience to aid developers in targeting error messages and suchlike.

More information on the MessageCodesResolver and the default strategy can be found online with
the Javadocs for MessageCodesResolver and DefaultMessageCodesResolver respectively.

6.4 Bean manipulation and the BeanWrapper

The org.springframework.beans package adheres to the JavaBeans standard provided by Sun. A

Spring Framework

3.1 Reference Documentation 155

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/MessageCodesResolver.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.html

JavaBean is simply a class with a default no-argument constructor, which follows a naming convention
where (by way of an example) a property named bingoMadness would have a setter method
setBingoMadness(..) and a getter method getBingoMadness(). For more information about
JavaBeans and the specification, please refer to Sun's website (java.sun.com/products/javabeans).

One quite important class in the beans package is the BeanWrapper interface and its corresponding
implementation (BeanWrapperImpl). As quoted from the Javadoc, the BeanWrapper offers
functionality to set and get property values (individually or in bulk), get property descriptors, and to query
properties to determine if they are readable or writable. Also, the BeanWrapper offers support for
nested properties, enabling the setting of properties on sub-properties to an unlimited depth. Then, the
BeanWrapper supports the ability to add standard JavaBeans PropertyChangeListeners and
VetoableChangeListeners, without the need for supporting code in the target class. Last but not
least, the BeanWrapper provides support for the setting of indexed properties. The BeanWrapper
usually isn't used by application code directly, but by the DataBinder and the BeanFactory.

The way the BeanWrapper works is partly indicated by its name: it wraps a bean to perform actions on
that bean, like setting and retrieving properties.

Setting and getting basic and nested properties

Setting and getting properties is done using the setPropertyValue(s) and
getPropertyValue(s) methods that both come with a couple of overloaded variants. They're all
described in more detail in the Javadoc Spring comes with. What's important to know is that there are a
couple of conventions for indicating properties of an object. A couple of examples:

Table 6.1. Examples of properties

Expression Explanation

name Indicates the property name corresponding to the methods getName() or
isName() and setName(..)

account.name Indicates the nested property name of the property account corresponding
e.g. to the methods getAccount().setName() or
getAccount().getName()

account[2] Indicates the third element of the indexed property account. Indexed
properties can be of type array, list or other naturally ordered collection

account[COMPANYNAME]Indicates the value of the map entry indexed by the key COMPANYNAME of
the Map property account

Below you'll find some examples of working with the BeanWrapper to get and set properties.

(This next section is not vitally important to you if you're not planning to work with the BeanWrapper
directly. If you're just using the DataBinder and the BeanFactory and their out-of-the-box

Spring Framework

3.1 Reference Documentation 156

http://java.sun.com/products/javabeans/

implementation, you should skip ahead to the section about PropertyEditors.)

Consider the following two classes:

public class Company {
private String name;
private Employee managingDirector;

public String getName() {
return this.name;

}
public void setName(String name) {

this.name = name;
}
public Employee getManagingDirector() {

return this.managingDirector;
}
public void setManagingDirector(Employee managingDirector) {

this.managingDirector = managingDirector;
}

}

public class Employee {
private String name;
private float salary;

public String getName() {
return this.name;

}
public void setName(String name) {

this.name = name;
}
public float getSalary() {

return salary;
}
public void setSalary(float salary) {

this.salary = salary;
}

}

The following code snippets show some examples of how to retrieve and manipulate some of the
properties of instantiated Companies and Employees:

BeanWrapper company = BeanWrapperImpl(new Company());
// setting the company name..
company.setPropertyValue("name", "Some Company Inc.");
// ... can also be done like this:
PropertyValue value = new PropertyValue("name", "Some Company Inc.");
company.setPropertyValue(value);

// ok, let's create the director and tie it to the company:
BeanWrapper jim = BeanWrapperImpl(new Employee());
jim.setPropertyValue("name", "Jim Stravinsky");
company.setPropertyValue("managingDirector", jim.getWrappedInstance());

// retrieving the salary of the managingDirector through the company
Float salary = (Float) company.getPropertyValue("managingDirector.salary");

Built-in PropertyEditor implementations

Spring Framework

3.1 Reference Documentation 157

Spring uses the concept of PropertyEditors to effect the conversion between an Object and a
String. If you think about it, it sometimes might be handy to be able to represent properties in a
different way than the object itself. For example, a Date can be represented in a human readable way (as
the String '2007-14-09'), while we're still able to convert the human readable form back to the
original date (or even better: convert any date entered in a human readable form, back to Date objects).
This behavior can be achieved by registering custom editors, of type
java.beans.PropertyEditor. Registering custom editors on a BeanWrapper or alternately in a
specific IoC container as mentioned in the previous chapter, gives it the knowledge of how to convert
properties to the desired type. Read more about PropertyEditors in the Javadoc of the
java.beans package provided by Sun.

A couple of examples where property editing is used in Spring:

• setting properties on beans is done using PropertyEditors. When mentioning
java.lang.String as the value of a property of some bean you're declaring in XML file, Spring
will (if the setter of the corresponding property has a Class-parameter) use the ClassEditor to try
to resolve the parameter to a Class object.

• parsing HTTP request parameters in Spring's MVC framework is done using all kinds of
PropertyEditors that you can manually bind in all subclasses of the CommandController.

Spring has a number of built-in PropertyEditors to make life easy. Each of those is listed below and
they are all located in the org.springframework.beans.propertyeditors package. Most,
but not all (as indicated below), are registered by default by BeanWrapperImpl. Where the property
editor is configurable in some fashion, you can of course still register your own variant to override the
default one:

Table 6.2. Built-in PropertyEditors

Class Explanation

ByteArrayPropertyEditor Editor for byte arrays. Strings will simply be converted to their
corresponding byte representations. Registered by default by
BeanWrapperImpl.

ClassEditor Parses Strings representing classes to actual classes and the
other way around. When a class is not found, an
IllegalArgumentException is thrown. Registered by
default by BeanWrapperImpl.

CustomBooleanEditor Customizable property editor for Boolean properties.
Registered by default by BeanWrapperImpl, but, can be
overridden by registering custom instance of it as custom editor.

CustomCollectionEditor Property editor for Collections, converting any source
Collection to a given target Collection type.

CustomDateEditor Customizable property editor for java.util.Date, supporting a
custom DateFormat. NOT registered by default. Must be user

Spring Framework

3.1 Reference Documentation 158

Class Explanation

registered as needed with appropriate format.

CustomNumberEditor Customizable property editor for any Number subclass like
Integer, Long, Float, Double. Registered by default by
BeanWrapperImpl, but can be overridden by registering
custom instance of it as a custom editor.

FileEditor Capable of resolving Strings to java.io.File objects.
Registered by default by BeanWrapperImpl.

InputStreamEditor One-way property editor, capable of taking a text string and
producing (via an intermediate ResourceEditor and
Resource) an InputStream, so InputStream properties
may be directly set as Strings. Note that the default usage will
not close the InputStream for you! Registered by default by
BeanWrapperImpl.

LocaleEditor Capable of resolving Strings to Locale objects and vice versa
(the String format is [language]_[country]_[variant], which is
the same thing the toString() method of Locale provides).
Registered by default by BeanWrapperImpl.

PatternEditor Capable of resolving Strings to JDK 1.5 Pattern objects and
vice versa.

PropertiesEditor Capable of converting Strings (formatted using the format as
defined in the Javadoc for the java.lang.Properties class) to
Properties objects. Registered by default by
BeanWrapperImpl.

StringTrimmerEditor Property editor that trims Strings. Optionally allows
transforming an empty string into a null value. NOT
registered by default; must be user registered as needed.

URLEditor Capable of resolving a String representation of a URL to an
actual URL object. Registered by default by
BeanWrapperImpl.

Spring uses the java.beans.PropertyEditorManager to set the search path for property editors
that might be needed. The search path also includes sun.bean.editors, which includes
PropertyEditor implementations for types such as Font, Color, and most of the primitive types.
Note also that the standard JavaBeans infrastructure will automatically discover PropertyEditor
classes (without you having to register them explicitly) if they are in the same package as the class they
handle, and have the same name as that class, with 'Editor' appended; for example, one could have
the following class and package structure, which would be sufficient for the FooEditor class to be
recognized and used as the PropertyEditor for Foo-typed properties.

Spring Framework

3.1 Reference Documentation 159

com
chank

pop
Foo
FooEditor // the PropertyEditor for the Foo class

Note that you can also use the standard BeanInfo JavaBeans mechanism here as well (described in
not-amazing-detail here). Find below an example of using the BeanInfo mechanism for explicitly
registering one or more PropertyEditor instances with the properties of an associated class.

com
chank

pop
Foo
FooBeanInfo // the BeanInfo for the Foo class

Here is the Java source code for the referenced FooBeanInfo class. This would associate a
CustomNumberEditor with the age property of the Foo class.

public class FooBeanInfo extends SimpleBeanInfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {

final PropertyEditor numberPE = new CustomNumberEditor(Integer.class, true);
PropertyDescriptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {

public PropertyEditor createPropertyEditor(Object bean) {
return numberPE;

};
};
return new PropertyDescriptor[] { ageDescriptor };

}
catch (IntrospectionException ex) {

throw new Error(ex.toString());
}

}
}

Registering additional custom PropertyEditors

When setting bean properties as a string value, a Spring IoC container ultimately uses standard JavaBeans
PropertyEditors to convert these Strings to the complex type of the property. Spring pre-registers a
number of custom PropertyEditors (for example, to convert a classname expressed as a string into a
real Class object). Additionally, Java's standard JavaBeans PropertyEditor lookup mechanism
allows a PropertyEditor for a class simply to be named appropriately and placed in the same
package as the class it provides support for, to be found automatically.

If there is a need to register other custom PropertyEditors, there are several mechanisms available.
The most manual approach, which is not normally convenient or recommended, is to simply use the
registerCustomEditor() method of the ConfigurableBeanFactory interface, assuming
you have a BeanFactory reference. Another, slightly more convenient, mechanism is to use a special
bean factory post-processor called CustomEditorConfigurer. Although bean factory
post-processors can be used with BeanFactory implementations, the CustomEditorConfigurer
has a nested property setup, so it is strongly recommended that it is used with the

Spring Framework

3.1 Reference Documentation 160

http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html
http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html

ApplicationContext, where it may be deployed in similar fashion to any other bean, and
automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of built-in property
editors, through their use of something called a BeanWrapper to handle property conversions. The
standard property editors that the BeanWrapper registers are listed in the previous section.
Additionally, ApplicationContexts also override or add an additional number of editors to handle
resource lookups in a manner appropriate to the specific application context type.

Standard JavaBeans PropertyEditor instances are used to convert property values expressed as
strings to the actual complex type of the property. CustomEditorConfigurer, a bean factory
post-processor, may be used to conveniently add support for additional PropertyEditor instances to
an ApplicationContext.

Consider a user class ExoticType, and another class DependsOnExoticType which needs
ExoticType set as a property:

package example;

public class ExoticType {

private String name;

public ExoticType(String name) {
this.name = name;

}
}

public class DependsOnExoticType {

private ExoticType type;

public void setType(ExoticType type) {
this.type = type;

}
}

When things are properly set up, we want to be able to assign the type property as a string, which a
PropertyEditor will behind the scenes convert into an actual ExoticType instance:

<bean id="sample" class="example.DependsOnExoticType">
<property name="type" value="aNameForExoticType"/>

</bean>

The PropertyEditor implementation could look similar to this:

// converts string representation to ExoticType object
package example;

public class ExoticTypeEditor extends PropertyEditorSupport {

public void setAsText(String text) {
setValue(new ExoticType(text.toUpperCase()));

}
}

Spring Framework

3.1 Reference Documentation 161

Finally, we use CustomEditorConfigurer to register the new PropertyEditor with the
ApplicationContext, which will then be able to use it as needed:

<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
<property name="customEditors">

<map>
<entry key="example.ExoticType" value="example.ExoticTypeEditor"/>

</map>
</property>

</bean>

Using PropertyEditorRegistrars

Another mechanism for registering property editors with the Spring container is to create and use a
PropertyEditorRegistrar. This interface is particularly useful when you need to use the same set
of property editors in several different situations: write a corresponding registrar and reuse that in each
case. PropertyEditorRegistrars work in conjunction with an interface called
PropertyEditorRegistry, an interface that is implemented by the Spring BeanWrapper (and
DataBinder). PropertyEditorRegistrars are particularly convenient when used in
conjunction with the CustomEditorConfigurer (introduced here), which exposes a property called
setPropertyEditorRegistrars(..): PropertyEditorRegistrars added to a
CustomEditorConfigurer in this fashion can easily be shared with DataBinder and Spring
MVC Controllers. Furthermore, it avoids the need for synchronization on custom editors: a
PropertyEditorRegistrar is expected to create fresh PropertyEditor instances for each
bean creation attempt.

Using a PropertyEditorRegistrar is perhaps best illustrated with an example. First off, you need
to create your own PropertyEditorRegistrar implementation:

package com.foo.editors.spring;

public final class CustomPropertyEditorRegistrar implements PropertyEditorRegistrar {

public void registerCustomEditors(PropertyEditorRegistry registry) {

// it is expected that new PropertyEditor instances are created
registry.registerCustomEditor(ExoticType.class, new ExoticTypeEditor());

// you could register as many custom property editors as are required here...
}

}

See also the org.springframework.beans.support.ResourceEditorRegistrar for an
example PropertyEditorRegistrar implementation. Notice how in its implementation of the
registerCustomEditors(..) method it creates new instances of each property editor.

Next we configure a CustomEditorConfigurer and inject an instance of our
CustomPropertyEditorRegistrar into it:

<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
<property name="propertyEditorRegistrars">

<list>
<ref bean="customPropertyEditorRegistrar"/>

Spring Framework

3.1 Reference Documentation 162

</list>
</property>

</bean>

<bean id="customPropertyEditorRegistrar"
class="com.foo.editors.spring.CustomPropertyEditorRegistrar"/>

Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring's MVC
web framework, using PropertyEditorRegistrars in conjunction with data-binding
Controllers (such as SimpleFormController) can be very convenient. Find below an example
of using a PropertyEditorRegistrar in the implementation of an initBinder(..) method:

public final class RegisterUserController extends SimpleFormController {

private final PropertyEditorRegistrar customPropertyEditorRegistrar;

public RegisterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
this.customPropertyEditorRegistrar = propertyEditorRegistrar;

}

protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder)
throws Exception {

this.customPropertyEditorRegistrar.registerCustomEditors(binder);
}

// other methods to do with registering a User
}

This style of PropertyEditor registration can lead to concise code (the implementation of
initBinder(..) is just one line long!), and allows common PropertyEditor registration code to
be encapsulated in a class and then shared amongst as many Controllers as needed.

6.5 Spring 3 Type Conversion

Spring 3 introduces a core.convert package that provides a general type conversion system. The
system defines an SPI to implement type conversion logic, as well as an API to execute type conversions
at runtime. Within a Spring container, this system can be used as an alternative to PropertyEditors to
convert externalized bean property value strings to required property types. The public API may also be
used anywhere in your application where type conversion is needed.

Converter SPI

The SPI to implement type conversion logic is simple and strongly typed:

package org.springframework.core.convert.converter;

public interface Converter<S, T> {

T convert(S source);

}

Spring Framework

3.1 Reference Documentation 163

To create your own Converter, simply implement the interface above. Parameterize S as the type you are
converting from, and T as the type you are converting to. For each call to convert(S), the source argument
is guaranteed to be NOT null. Your Converter may throw any Exception if conversion fails. An
IllegalArgumentException should be thrown to report an invalid source value. Take care to ensure your
Converter implementation is thread-safe.

Several converter implementations are provided in the core.convert.support package as a
convenience. These include converters from Strings to Numbers and other common types. Consider
StringToInteger as an example Converter implementation:

package org.springframework.core.convert.support;

final class StringToInteger implements Converter<String, Integer> {

public Integer convert(String source) {
return Integer.valueOf(source);

}

}

ConverterFactory

When you need to centralize the conversion logic for an entire class hierarchy, for example, when
converting from String to java.lang.Enum objects, implement ConverterFactory:

package org.springframework.core.convert.converter;

public interface ConverterFactory<S, R> {

<T extends R> Converter<S, T> getConverter(Class<T> targetType);

}

Parameterize S to be the type you are converting from and R to be the base type defining the range of
classes you can convert to. Then implement getConverter(Class<T>), where T is a subclass of R.

Consider the StringToEnum ConverterFactory as an example:

package org.springframework.core.convert.support;

final class StringToEnumConverterFactory implements ConverterFactory<String, Enum> {

public <T extends Enum> Converter<String, T> getConverter(Class<T> targetType) {
return new StringToEnumConverter(targetType);

}

private final class StringToEnumConverter<T extends Enum> implements Converter<String, T> {

private Class<T> enumType;

public StringToEnumConverter(Class<T> enumType) {
this.enumType = enumType;

}

public T convert(String source) {
return (T) Enum.valueOf(this.enumType, source.trim());

Spring Framework

3.1 Reference Documentation 164

}
}

}

GenericConverter

When you require a sophisticated Converter implementation, consider the GenericConverter interface.
With a more flexible but less strongly typed signature, a GenericConverter supports converting between
multiple source and target types. In addition, a GenericConverter makes available source and target field
context you can use when implementing your conversion logic. Such context allows a type conversion to
be driven by a field annotation, or generic information declared on a field signature.

package org.springframework.core.convert.converter;

public interface GenericConverter {

public Set<ConvertiblePair> getConvertibleTypes();

Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor targetType);

}

To implement a GenericConverter, have getConvertibleTypes() return the supported source->target type
pairs. Then implement convert(Object, TypeDescriptor, TypeDescriptor) to implement your conversion
logic. The source TypeDescriptor provides access to the source field holding the value being converted.
The target TypeDescriptor provides access to the target field where the converted value will be set.

A good example of a GenericConverter is a converter that converts between a Java Array and a
Collection. Such an ArrayToCollectionConverter introspects the field that declares the target Collection
type to resolve the Collection's element type. This allows each element in the source array to be converted
to the Collection element type before the Collection is set on the target field.

Note

Because GenericConverter is a more complex SPI interface, only use it when you need it.
Favor Converter or ConverterFactory for basic type conversion needs.

ConditionalGenericConverter

Sometimes you only want a Converter to execute if a specific condition holds true. For example, you
might only want to execute a Converter if a specific annotation is present on the target field. Or you might
only want to execute a Converter if a specific method, such as static valueOf method, is defined on the
target class. ConditionalGenericConverter is an subinterface of GenericConverter that allows you to
define such custom matching criteria:

public interface ConditionalGenericConverter extends GenericConverter {

boolean matches(TypeDescriptor sourceType, TypeDescriptor targetType);

}

Spring Framework

3.1 Reference Documentation 165

A good example of a ConditionalGenericConverter is an EntityConverter that converts between an
persistent entity identifier and an entity reference. Such a EntityConverter might only match if the target
entity type declares a static finder method e.g. findAccount(Long). You would perform such a finder
method check in the implementation of matches(TypeDescriptor, TypeDescriptor).

ConversionService API

The ConversionService defines a unified API for executing type conversion logic at runtime. Converters
are often executed behind this facade interface:

package org.springframework.core.convert;

public interface ConversionService {

boolean canConvert(Class<?> sourceType, Class<?> targetType);

<T> T convert(Object source, Class<T> targetType);

boolean canConvert(TypeDescriptor sourceType, TypeDescriptor targetType);

Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor targetType);

}

Most ConversionService implementations also implement ConverterRegistry, which provides an SPI for
registering converters. Internally, a ConversionService implementation delegates to its registered
converters to carry out type conversion logic.

A robust ConversionService implementation is provided in the core.convert.support package.
GenericConversionService is the general-purpose implementation suitable for use in most
environments. ConversionServiceFactory provides a convenient factory for creating common
ConversionService configurations.

Configuring a ConversionService

A ConversionService is a stateless object designed to be instantiated at application startup, then shared
between multiple threads. In a Spring application, you typically configure a ConversionService instance
per Spring container (or ApplicationContext). That ConversionService will be picked up by Spring and
then used whenever a type conversion needs to be performed by the framework. You may also inject this
ConversionService into any of your beans and invoke it directly.

Note

If no ConversionService is registered with Spring, the original PropertyEditor-based system
is used.

To register a default ConversionService with Spring, add the following bean definition with id

Spring Framework

3.1 Reference Documentation 166

conversionService:

<bean id="conversionService"
class="org.springframework.context.support.ConversionServiceFactoryBean"/>

A default ConversionService can convert between strings, numbers, enums, collections, maps, and other
common types. To suppliment or override the default converters with your own custom converter(s), set
the converters property. Property values may implement either of the Converter, ConverterFactory,
or GenericConverter interfaces.

<bean id="conversionService"
class="org.springframework.context.support.ConversionServiceFactoryBean">

<property name="converters">
<list>

<bean class="example.MyCustomConverter"/>
</list>

</property>
</bean>

It is also common to use a ConversionService within a Spring MVC application. See the section called
“Configuring Formatting in Spring MVC” for details on use with <mvc:annotation-driven/>.

In certain situations you may wish to apply formatting during conversion. See the section called
“FormatterRegistry SPI” for details on using FormattingConversionServiceFactoryBean.

Using a ConversionService programatically

To work with a ConversionService instance programatically, simply inject a reference to it like you
would for any other bean:

@Service
public class MyService {

@Autowired
public MyService(ConversionService conversionService) {

this.conversionService = conversionService;
}

public void doIt() {
this.conversionService.convert(...)

}
}

6.6 Spring 3 Field Formatting

As discussed in the previous section, core.convert is a general-purpose type conversion system. It
provides a unified ConversionService API as well as a strongly-typed Converter SPI for implementing
conversion logic from one type to another. A Spring Container uses this system to bind bean property
values. In addition, both the Spring Expression Language (SpEL) and DataBinder use this system to bind
field values. For example, when SpEL needs to coerce a Short to a Long to complete an

Spring Framework

3.1 Reference Documentation 167

expression.setValue(Object bean, Object value) attempt, the core.convert system
performs the coercion.

Now consider the type conversion requirements of a typical client environment such as a web or desktop
application. In such environments, you typically convert from String to support the client postback
process, as well as back to String to support the view rendering process. In addition, you often need to
localize String values. The more general core.convert Converter SPI does not address such formatting
requirements directly. To directly address them, Spring 3 introduces a convenient Formatter SPI that
provides a simple and robust alternative to PropertyEditors for client environments.

In general, use the Converter SPI when you need to implement general-purpose type conversion logic; for
example, for converting between a java.util.Date and and java.lang.Long. Use the Formatter SPI when
you're working in a client environment, such as a web application, and need to parse and print localized
field values. The ConversionService provides a unified type conversion API for both SPIs.

Formatter SPI

The Formatter SPI to implement field formatting logic is simple and strongly typed:

package org.springframework.format;

public interface Formatter<T> extends Printer<T>, Parser<T> {
}

Where Formatter extends from the Printer and Parser building-block interfaces:

public interface Printer<T> {
String print(T fieldValue, Locale locale);

}

import java.text.ParseException;

public interface Parser<T> {
T parse(String clientValue, Locale locale) throws ParseException;

}

To create your own Formatter, simply implement the Formatter interface above. Parameterize T to be the
type of object you wish to format, for example, java.util.Date. Implement the print() operation
to print an instance of T for display in the client locale. Implement the parse() operation to parse an
instance of T from the formatted representation returned from the client locale. Your Formatter should
throw a ParseException or IllegalArgumentException if a parse attempt fails. Take care to ensure your
Formatter implementation is thread-safe.

Several Formatter implementations are provided in format subpackages as a convenience. The number
package provides a NumberFormatter, CurrencyFormatter, and PercentFormatter to format
java.lang.Number objects using a java.text.NumberFormat. The datetime package provides a
DateFormatter to format java.util.Date objects with a java.text.DateFormat. The datetime.joda
package provides comprehensive datetime formatting support based on the Joda Time library.

Spring Framework

3.1 Reference Documentation 168

http://joda-time.sourceforge.net

Consider DateFormatter as an example Formatter implementation:

package org.springframework.format.datetime;

public final class DateFormatter implements Formatter<Date> {

private String pattern;

public DateFormatter(String pattern) {
this.pattern = pattern;

}

public String print(Date date, Locale locale) {
if (date == null) {

return "";
}
return getDateFormat(locale).format(date);

}

public Date parse(String formatted, Locale locale) throws ParseException {
if (formatted.length() == 0) {

return null;
}
return getDateFormat(locale).parse(formatted);

}

protected DateFormat getDateFormat(Locale locale) {
DateFormat dateFormat = new SimpleDateFormat(this.pattern, locale);
dateFormat.setLenient(false);
return dateFormat;

}

}

The Spring team welcomes community-driven Formatter contributions; see
http://jira.springframework.org to contribute.

Annotation-driven Formatting

As you will see, field formatting can be configured by field type or annotation. To bind an Annotation to
a formatter, implement AnnotationFormatterFactory:

package org.springframework.format;

public interface AnnotationFormatterFactory<A extends Annotation> {

Set<Class<?>> getFieldTypes();

Printer<?> getPrinter(A annotation, Class<?> fieldType);

Parser<?> getParser(A annotation, Class<?> fieldType);

}

Parameterize A to be the field annotationType you wish to associate formatting logic with, for example
org.springframework.format.annotation.DateTimeFormat. Have
getFieldTypes() return the types of fields the annotation may be used on. Have getPrinter()
return a Printer to print the value of an annotated field. Have getParser() return a Parser to parse a

Spring Framework

3.1 Reference Documentation 169

http://jira.springframework.org

clientValue for an annotated field.

The example AnnotationFormatterFactory implementation below binds the @NumberFormat Annotation
to a formatter. This annotation allows either a number style or pattern to be specified:

public final class NumberFormatAnnotationFormatterFactory
implements AnnotationFormatterFactory<NumberFormat> {

public Set<Class<?>> getFieldTypes() {
return new HashSet<Class<?>>(asList(new Class<?>[] {

Short.class, Integer.class, Long.class, Float.class,
Double.class, BigDecimal.class, BigInteger.class }));

}

public Printer<Number> getPrinter(NumberFormat annotation, Class<?> fieldType) {
return configureFormatterFrom(annotation, fieldType);

}

public Parser<Number> getParser(NumberFormat annotation, Class<?> fieldType) {
return configureFormatterFrom(annotation, fieldType);

}

private Formatter<Number> configureFormatterFrom(NumberFormat annotation,
Class<?> fieldType) {

if (!annotation.pattern().isEmpty()) {
return new NumberFormatter(annotation.pattern());

} else {
Style style = annotation.style();
if (style == Style.PERCENT) {

return new PercentFormatter();
} else if (style == Style.CURRENCY) {

return new CurrencyFormatter();
} else {

return new NumberFormatter();
}

}
}

}

To trigger formatting, simply annotate fields with @NumberFormat:

public class MyModel {

@NumberFormat(style=Style.CURRENCY)
private BigDecimal decimal;

}

Format Annotation API

A portable format annotation API exists in the org.springframework.format.annotation
package. Use @NumberFormat to format java.lang.Number fields. Use @DateTimeFormat to format
java.util.Date, java.util.Calendar, java.util.Long, or Joda Time fields.

The example below uses @DateTimeFormat to format a java.util.Date as a ISO Date (yyyy-MM-dd):

public class MyModel {

@DateTimeFormat(iso=ISO.DATE)
private Date date;

Spring Framework

3.1 Reference Documentation 170

}

FormatterRegistry SPI

The FormatterRegistry is an SPI for registering formatters and converters.
FormattingConversionService is an implementation of FormatterRegistry suitable for most
environments. This implementation may be configured programatically or declaratively as a Spring bean
using FormattingConversionServiceFactoryBean. Because this implemementation also
implements ConversionService, it can be directly configured for use with Spring's DataBinder and
the Spring Expression Language (SpEL).

Review the FormatterRegistry SPI below:

package org.springframework.format;

public interface FormatterRegistry extends ConverterRegistry {

void addFormatterForFieldType(Class<?> fieldType, Printer<?> printer, Parser<?> parser);

void addFormatterForFieldType(Class<?> fieldType, Formatter<?> formatter);

void addFormatterForFieldType(Formatter<?> formatter);

void addFormatterForAnnotation(AnnotationFormatterFactory<?, ?> factory);

}

As shown above, Formatters can be registered by fieldType or annotation.

The FormatterRegistry SPI allows you to configure Formatting rules centrally, instead of duplicating such
configuration across your Controllers. For example, you might want to enforce that all Date fields are
formatted a certain way, or fields with a specific annotation are formatted in a certain way. With a shared
FormatterRegistry, you define these rules once and they are applied whenever formatting is needed.

FormatterRegistrar SPI

The FormatterRegistrar is an SPI for registering formatters and converters through the FormatterRegistry:

package org.springframework.format;

public interface FormatterRegistrar {

void registerFormatters(FormatterRegistry registry);

}

A FormatterRegistrar is useful when registering multiple related converters and formatters for a given
formatting category, such as Date formatting. It can also be useful where declarative registration is
insufficient. For example when a formatter needs to be indexed under a specific field type different from
its own <T> or when registering a Printer/Parser pair. The next section provides more information on

Spring Framework

3.1 Reference Documentation 171

converter and formatter registration.

Configuring Formatting in Spring MVC

In a Spring MVC application, you may configure a custom ConversionService instance explicity as an
attribute of the annotation-driven element of the MVC namespace. This ConversionService will
then be used anytime a type conversion is required during Controller model binding. If not configured
explicitly, Spring MVC will automatically register default formatters and converters for common types
such as numbers and dates.

To rely on default formatting rules, no custom configuration is required in your Spring MVC config
XML:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

<mvc:annotation-driven/>

</beans>

With this one-line of configuation, default formatters for Numbers and Date types will be installed,
including support for the @NumberFormat and @DateTimeFormat annotations. Full support for the Joda
Time formatting library is also installed if Joda Time is present on the classpath.

To inject a ConversionService instance with custom formatters and converters registered, set the
conversion-service attribute and then specify custom converters, formatters, or FormatterRegistrars as
properties of the FormattingConversionServiceFactoryBean:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

<mvc:annotation-driven conversion-service="conversionService"/>

<bean id="conversionService"
class="org.springframework.format.support.FormattingConversionServiceFactoryBean">

<property name="converters">
<set>

<bean class="org.example.MyConverter"/>
</set>

</property>
<property name="formatters">

<set>

Spring Framework

3.1 Reference Documentation 172

<bean class="org.example.MyFormatter"/>
<bean class="org.example.MyAnnotationFormatterFactory"/>

</set>
</property>
<property name="formatterRegistrars">

<set>
<bean class="org.example.MyFormatterRegistrar"/>

</set>
</property>

</bean>

</beans>

Note

See the section called “FormatterRegistrar SPI” and the
FormattingConversionServiceFactoryBean for more information on when to
use FormatterRegistrars.

6.7 Spring 3 Validation

Spring 3 introduces several enhancements to its validation support. First, the JSR-303 Bean Validation
API is now fully supported. Second, when used programatically, Spring's DataBinder can now validate
objects as well as bind to them. Third, Spring MVC now has support for declaratively validating
@Controller inputs.

Overview of the JSR-303 Bean Validation API

JSR-303 standardizes validation constraint declaration and metadata for the Java platform. Using this
API, you annotate domain model properties with declarative validation constraints and the runtime
enforces them. There are a number of built-in constraints you can take advantage of. You may also define
your own custom constraints.

To illustrate, consider a simple PersonForm model with two properties:

public class PersonForm {
private String name;
private int age;

}

JSR-303 allows you to define declarative validation constraints against such properties:

public class PersonForm {

@NotNull
@Size(max=64)
private String name;

@Min(0)
private int age;

}

Spring Framework

3.1 Reference Documentation 173

When an instance of this class is validated by a JSR-303 Validator, these constraints will be enforced.

For general information on JSR-303, see the Bean Validation Specification. For information on the
specific capabilities of the default reference implementation, see the Hibernate Validator documentation.
To learn how to setup a JSR-303 implementation as a Spring bean, keep reading.

Configuring a Bean Validation Implementation

Spring provides full support for the JSR-303 Bean Validation API. This includes convenient support for
bootstrapping a JSR-303 implementation as a Spring bean. This allows for a
javax.validation.ValidatorFactory or javax.validation.Validator to be injected
wherever validation is needed in your application.

Use the LocalValidatorFactoryBean to configure a default JSR-303 Validator as a Spring bean:

<bean id="validator"
class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"/>

The basic configuration above will trigger JSR-303 to initialize using its default bootstrap mechanism. A
JSR-303 provider, such as Hibernate Validator, is expected to be present in the classpath and will be
detected automatically.

Injecting a Validator

LocalValidatorFactoryBean implements both javax.validation.ValidatorFactory
and javax.validation.Validator, as well as Spring's
org.springframework.validation.Validator. You may inject a reference to either of these
interfaces into beans that need to invoke validation logic.

Inject a reference to javax.validation.Validator if you prefer to work with the JSR-303 API
directly:

import javax.validation.Validator;

@Service
public class MyService {

@Autowired
private Validator validator;

Inject a reference to org.springframework.validation.Validator if your bean requires the
Spring Validation API:

import org.springframework.validation.Validator;

@Service
public class MyService {

@Autowired
private Validator validator;

Spring Framework

3.1 Reference Documentation 174

http://jcp.org/en/jsr/detail?id=303
https://www.hibernate.org/412.html

}

Configuring Custom Constraints

Each JSR-303 validation constraint consists of two parts. First, a @Constraint annotation that declares the
constraint and its configurable properties. Second, an implementation of the
javax.validation.ConstraintValidator interface that implements the constraint's behavior.
To associate a declaration with an implementation, each @Constraint annotation references a
corresponding ValidationConstraint implementation class. At runtime, a
ConstraintValidatorFactory instantiates the referenced implementation when the constraint
annotation is encountered in your domain model.

By default, the LocalValidatorFactoryBean configures a
SpringConstraintValidatorFactory that uses Spring to create ConstraintValidator instances.
This allows your custom ConstraintValidators to benefit from dependency injection like any other Spring
bean.

Shown below is an example of a custom @Constraint declaration, followed by an associated
ConstraintValidator implementation that uses Spring for dependency injection:

@Target({ElementType.METHOD, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy=MyConstraintValidator.class)
public @interface MyConstraint {
}

import javax.validation.ConstraintValidator;

public class MyConstraintValidator implements ConstraintValidator {

@Autowired;
private Foo aDependency;

...
}

As you can see, a ConstraintValidator implementation may have its dependencies @Autowired like any
other Spring bean.

Additional Configuration Options

The default LocalValidatorFactoryBean configuration should prove sufficient for most cases.
There are a number of other configuration options for various JSR-303 constructs, from message
interpolation to traversal resolution. See the JavaDocs of LocalValidatorFactoryBean for more
information on these options.

Configuring a DataBinder

Since Spring 3, a DataBinder instance can be configured with a Validator. Once configured, the Validator

Spring Framework

3.1 Reference Documentation 175

may be invoked by calling binder.validate(). Any validation Errors are automatically added to
the binder's BindingResult.

When working with the DataBinder programatically, this can be used to invoke validation logic after
binding to a target object:

Foo target = new Foo();
DataBinder binder = new DataBinder(target);
binder.setValidator(new FooValidator());

// bind to the target object
binder.bind(propertyValues);

// validate the target object
binder.validate();

// get BindingResult that includes any validation errors
BindingResult results = binder.getBindingResult();

Spring MVC 3 Validation

Beginning with Spring 3, Spring MVC has the ability to automatically validate @Controller inputs. In
previous versions it was up to the developer to manually invoke validation logic.

Triggering @Controller Input Validation

To trigger validation of a @Controller input, simply annotate the input argument as @Valid:

@Controller
public class MyController {

@RequestMapping("/foo", method=RequestMethod.POST)
public void processFoo(@Valid Foo foo) { /* ... */ }

Spring MVC will validate a @Valid object after binding so-long as an appropriate Validator has been
configured.

Note

The @Valid annotation is part of the standard JSR-303 Bean Validation API, and is not a
Spring-specific construct.

Configuring a Validator for use by Spring MVC

The Validator instance invoked when a @Valid method argument is encountered may be configured in
two ways. First, you may call binder.setValidator(Validator) within a @Controller's @InitBinder
callback. This allows you to configure a Validator instance per @Controller class:

@Controller
public class MyController {

Spring Framework

3.1 Reference Documentation 176

@InitBinder
protected void initBinder(WebDataBinder binder) {

binder.setValidator(new FooValidator());
}

@RequestMapping("/foo", method=RequestMethod.POST)
public void processFoo(@Valid Foo foo) { ... }

}

Second, you may call setValidator(Validator) on the global WebBindingInitializer. This allows you to
configure a Validator instance across all @Controllers. This can be achieved easily by using the Spring
MVC namespace:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

<mvc:annotation-driven validator="globalValidator"/>

</beans>

Configuring a JSR-303 Validator for use by Spring MVC

With JSR-303, a single javax.validation.Validator instance typically validates all model
objects that declare validation constraints. To configure a JSR-303-backed Validator with Spring MVC,
simply add a JSR-303 Provider, such as Hibernate Validator, to your classpath. Spring MVC will detect it
and automatically enable JSR-303 support across all Controllers.

The Spring MVC configuration required to enable JSR-303 support is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

<!-- JSR-303 support will be detected on classpath and enabled automatically -->
<mvc:annotation-driven/>

</beans>

With this minimal configuration, anytime a @Valid @Controller input is encountered, it will be validated
by the JSR-303 provider. JSR-303, in turn, will enforce any constraints declared against the input. Any
ConstraintViolations will automatically be exposed as errors in the BindingResult renderable by standard
Spring MVC form tags.

Spring Framework

3.1 Reference Documentation 177

7. Spring Expression Language (SpEL)

7.1 Introduction

The Spring Expression Language (SpEL for short) is a powerful expression language that supports
querying and manipulating an object graph at runtime. The language syntax is similar to Unified EL but
offers additional features, most notably method invocation and basic string templating functionality.

While there are several other Java expression languages available, OGNL, MVEL, and JBoss EL, to name
a few, the Spring Expression Language was created to provide the Spring community with a single well
supported expression language that can be used across all the products in the Spring portfolio. Its
language features are driven by the requirements of the projects in the Spring portfolio, including tooling
requirements for code completion support within the eclipse based SpringSource Tool Suite. That said,
SpEL is based on a technology agnostic API allowing other expression language implementations to be
integrated should the need arise.

While SpEL serves as the foundation for expression evaluation within the Spring portfolio, it is not
directly tied to Spring and can be used independently. In order to be self contained, many of the examples
in this chapter use SpEL as if it were an independent expression language. This requires creating a few
bootstrapping infrastructure classes such as the parser. Most Spring users will not need to deal with this
infrastructure and will instead only author expression strings for evaluation. An example of this typical
use is the integration of SpEL into creating XML or annotated based bean definitions as shown in the
section Expression support for defining bean definitions.

This chapter covers the features of the expression language, its API, and its language syntax. In several
places an Inventor and Inventor's Society class are used as the target objects for expression evaluation.
These class declarations and the data used to populate them are listed at the end of the chapter.

7.2 Feature Overview

The expression language supports the following functionality

• Literal expressions

• Boolean and relational operators

• Regular expressions

• Class expressions

• Accessing properties, arrays, lists, maps

• Method invocation

Spring Framework

3.1 Reference Documentation 178

• Relational operators

• Assignment

• Calling constructors

• Bean references

• Array construction

• Inline lists

• Ternary operator

• Variables

• User defined functions

• Collection projection

• Collection selection

• Templated expressions

7.3 Expression Evaluation using Spring's Expression
Interface

This section introduces the simple use of SpEL interfaces and its expression language. The complete
language reference can be found in the section Language Reference.

The following code introduces the SpEL API to evaluate the literal string expression 'Hello World'.

ExpressionParser parser = new SpelExpressionParser();
Expression exp = parser.parseExpression("'Hello World'");
String message = (String) exp.getValue();

The value of the message variable is simply 'Hello World'.

The SpEL classes and interfaces you are most likely to use are located in the packages
org.springframework.expression and its sub packages and spel.support.

The interface ExpressionParser is responsible for parsing an expression string. In this example the
expression string is a string literal denoted by the surrounding single quotes. The interface Expression
is responsible for evaluating the previously defined expression string. There are two exceptions that can
be thrown, ParseException and EvaluationException when calling
'parser.parseExpression' and 'exp.getValue' respectively.

Spring Framework

3.1 Reference Documentation 179

SpEL supports a wide range of features, such as calling methods, accessing properties, and calling
constructors.

As an example of method invocation, we call the 'concat' method on the string literal.

ExpressionParser parser = new SpelExpressionParser();
Expression exp = parser.parseExpression("'Hello World'.concat('!')");
String message = (String) exp.getValue();

The value of message is now 'Hello World!'.

As an example of calling a JavaBean property, the String property 'Bytes' can be called as shown below.

ExpressionParser parser = new SpelExpressionParser();

// invokes 'getBytes()'
Expression exp = parser.parseExpression("'Hello World'.bytes");

byte[] bytes = (byte[]) exp.getValue();

SpEL also supports nested properties using standard 'dot' notation, i.e. prop1.prop2.prop3 and the setting
of property values

Public fields may also be accessed.

ExpressionParser parser = new SpelExpressionParser();

// invokes 'getBytes().length'
Expression exp = parser.parseExpression("'Hello World'.bytes.length");

int length = (Integer) exp.getValue();

The String's constructor can be called instead of using a string literal.

ExpressionParser parser = new SpelExpressionParser();
Expression exp = parser.parseExpression("new String('hello world').toUpperCase()");
String message = exp.getValue(String.class);

Note the use of the generic method public <T> T getValue(Class<T>
desiredResultType). Using this method removes the need to cast the value of the expression to the
desired result type. An EvaluationException will be thrown if the value cannot be cast to the type
T or converted using the registered type converter.

The more common usage of SpEL is to provide an expression string that is evaluated against a specific
object instance (called the root object). There are two options here and which to choose depends on
whether the object against which the expression is being evaluated will be changing with each call to
evaluate the expression. In the following example we retrieve the name property from an instance of the
Inventor class.

// Create and set a calendar
GregorianCalendar c = new GregorianCalendar();
c.set(1856, 7, 9);

Spring Framework

3.1 Reference Documentation 180

// The constructor arguments are name, birthday, and nationality.
Inventor tesla = new Inventor("Nikola Tesla", c.getTime(), "Serbian");

ExpressionParser parser = new SpelExpressionParser();
Expression exp = parser.parseExpression("name");
EvaluationContext context = new StandardEvaluationContext(tesla);

String name = (String) exp.getValue(context);

In the last line, the value of the string variable 'name' will be set to "Nikola Tesla". The class
StandardEvaluationContext is where you can specify which object the "name" property will be evaluated
against. This is the mechanism to use if the root object is unlikely to change, it can simply be set once in
the evaluation context. If the root object is likely to change repeatedly, it can be supplied on each call to
getValue, as this next example shows:

/ Create and set a calendar
GregorianCalendar c = new GregorianCalendar();
c.set(1856, 7, 9);

// The constructor arguments are name, birthday, and nationality.
Inventor tesla = new Inventor("Nikola Tesla", c.getTime(), "Serbian");

ExpressionParser parser = new SpelExpressionParser();
Expression exp = parser.parseExpression("name");

String name = (String) exp.getValue(tesla);

In this case the inventor tesla has been supplied directly to getValue and the expression evaluation
infrastructure creates and manages a default evaluation context internally - it did not require one to be
supplied.

The StandardEvaluationContext is relatively expensive to construct and during repeated usage it builds up
cached state that enables subsequent expression evaluations to be performed more quickly. For this reason
it is better to cache and reuse them where possible, rather than construct a new one for each expression
evaluation.

In some cases it can be desirable to use a configured evaluation context and yet still supply a different
root object on each call to getValue. getValue allows both to be specified on the same call. In these
situations the root object passed on the call is considered to override any (which maybe null) specified on
the evaluation context.

Note

In standalone usage of SpEL there is a need to create the parser, parse expressions and
perhaps provide evaluation contexts and a root context object. However, more common usage
is to provide only the SpEL expression string as part of a configuration file, for example for
Spring bean or Spring Web Flow definitions. In this case, the parser, evaluation context, root
object and any predefined variables are all set up implicitly, requiring the user to specify
nothing other than the expressions.

Spring Framework

3.1 Reference Documentation 181

As a final introductory example, the use of a boolean operator is shown using the Inventor object in the
previous example.

Expression exp = parser.parseExpression("name == 'Nikola Tesla'");
boolean result = exp.getValue(context, Boolean.class); // evaluates to true

The EvaluationContext interface

The interface EvaluationContext is used when evaluating an expression to resolve properties,
methods, fields, and to help perform type conversion. The out-of-the-box implementation,
StandardEvaluationContext, uses reflection to manipulate the object, caching java.lang.reflect's
Method, Field, and Constructor instances for increased performance.

The StandardEvaluationContext is where you may specify the root object to evaluate against via
the method setRootObject() or passing the root object into the constructor. You can also specify
variables and functions that will be used in the expression using the methods setVariable() and
registerFunction(). The use of variables and functions are described in the language reference
sections Variables and Functions. The StandardEvaluationContext is also where you can
register custom ConstructorResolvers, MethodResolvers, and PropertyAccessors to
extend how SpEL evaluates expressions. Please refer to the JavaDoc of these classes for more details.

Type Conversion

By default SpEL uses the conversion service available in Spring core
(org.springframework.core.convert.ConversionService). This conversion service
comes with many converters built in for common conversions but is also fully extensible so custom
conversions between types can be added. Additionally it has the key capability that it is generics aware.
This means that when working with generic types in expressions, SpEL will attempt conversions to
maintain type correctness for any objects it encounters.

What does this mean in practice? Suppose assignment, using setValue(), is being used to set a List
property. The type of the property is actually List<Boolean>. SpEL will recognize that the elements
of the list need to be converted to Boolean before being placed in it. A simple example:

class Simple {
public List<Boolean> booleanList = new ArrayList<Boolean>();

}

Simple simple = new Simple();

simple.booleanList.add(true);

StandardEvaluationContext simpleContext = new StandardEvaluationContext(simple);

// false is passed in here as a string. SpEL and the conversion service will
// correctly recognize that it needs to be a Boolean and convert it
parser.parseExpression("booleanList[0]").setValue(simpleContext, "false");

// b will be false
Boolean b = simple.booleanList.get(0);

Spring Framework

3.1 Reference Documentation 182

7.4 Expression support for defining bean definitions

SpEL expressions can be used with XML or annotation based configuration metadata for defining
BeanDefinitions. In both cases the syntax to define the expression is of the form #{ <expression
string> }.

XML based configuration

A property or constructor-arg value can be set using expressions as shown below

<bean id="numberGuess" class="org.spring.samples.NumberGuess">
<property name="randomNumber" value="#{ T(java.lang.Math).random() * 100.0 }"/>

<!-- other properties -->
</bean>

The variable 'systemProperties' is predefined, so you can use it in your expressions as shown below. Note
that you do not have to prefix the predefined variable with the '#' symbol in this context.

<bean id="taxCalculator" class="org.spring.samples.TaxCalculator">
<property name="defaultLocale" value="#{ systemProperties['user.region'] }"/>

<!-- other properties -->
</bean>

You can also refer to other bean properties by name, for example.

<bean id="numberGuess" class="org.spring.samples.NumberGuess">
<property name="randomNumber" value="#{ T(java.lang.Math).random() * 100.0 }"/>

<!-- other properties -->
</bean>

<bean id="shapeGuess" class="org.spring.samples.ShapeGuess">
<property name="initialShapeSeed" value="#{ numberGuess.randomNumber }"/>

<!-- other properties -->
</bean>

Annotation-based configuration

The @Value annotation can be placed on fields, methods and method/constructor parameters to specify a
default value.

Here is an example to set the default value of a field variable.

public static class FieldValueTestBean

@Value("#{ systemProperties['user.region'] }")
private String defaultLocale;

Spring Framework

3.1 Reference Documentation 183

public void setDefaultLocale(String defaultLocale)
{

this.defaultLocale = defaultLocale;
}

public String getDefaultLocale()
{

return this.defaultLocale;
}

}

The equivalent but on a property setter method is shown below.

public static class PropertyValueTestBean

private String defaultLocale;

@Value("#{ systemProperties['user.region'] }")
public void setDefaultLocale(String defaultLocale)
{

this.defaultLocale = defaultLocale;
}

public String getDefaultLocale()
{

return this.defaultLocale;
}

}

Autowired methods and constructors can also use the @Value annotation.

public class SimpleMovieLister {

private MovieFinder movieFinder;
private String defaultLocale;

@Autowired
public void configure(MovieFinder movieFinder,

@Value("#{ systemProperties['user.region'] }"} String defaultLocale) {
this.movieFinder = movieFinder;
this.defaultLocale = defaultLocale;

}

// ...
}

public class MovieRecommender {

private String defaultLocale;

private CustomerPreferenceDao customerPreferenceDao;

@Autowired
public MovieRecommender(CustomerPreferenceDao customerPreferenceDao,

@Value("#{systemProperties['user.country']}"} String defaultLocale) {
this.customerPreferenceDao = customerPreferenceDao;
this.defaultLocale = defaultLocale;

}

Spring Framework

3.1 Reference Documentation 184

// ...
}

7.5 Language Reference

Literal expressions

The types of literal expressions supported are strings, dates, numeric values (int, real, and hex), boolean
and null. Strings are delimited by single quotes. To put a single quote itself in a string use two single
quote characters. The following listing shows simple usage of literals. Typically they would not be used
in isolation like this, but as part of a more complex expression, for example using a literal on one side of a
logical comparison operator.

ExpressionParser parser = new SpelExpressionParser();

// evals to "Hello World"
String helloWorld = (String) parser.parseExpression("'Hello World'").getValue();

double avogadrosNumber = (Double) parser.parseExpression("6.0221415E+23").getValue();

// evals to 2147483647
int maxValue = (Integer) parser.parseExpression("0x7FFFFFFF").getValue();

boolean trueValue = (Boolean) parser.parseExpression("true").getValue();

Object nullValue = parser.parseExpression("null").getValue();

Numbers support the use of the negative sign, exponential notation, and decimal points. By default real
numbers are parsed using Double.parseDouble().

Properties, Arrays, Lists, Maps, Indexers

Navigating with property references is easy, just use a period to indicate a nested property value. The
instances of Inventor class, pupin and tesla, were populated with data listed in the section Classes used in
the examples. To navigate "down" and get Tesla's year of birth and Pupin's city of birth the following
expressions are used.

// evals to 1856
int year = (Integer) parser.parseExpression("Birthdate.Year + 1900").getValue(context);

String city = (String) parser.parseExpression("placeOfBirth.City").getValue(context);

Case insensitivity is allowed for the first letter of property names. The contents of arrays and lists are
obtained using square bracket notation.

ExpressionParser parser = new SpelExpressionParser();

// Inventions Array
StandardEvaluationContext teslaContext = new StandardEvaluationContext(tesla);

Spring Framework

3.1 Reference Documentation 185

// evaluates to "Induction motor"
String invention = parser.parseExpression("inventions[3]").getValue(teslaContext,

String.class);

// Members List
StandardEvaluationContext societyContext = new StandardEvaluationContext(ieee);

// evaluates to "Nikola Tesla"
String name = parser.parseExpression("Members[0].Name").getValue(societyContext, String.class);

// List and Array navigation
// evaluates to "Wireless communication"
String invention = parser.parseExpression("Members[0].Inventions[6]").getValue(societyContext,

String.class);

The contents of maps are obtained by specifying the literal key value within the brackets. In this case,
because keys for the Officers map are strings, we can specify string literals.

// Officer's Dictionary

Inventor pupin = parser.parseExpression("Officers['president']").getValue(societyContext,
Inventor.class);

// evaluates to "Idvor"
String city =

parser.parseExpression("Officers['president'].PlaceOfBirth.City").getValue(societyContext,
String.class);

// setting values
parser.parseExpression("Officers['advisors'][0].PlaceOfBirth.Country").setValue(societyContext,

"Croatia");

Inline lists

Lists can be expressed directly in an expression using {} notation.

// evaluates to a Java list containing the four numbers
List numbers = (List) parser.parseExpression("{1,2,3,4}").getValue(context);

List listOfLists = (List) parser.parseExpression("{{'a','b'},{'x','y'}}").getValue(context);

{} by itself means an empty list. For performance reasons, if the list is itself entirely composed of fixed
literals then a constant list is created to represent the expression, rather than building a new list on each
evaluation.

Array construction

Arrays can be built using the familiar Java syntax, optionally supplying an initializer to have the array
populated at construction time.

int[] numbers1 = (int[]) parser.parseExpression("new int[4]").getValue(context);

// Array with initializer

Spring Framework

3.1 Reference Documentation 186

int[] numbers2 = (int[]) parser.parseExpression("new int[]{1,2,3}").getValue(context);

// Multi dimensional array
int[][] numbers3 = (int[][]) parser.parseExpression("new int[4][5]").getValue(context);

It is not currently allowed to supply an initializer when constructing a multi-dimensional array.

Methods

Methods are invoked using typical Java programming syntax. You may also invoke methods on literals.
Varargs are also supported.

// string literal, evaluates to "bc"
String c = parser.parseExpression("'abc'.substring(2, 3)").getValue(String.class);

// evaluates to true
boolean isMember = parser.parseExpression("isMember('Mihajlo Pupin')").getValue(societyContext,

Boolean.class);

Operators

Relational operators

The relational operators; equal, not equal, less than, less than or equal, greater than, and greater than or
equal are supported using standard operator notation.

// evaluates to true
boolean trueValue = parser.parseExpression("2 == 2").getValue(Boolean.class);

// evaluates to false
boolean falseValue = parser.parseExpression("2 < -5.0").getValue(Boolean.class);

// evaluates to true
boolean trueValue = parser.parseExpression("'black' < 'block'").getValue(Boolean.class);

In addition to standard relational operators SpEL supports the 'instanceof' and regular expression based
'matches' operator.

// evaluates to false
boolean falseValue = parser.parseExpression("'xyz' instanceof T(int)").getValue(Boolean.class);

// evaluates to true
boolean trueValue =

parser.parseExpression("'5.00' matches '^-?\\d+(\\.\\d{2})?$'").getValue(Boolean.class);

//evaluates to false
boolean falseValue =

parser.parseExpression("'5.0067' matches '^-?\\d+(\\.\\d{2})?$'").getValue(Boolean.class);

Each symbolic operator can also be specified as a purely alphabetic equivalent. This avoids problems
where the symbols used have special meaning for the document type in which the expression is embedded
(eg. an XML document). The textual equivalents are shown here: lt ('<'), gt ('>'), le ('<='), ge ('>='), eq

Spring Framework

3.1 Reference Documentation 187

('=='), ne ('!='), div ('/'), mod ('%'), not ('!'). These are case insensitive.

Logical operators

The logical operators that are supported are and, or, and not. Their use is demonstrated below.

// -- AND --

// evaluates to false
boolean falseValue = parser.parseExpression("true and false").getValue(Boolean.class);

// evaluates to true
String expression = "isMember('Nikola Tesla') and isMember('Mihajlo Pupin')";
boolean trueValue = parser.parseExpression(expression).getValue(societyContext, Boolean.class);

// -- OR --

// evaluates to true
boolean trueValue = parser.parseExpression("true or false").getValue(Boolean.class);

// evaluates to true
String expression = "isMember('Nikola Tesla') or isMember('Albert Einstien')";
boolean trueValue = parser.parseExpression(expression).getValue(societyContext, Boolean.class);

// -- NOT --

// evaluates to false
boolean falseValue = parser.parseExpression("!true").getValue(Boolean.class);

// -- AND and NOT --
String expression = "isMember('Nikola Tesla') and !isMember('Mihajlo Pupin')";
boolean falseValue = parser.parseExpression(expression).getValue(societyContext, Boolean.class);

Mathematical operators

The addition operator can be used on numbers, strings and dates. Subtraction can be used on numbers and
dates. Multiplication and division can be used only on numbers. Other mathematical operators supported
are modulus (%) and exponential power (^). Standard operator precedence is enforced. These operators
are demonstrated below.

// Addition
int two = parser.parseExpression("1 + 1").getValue(Integer.class); // 2

String testString =
parser.parseExpression("'test' + ' ' + 'string'").getValue(String.class); // 'test string'

// Subtraction
int four = parser.parseExpression("1 - -3").getValue(Integer.class); // 4

double d = parser.parseExpression("1000.00 - 1e4").getValue(Double.class); // -9000

// Multiplication
int six = parser.parseExpression("-2 * -3").getValue(Integer.class); // 6

double twentyFour = parser.parseExpression("2.0 * 3e0 * 4").getValue(Double.class); // 24.0

// Division

Spring Framework

3.1 Reference Documentation 188

int minusTwo = parser.parseExpression("6 / -3").getValue(Integer.class); // -2

double one = parser.parseExpression("8.0 / 4e0 / 2").getValue(Double.class); // 1.0

// Modulus
int three = parser.parseExpression("7 % 4").getValue(Integer.class); // 3

int one = parser.parseExpression("8 / 5 % 2").getValue(Integer.class); // 1

// Operator precedence
int minusTwentyOne = parser.parseExpression("1+2-3*8").getValue(Integer.class); // -21

Assignment

Setting of a property is done by using the assignment operator. This would typically be done within a call
to setValue but can also be done inside a call to getValue.

Inventor inventor = new Inventor();
StandardEvaluationContext inventorContext = new StandardEvaluationContext(inventor);

parser.parseExpression("Name").setValue(inventorContext, "Alexander Seovic2");

// alternatively

String aleks = parser.parseExpression("Name = 'Alexandar Seovic'").getValue(inventorContext,
String.class);

Types

The special 'T' operator can be used to specify an instance of java.lang.Class (the 'type'). Static methods
are invoked using this operator as well. The StandardEvaluationContext uses a TypeLocator
to find types and the StandardTypeLocator (which can be replaced) is built with an understanding
of the java.lang package. This means T() references to types within java.lang do not need to be fully
qualified, but all other type references must be.

Class dateClass = parser.parseExpression("T(java.util.Date)").getValue(Class.class);

Class stringClass = parser.parseExpression("T(String)").getValue(Class.class);

boolean trueValue =
parser.parseExpression("T(java.math.RoundingMode).CEILING < T(java.math.RoundingMode).FLOOR")

.getValue(Boolean.class);

Constructors

Constructors can be invoked using the new operator. The fully qualified class name should be used for all
but the primitive type and String (where int, float, etc, can be used).

Inventor einstein =
p.parseExpression("new org.spring.samples.spel.inventor.Inventor('Albert Einstein',

'German')")
.getValue(Inventor.class);

Spring Framework

3.1 Reference Documentation 189

//create new inventor instance within add method of List
p.parseExpression("Members.add(new org.spring.samples.spel.inventor.Inventor('Albert Einstein',

'German'))")
.getValue(societyContext);

Variables

Variables can be referenced in the expression using the syntax #variableName. Variables are set using the
method setVariable on the StandardEvaluationContext.

Inventor tesla = new Inventor("Nikola Tesla", "Serbian");
StandardEvaluationContext context = new StandardEvaluationContext(tesla);
context.setVariable("newName", "Mike Tesla");

parser.parseExpression("Name = #newName").getValue(context);

System.out.println(tesla.getName()) // "Mike Tesla"

The #this and #root variables

The variable #this is always defined and refers to the current evaluation object (against which unqualified
references are resolved). The variable #root is always defined and refers to the root context object.
Although #this may vary as components of an expression are evaluated, #root always refers to the root.

// create an array of integers
List<Integer> primes = new ArrayList<Integer>();
primes.addAll(Arrays.asList(2,3,5,7,11,13,17));

// create parser and set variable 'primes' as the array of integers
ExpressionParser parser = new SpelExpressionParser();
StandardEvaluationContext context = new StandardEvaluationContext();
context.setVariable("primes",primes);

// all prime numbers > 10 from the list (using selection ?{...})
// evaluates to [11, 13, 17]
List<Integer> primesGreaterThanTen =

(List<Integer>) parser.parseExpression("#primes.?[#this>10]").getValue(context);

Functions

You can extend SpEL by registering user defined functions that can be called within the expression string.
The function is registered with the StandardEvaluationContext using the method.

public void registerFunction(String name, Method m)

A reference to a Java Method provides the implementation of the function. For example, a utility method
to reverse a string is shown below.

public abstract class StringUtils {

public static String reverseString(String input) {
StringBuilder backwards = new StringBuilder();

Spring Framework

3.1 Reference Documentation 190

for (int i = 0; i < input.length(); i++)
backwards.append(input.charAt(input.length() - 1 - i));

}
return backwards.toString();

}
}

This method is then registered with the evaluation context and can be used within an expression string.

ExpressionParser parser = new SpelExpressionParser();
StandardEvaluationContext context = new StandardEvaluationContext();

context.registerFunction("reverseString",
StringUtils.class.getDeclaredMethod("reverseString",

new Class[] { String.class }));

String helloWorldReversed =
parser.parseExpression("#reverseString('hello')").getValue(context, String.class);

Bean references

If the evaluation context has been configured with a bean resolver it is possible to lookup beans from an
expression using the (@) symbol.

ExpressionParser parser = new SpelExpressionParser();
StandardEvaluationContext context = new StandardEvaluationContext();
context.setBeanResolver(new MyBeanResolver());

// This will end up calling resolve(context,"foo") on MyBeanResolver during evaluation
Object bean = parser.parseExpression("@foo").getValue(context);

Ternary Operator (If-Then-Else)

You can use the ternary operator for performing if-then-else conditional logic inside the expression. A
minimal example is:

String falseString =
parser.parseExpression("false ? 'trueExp' : 'falseExp'").getValue(String.class);

In this case, the boolean false results in returning the string value 'falseExp'. A more realistic example is
shown below.

parser.parseExpression("Name").setValue(societyContext, "IEEE");
societyContext.setVariable("queryName", "Nikola Tesla");

expression = "isMember(#queryName)? #queryName + ' is a member of the ' " +
"+ Name + ' Society' : #queryName + ' is not a member of the ' + Name + ' Society'";

String queryResultString =
parser.parseExpression(expression).getValue(societyContext, String.class);

// queryResultString = "Nikola Tesla is a member of the IEEE Society"

Also see the next section on the Elvis operator for an even shorter syntax for the ternary operator.

Spring Framework

3.1 Reference Documentation 191

The Elvis Operator

The Elvis operator is a shortening of the ternary operator syntax and is used in the Groovy language. With
the ternary operator syntax you usually have to repeat a variable twice, for example:

String name = "Elvis Presley";
String displayName = name != null ? name : "Unknown";

Instead you can use the Elvis operator, named for the resemblance to Elvis' hair style.

ExpressionParser parser = new SpelExpressionParser();

String name = parser.parseExpression("null?:'Unknown'").getValue(String.class);

System.out.println(name); // 'Unknown'

Here is a more complex example.

ExpressionParser parser = new SpelExpressionParser();

Inventor tesla = new Inventor("Nikola Tesla", "Serbian");
StandardEvaluationContext context = new StandardEvaluationContext(tesla);

String name = parser.parseExpression("Name?:'Elvis Presley'").getValue(context, String.class);

System.out.println(name); // Mike Tesla

tesla.setName(null);

name = parser.parseExpression("Name?:'Elvis Presley'").getValue(context, String.class);

System.out.println(name); // Elvis Presley

Safe Navigation operator

The Safe Navigation operator is used to avoid a NullPointerException and comes from the
Groovy language. Typically when you have a reference to an object you might need to verify that it is not
null before accessing methods or properties of the object. To avoid this, the safe navigation operator will
simply return null instead of throwing an exception.

ExpressionParser parser = new SpelExpressionParser();

Inventor tesla = new Inventor("Nikola Tesla", "Serbian");
tesla.setPlaceOfBirth(new PlaceOfBirth("Smiljan"));

StandardEvaluationContext context = new StandardEvaluationContext(tesla);

String city = parser.parseExpression("PlaceOfBirth?.City").getValue(context, String.class);
System.out.println(city); // Smiljan

tesla.setPlaceOfBirth(null);

city = parser.parseExpression("PlaceOfBirth?.City").getValue(context, String.class);

System.out.println(city); // null - does not throw NullPointerException!!!

Spring Framework

3.1 Reference Documentation 192

http://groovy.codehaus.org/Operators#Operators-ElvisOperator(%3F%3A)
http://groovy.codehaus.org/Operators#Operators-SafeNavigationOperator(%3F.)

Note

The Elvis operator can be used to apply default values in expressions, e.g. in an @Value
expression:

@Value("#{systemProperties['pop3.port'] ?: 25}")

This will inject a system property pop3.port if it is defined or 25 if not.

Collection Selection

Selection is a powerful expression language feature that allows you to transform some source collection
into another by selecting from its entries.

Selection uses the syntax ?[selectionExpression]. This will filter the collection and return a new
collection containing a subset of the original elements. For example, selection would allow us to easily
get a list of Serbian inventors:

List<Inventor> list = (List<Inventor>)
parser.parseExpression("Members.?[Nationality == 'Serbian']").getValue(societyContext);

Selection is possible upon both lists and maps. In the former case the selection criteria is evaluated
against each individual list element whilst against a map the selection criteria is evaluated against each
map entry (objects of the Java type Map.Entry). Map entries have their key and value accessible as
properties for use in the selection.

This expression will return a new map consisting of those elements of the original map where the entry
value is less than 27.

Map newMap = parser.parseExpression("map.?[value<27]").getValue();

In addition to returning all the selected elements, it is possible to retrieve just the first or the last value. To
obtain the first entry matching the selection the syntax is ^[...] whilst to obtain the last matching
selection the syntax is $[...].

Collection Projection

Projection allows a collection to drive the evaluation of a sub-expression and the result is a new
collection. The syntax for projection is ![projectionExpression]. Most easily understood by
example, suppose we have a list of inventors but want the list of cities where they were born. Effectively
we want to evaluate 'placeOfBirth.city' for every entry in the inventor list. Using projection:

// returns ['Smiljan', 'Idvor']
List placesOfBirth = (List)parser.parseExpression("Members.![placeOfBirth.city]");

Spring Framework

3.1 Reference Documentation 193

A map can also be used to drive projection and in this case the projection expression is evaluated against
each entry in the map (represented as a Java Map.Entry). The result of a projection across a map is a
list consisting of the evaluation of the projection expression against each map entry.

Expression templating

Expression templates allow a mixing of literal text with one or more evaluation blocks. Each evaluation
block is delimited with prefix and suffix characters that you can define, a common choice is to use #{ }
as the delimiters. For example,

String randomPhrase =
parser.parseExpression("random number is #{T(java.lang.Math).random()}",

new TemplateParserContext()).getValue(String.class);

// evaluates to "random number is 0.7038186818312008"

The string is evaluated by concatenating the literal text 'random number is ' with the result of evaluating
the expression inside the #{ } delimiter, in this case the result of calling that random() method. The
second argument to the method parseExpression() is of the type ParserContext. The
ParserContext interface is used to influence how the expression is parsed in order to support the
expression templating functionality. The definition of TemplateParserContext is shown below.

public class TemplateParserContext implements ParserContext {

public String getExpressionPrefix() {
return "#{";

}

public String getExpressionSuffix() {
return "}";

}

public boolean isTemplate() {
return true;

}
}

7.6 Classes used in the examples

Inventor.java

package org.spring.samples.spel.inventor;

import java.util.Date;
import java.util.GregorianCalendar;

public class Inventor {

private String name;
private String nationality;
private String[] inventions;
private Date birthdate;
private PlaceOfBirth placeOfBirth;

Spring Framework

3.1 Reference Documentation 194

public Inventor(String name, String nationality)
{

GregorianCalendar c= new GregorianCalendar();
this.name = name;
this.nationality = nationality;
this.birthdate = c.getTime();

}
public Inventor(String name, Date birthdate, String nationality) {

this.name = name;
this.nationality = nationality;
this.birthdate = birthdate;

}

public Inventor() {
}

public String getName() {
return name;

}
public void setName(String name) {

this.name = name;
}
public String getNationality() {

return nationality;
}
public void setNationality(String nationality) {

this.nationality = nationality;
}
public Date getBirthdate() {

return birthdate;
}
public void setBirthdate(Date birthdate) {

this.birthdate = birthdate;
}
public PlaceOfBirth getPlaceOfBirth() {

return placeOfBirth;
}
public void setPlaceOfBirth(PlaceOfBirth placeOfBirth) {

this.placeOfBirth = placeOfBirth;
}
public void setInventions(String[] inventions) {

this.inventions = inventions;
}
public String[] getInventions() {

return inventions;
}

}

PlaceOfBirth.java

package org.spring.samples.spel.inventor;

public class PlaceOfBirth {

private String city;
private String country;

public PlaceOfBirth(String city) {
this.city=city;

}
public PlaceOfBirth(String city, String country)
{

this(city);
this.country = country;

}

Spring Framework

3.1 Reference Documentation 195

public String getCity() {
return city;

}
public void setCity(String s) {

this.city = s;
}
public String getCountry() {

return country;
}
public void setCountry(String country) {

this.country = country;
}

}

Society.java

package org.spring.samples.spel.inventor;

import java.util.*;

public class Society {

private String name;

public static String Advisors = "advisors";
public static String President = "president";

private List<Inventor> members = new ArrayList<Inventor>();
private Map officers = new HashMap();

public List getMembers() {
return members;

}

public Map getOfficers() {
return officers;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public boolean isMember(String name)
{

boolean found = false;
for (Inventor inventor : members) {

if (inventor.getName().equals(name))
{

found = true;
break;

}
}
return found;

}

}

Spring Framework

3.1 Reference Documentation 196

Spring Framework

3.1 Reference Documentation 197

8. Aspect Oriented Programming with Spring

8.1 Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. The key unit of modularity in OOP is the class, whereas
in AOP the unit of modularity is the aspect. Aspects enable the modularization of concerns such as
transaction management that cut across multiple types and objects. (Such concerns are often termed
crosscutting concerns in AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring IoC container does not
depend on AOP, meaning you do not need to use AOP if you don't want to, AOP complements Spring
IoC to provide a very capable middleware solution.

Spring 2.0 AOP

Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
schema-based approach or the @AspectJ annotation style. Both of these styles offer fully typed
advice and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

The Spring 2.0 schema- and @AspectJ-based AOP support is discussed in this chapter. Spring 2.0
AOP remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support
offered by the Spring 1.2 APIs is discussed in the following chapter.

AOP is used in the Spring Framework to...

• ... provide declarative enterprise services, especially as a replacement for EJB declarative services. The
most important such service is declarative transaction management.

• ... allow users to implement custom aspects, complementing their use of OOP with AOP.

If you are interested only in generic declarative services or other pre-packaged declarative middleware
services such as pooling, you do not need to work directly with Spring AOP, and can skip most of this
chapter.

AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not
Spring-specific... unfortunately, AOP terminology is not particularly intuitive; however, it would be even
more confusing if Spring used its own terminology.

• Aspect: a modularization of a concern that cuts across multiple classes. Transaction management is a

Spring Framework

3.1 Reference Documentation 198

good example of a crosscutting concern in enterprise Java applications. In Spring AOP, aspects are
implemented using regular classes (the schema-based approach) or regular classes annotated with the
@Aspect annotation (the @AspectJ style).

• Join point: a point during the execution of a program, such as the execution of a method or the
handling of an exception. In Spring AOP, a join point always represents a method execution.

• Advice: action taken by an aspect at a particular join point. Different types of advice include "around,"
"before" and "after" advice. (Advice types are discussed below.) Many AOP frameworks, including
Spring, model an advice as an interceptor, maintaining a chain of interceptors around the join point.

• Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression and runs
at any join point matched by the pointcut (for example, the execution of a method with a certain name).
The concept of join points as matched by pointcut expressions is central to AOP, and Spring uses the
AspectJ pointcut expression language by default.

• Introduction: declaring additional methods or fields on behalf of a type. Spring AOP allows you to
introduce new interfaces (and a corresponding implementation) to any advised object. For example,
you could use an introduction to make a bean implement an IsModified interface, to simplify
caching. (An introduction is known as an inter-type declaration in the AspectJ community.)

• Target object: object being advised by one or more aspects. Also referred to as the advised object.
Since Spring AOP is implemented using runtime proxies, this object will always be a proxied object.

• AOP proxy: an object created by the AOP framework in order to implement the aspect contracts
(advise method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic
proxy or a CGLIB proxy.

• Weaving: linking aspects with other application types or objects to create an advised object. This can be
done at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring AOP,
like other pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

• Before advice: Advice that executes before a join point, but which does not have the ability to prevent
execution flow proceeding to the join point (unless it throws an exception).

• After returning advice: Advice to be executed after a join point completes normally: for example, if a
method returns without throwing an exception.

• After throwing advice: Advice to be executed if a method exits by throwing an exception.

• After (finally) advice: Advice to be executed regardless of the means by which a join point exits
(normal or exceptional return).

• Around advice: Advice that surrounds a join point such as a method invocation. This is the most
powerful kind of advice. Around advice can perform custom behavior before and after the method

Spring Framework

3.1 Reference Documentation 199

invocation. It is also responsible for choosing whether to proceed to the join point or to shortcut the
advised method execution by returning its own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like AspectJ, provides a full range
of advice types, we recommend that you use the least powerful advice type that can implement the
required behavior. For example, if you need only to update a cache with the return value of a method, you
are better off implementing an after returning advice than an around advice, although an around advice
can accomplish the same thing. Using the most specific advice type provides a simpler programming
model with less potential for errors. For example, you do not need to invoke the proceed() method on
the JoinPoint used for around advice, and hence cannot fail to invoke it.

In Spring 2.0, all advice parameters are statically typed, so that you work with advice parameters of the
appropriate type (the type of the return value from a method execution for example) rather than Object
arrays.

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from older
technologies offering only interception. Pointcuts enable advice to be targeted independently of the
Object-Oriented hierarchy. For example, an around advice providing declarative transaction management
can be applied to a set of methods spanning multiple objects (such as all business operations in the service
layer).

Spring AOP capabilities and goals

Spring AOP is implemented in pure Java. There is no need for a special compilation process. Spring AOP
does not need to control the class loader hierarchy, and is thus suitable for use in a Servlet container or
application server.

Spring AOP currently supports only method execution join points (advising the execution of methods on
Spring beans). Field interception is not implemented, although support for field interception could be
added without breaking the core Spring AOP APIs. If you need to advise field access and update join
points, consider a language such as AspectJ.

Spring AOP's approach to AOP differs from that of most other AOP frameworks. The aim is not to
provide the most complete AOP implementation (although Spring AOP is quite capable); it is rather to
provide a close integration between AOP implementation and Spring IoC to help solve common problems
in enterprise applications.

Thus, for example, the Spring Framework's AOP functionality is normally used in conjunction with the
Spring IoC container. Aspects are configured using normal bean definition syntax (although this allows
powerful "autoproxying" capabilities): this is a crucial difference from other AOP implementations. There
are some things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained
objects (such as domain objects typically): AspectJ is the best choice in such cases. However, our
experience is that Spring AOP provides an excellent solution to most problems in enterprise Java
applications that are amenable to AOP.

Spring Framework

3.1 Reference Documentation 200

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We
believe that both proxy-based frameworks like Spring AOP and full-blown frameworks such as AspectJ
are valuable, and that they are complementary, rather than in competition. Spring 2.0 seamlessly
integrates Spring AOP and IoC with AspectJ, to enable all uses of AOP to be catered for within a
consistent Spring-based application architecture. This integration does not affect the Spring AOP API or
the AOP Alliance API: Spring AOP remains backward-compatible. See the following chapter for a
discussion of the Spring AOP APIs.

Note

One of the central tenets of the Spring Framework is that of non-invasiveness; this is the idea
that you should not be forced to introduce framework-specific classes and interfaces into your
business/domain model. However, in some places the Spring Framework does give you the
option to introduce Spring Framework-specific dependencies into your codebase: the
rationale in giving you such options is because in certain scenarios it might be just plain
easier to read or code some specific piece of functionality in such a way. The Spring
Framework (almost) always offers you the choice though: you have the freedom to make an
informed decision as to which option best suits your particular use case or scenario.

One such choice that is relevant to this chapter is that of which AOP framework (and which
AOP style) to choose. You have the choice of AspectJ and/or Spring AOP, and you also have
the choice of either the @AspectJ annotation-style approach or the Spring XML
configuration-style approach. The fact that this chapter chooses to introduce the
@AspectJ-style approach first should not be taken as an indication that the Spring team
favors the @AspectJ annotation-style approach over the Spring XML configuration-style.

See Section 8.4, “Choosing which AOP declaration style to use” for a more complete
discussion of the whys and wherefores of each style.

AOP Proxies

Spring AOP defaults to using standard J2SE dynamic proxies for AOP proxies. This enables any interface
(or set of interfaces) to be proxied.

Spring AOP can also use CGLIB proxies. This is necessary to proxy classes, rather than interfaces.
CGLIB is used by default if a business object does not implement an interface. As it is good practice to
program to interfaces rather than classes, business classes normally will implement one or more business
interfaces. It is possible to force the use of CGLIB, in those (hopefully rare) cases where you need to
advise a method that is not declared on an interface, or where you need to pass a proxied object to a
method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See the section called “Understanding
AOP proxies” for a thorough examination of exactly what this implementation detail actually means.

Spring Framework

3.1 Reference Documentation 201

8.2 @AspectJ support

@AspectJ refers to a style of declaring aspects as regular Java classes annotated with Java 5 annotations.
The @AspectJ style was introduced by the AspectJ project as part of the AspectJ 5 release. Spring 2.0
interprets the same annotations as AspectJ 5, using a library supplied by AspectJ for pointcut parsing and
matching. The AOP runtime is still pure Spring AOP though, and there is no dependency on the AspectJ
compiler or weaver.

Using the AspectJ compiler and weaver enables use of the full AspectJ language, and is discussed in
Section 8.8, “Using AspectJ with Spring applications”.

Enabling @AspectJ Support

To use @AspectJ aspects in a Spring configuration you need to enable Spring support for configuring
Spring AOP based on @AspectJ aspects, and autoproxying beans based on whether or not they are
advised by those aspects. By autoproxying we mean that if Spring determines that a bean is advised by
one or more aspects, it will automatically generate a proxy for that bean to intercept method invocations
and ensure that advice is executed as needed.

The @AspectJ support is enabled by including the following element inside your spring configuration:

<aop:aspectj-autoproxy/>

This assumes that you are using schema support as described in Appendix C, XML Schema-based
configuration. See the section called “The aop schema” for how to import the tags in the aop namespace.

If you are using the DTD, it is still possible to enable @AspectJ support by adding the following
definition to your application context:

<bean class="org.springframework.aop.aspectj.annotation.AnnotationAwareAspectJAutoProxyCreator" />

You will also need AspectJ's aspectjrt.jar library on the classpath of your application, version
1.6.8 or later. This library is available in the 'lib' directory of an AspectJ distribution or via the Maven
Central repository.

Declaring an aspect

With the @AspectJ support enabled, any bean defined in your application context with a class that is an
@AspectJ aspect (has the @Aspect annotation) will be automatically detected by Spring and used to
configure Spring AOP. The following example shows the minimal definition required for a
not-very-useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @Aspect
annotation:

Spring Framework

3.1 Reference Documentation 202

http://www.eclipse.org/aspectj

<bean id="myAspect" class="org.xyz.NotVeryUsefulAspect">
<!-- configure properties of aspect here as normal -->

</bean>

And the NotVeryUsefulAspect class definition, annotated with
org.aspectj.lang.annotation.Aspect annotation;

package org.xyz;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class NotVeryUsefulAspect {

}

Aspects (classes annotated with @Aspect) may have methods and fields just like any other class. They
may also contain pointcut, advice, and introduction (inter-type) declarations.

Autodetecting aspects through component scanning

You may register aspect classes as regular beans in your Spring XML configuration, or
autodetect them through classpath scanning - just like any other Spring-managed bean.
However, note that the @Aspect annotation is not sufficient for autodetection in the
classpath: For that purpose, you need to add a separate @Component annotation (or
alternatively a custom stereotype annotation that qualifies, as per the rules of Spring's
component scanner).

Advising aspects with other aspects?

In Spring AOP, it is not possible to have aspects themselves be the target of advice from
other aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it
from auto-proxying.

Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice executes.
Spring AOP only supports method execution join points for Spring beans, so you can think of a pointcut
as matching the execution of methods on Spring beans. A pointcut declaration has two parts: a signature
comprising a name and any parameters, and a pointcut expression that determines exactly which method
executions we are interested in. In the @AspectJ annotation-style of AOP, a pointcut signature is
provided by a regular method definition, and the pointcut expression is indicated using the @Pointcut
annotation (the method serving as the pointcut signature must have a void return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear.
The following example defines a pointcut named 'anyOldTransfer' that will match the execution of
any method named 'transfer':

Spring Framework

3.1 Reference Documentation 203

@Pointcut("execution(* transfer(..))")// the pointcut expression
private void anyOldTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @Pointcut annotation is a regular AspectJ 5
pointcut expression. For a full discussion of AspectJ's pointcut language, see the AspectJ Programming
Guide (and for Java 5 based extensions, the AspectJ 5 Developers Notebook) or one of the books on
AspectJ such as “Eclipse AspectJ” by Colyer et. al. or “AspectJ in Action” by Ramnivas Laddad.

Supported Pointcut Designators

Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions:

Other pointcut types

The full AspectJ pointcut language supports additional pointcut designators that are not supported
in Spring. These are: call, get, set, preinitialization,
staticinitialization, initialization, handler, adviceexecution,
withincode, cflow, cflowbelow, if, @this, and @withincode. Use of these
pointcut designators in pointcut expressions interpreted by Spring AOP will result in an
IllegalArgumentException being thrown.

The set of pointcut designators supported by Spring AOP may be extended in future releases to
support more of the AspectJ pointcut designators.

• execution - for matching method execution join points, this is the primary pointcut designator you will
use when working with Spring AOP

• within - limits matching to join points within certain types (simply the execution of a method declared
within a matching type when using Spring AOP)

• this - limits matching to join points (the execution of methods when using Spring AOP) where the bean
reference (Spring AOP proxy) is an instance of the given type

• target - limits matching to join points (the execution of methods when using Spring AOP) where the
target object (application object being proxied) is an instance of the given type

• args - limits matching to join points (the execution of methods when using Spring AOP) where the
arguments are instances of the given types

• @target - limits matching to join points (the execution of methods when using Spring AOP) where
the class of the executing object has an annotation of the given type

• @args - limits matching to join points (the execution of methods when using Spring AOP) where the
runtime type of the actual arguments passed have annotations of the given type(s)

Spring Framework

3.1 Reference Documentation 204

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

• @within - limits matching to join points within types that have the given annotation (the execution of
methods declared in types with the given annotation when using Spring AOP)

• @annotation - limits matching to join points where the subject of the join point (method being
executed in Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut
designators above gives a narrower definition than you will find in the AspectJ programming guide. In
addition, AspectJ itself has type-based semantics and at an execution join point both 'this' and
'target' refer to the same object - the object executing the method. Spring AOP is a proxy-based system
and differentiates between the proxy object itself (bound to 'this') and the target object behind the proxy
(bound to 'target').

Note

Due to the proxy-based nature of Spring's AOP framework, protected methods are by
definition not intercepted, neither for JDK proxies (where this isn't applicable) nor for CGLIB
proxies (where this is technically possible but not recommendable for AOP purposes). As a
consequence, any given pointcut will be matched against public methods only!

If your interception needs include protected/private methods or even constructors, consider
the use of Spring-driven native AspectJ weaving instead of Spring's proxy-based AOP
framework. This constitutes a different mode of AOP usage with different characteristics, so
be sure to make yourself familiar with weaving first before making a decision.

Spring AOP also supports an additional PCD named 'bean'. This PCD allows you to limit the matching
of join points to a particular named Spring bean, or to a set of named Spring beans (when using
wildcards). The 'bean' PCD has the following form:

bean(idOrNameOfBean)

The 'idOrNameOfBean' token can be the name of any Spring bean: limited wildcard support using the
'*' character is provided, so if you establish some naming conventions for your Spring beans you can
quite easily write a 'bean' PCD expression to pick them out. As is the case with other pointcut
designators, the 'bean' PCD can be &&'ed, ||'ed, and ! (negated) too.

Note

Please note that the 'bean' PCD is only supported in Spring AOP - and not in native AspectJ
weaving. It is a Spring-specific extension to the standard PCDs that AspectJ defines.

The 'bean' PCD operates at the instance level (building on the Spring bean name concept)
rather than at the type level only (which is what weaving-based AOP is limited to).
Instance-based pointcut designators are a special capability of Spring's proxy-based AOP
framework and its close integration with the Spring bean factory, where it is natural and

Spring Framework

3.1 Reference Documentation 205

straightforward to identify specific beans by name.

Combining pointcut expressions

Pointcut expressions can be combined using '&&', '||' and '!'. It is also possible to refer to pointcut
expressions by name. The following example shows three pointcut expressions:
anyPublicOperation (which matches if a method execution join point represents the execution of
any public method); inTrading (which matches if a method execution is in the trading module), and
tradingOperation (which matches if a method execution represents any public method in the
trading module).

@Pointcut("execution(public * *(..))")
private void anyPublicOperation() {}

@Pointcut("within(com.xyz.someapp.trading..*)")
private void inTrading() {}

@Pointcut("anyPublicOperation() && inTrading()")
private void tradingOperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named components as
shown above. When referring to pointcuts by name, normal Java visibility rules apply (you can see
private pointcuts in the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and so
on). Visibility does not affect pointcut matching.

Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application and
particular sets of operations from within several aspects. We recommend defining a "SystemArchitecture"
aspect that captures common pointcut expressions for this purpose. A typical such aspect would look as
follows:

package com.xyz.someapp;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class SystemArchitecture {

/**
* A join point is in the web layer if the method is defined
* in a type in the com.xyz.someapp.web package or any sub-package
* under that.
*/

@Pointcut("within(com.xyz.someapp.web..*)")
public void inWebLayer() {}

/**
* A join point is in the service layer if the method is defined
* in a type in the com.xyz.someapp.service package or any sub-package
* under that.
*/

@Pointcut("within(com.xyz.someapp.service..*)")

Spring Framework

3.1 Reference Documentation 206

public void inServiceLayer() {}

/**
* A join point is in the data access layer if the method is defined
* in a type in the com.xyz.someapp.dao package or any sub-package
* under that.
*/

@Pointcut("within(com.xyz.someapp.dao..*)")
public void inDataAccessLayer() {}

/**
* A business service is the execution of any method defined on a service
* interface. This definition assumes that interfaces are placed in the
* "service" package, and that implementation types are in sub-packages.
*
* If you group service interfaces by functional area (for example,
* in packages com.xyz.someapp.abc.service and com.xyz.def.service) then
* the pointcut expression "execution(* com.xyz.someapp..service.*.*(..))"
* could be used instead.
*
* Alternatively, you can write the expression using the 'bean'
* PCD, like so "bean(*Service)". (This assumes that you have
* named your Spring service beans in a consistent fashion.)
*/

@Pointcut("execution(* com.xyz.someapp.service.*.*(..))")
public void businessService() {}

/**
* A data access operation is the execution of any method defined on a
* dao interface. This definition assumes that interfaces are placed in the
* "dao" package, and that implementation types are in sub-packages.
*/

@Pointcut("execution(* com.xyz.someapp.dao.*.*(..))")
public void dataAccessOperation() {}

}

The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut expression.
For example, to make the service layer transactional, you could write:

<aop:config>
<aop:advisor

pointcut="com.xyz.someapp.SystemArchitecture.businessService()"
advice-ref="tx-advice"/>

</aop:config>

<tx:advice id="tx-advice">
<tx:attributes>

<tx:method name="*" propagation="REQUIRED"/>
</tx:attributes>

</tx:advice>

The <aop:config> and <aop:advisor> elements are discussed in Section 8.3, “Schema-based
AOP support”. The transaction elements are discussed in Chapter 11, Transaction Management.

Examples

Spring AOP users are likely to use the execution pointcut designator the most often. The format of an
execution expression is:

execution(modifiers-pattern? ret-type-pattern declaring-type-pattern? name-pattern(param-pattern)

Spring Framework

3.1 Reference Documentation 207

throws-pattern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and
parameters pattern are optional. The returning type pattern determines what the return type of the method
must be in order for a join point to be matched. Most frequently you will use * as the returning type
pattern, which matches any return type. A fully-qualified type name will match only when the method
returns the given type. The name pattern matches the method name. You can use the * wildcard as all or
part of a name pattern. The parameters pattern is slightly more complex: () matches a method that takes
no parameters, whereas (..) matches any number of parameters (zero or more). The pattern (*)
matches a method taking one parameter of any type, (*,String) matches a method taking two
parameters, the first can be of any type, the second must be a String. Consult the Language Semantics
section of the AspectJ Programming Guide for more information.

Some examples of common pointcut expressions are given below.

• the execution of any public method:

execution(public * *(..))

• the execution of any method with a name beginning with "set":

execution(* set*(..))

• the execution of any method defined by the AccountService interface:

execution(* com.xyz.service.AccountService.*(..))

• the execution of any method defined in the service package:

execution(* com.xyz.service.*.*(..))

• the execution of any method defined in the service package or a sub-package:

execution(* com.xyz.service..*.*(..))

• any join point (method execution only in Spring AOP) within the service package:

within(com.xyz.service.*)

• any join point (method execution only in Spring AOP) within the service package or a sub-package:

within(com.xyz.service..*)

• any join point (method execution only in Spring AOP) where the proxy implements the
AccountService interface:

this(com.xyz.service.AccountService)

Spring Framework

3.1 Reference Documentation 208

http://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

'this' is more commonly used in a binding form :- see the following section on advice for how to make
the proxy object available in the advice body.

• any join point (method execution only in Spring AOP) where the target object implements the
AccountService interface:

target(com.xyz.service.AccountService)

'target' is more commonly used in a binding form :- see the following section on advice for how to
make the target object available in the advice body.

• any join point (method execution only in Spring AOP) which takes a single parameter, and where the
argument passed at runtime is Serializable:

args(java.io.Serializable)

'args' is more commonly used in a binding form :- see the following section on advice for how to make
the method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(*
*(java.io.Serializable)): the args version matches if the argument passed at runtime is
Serializable, the execution version matches if the method signature declares a single parameter of type
Serializable.

• any join point (method execution only in Spring AOP) where the target object has an
@Transactional annotation:

@target(org.springframework.transaction.annotation.Transactional)

'@target' can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

• any join point (method execution only in Spring AOP) where the declared type of the target object has
an @Transactional annotation:

@within(org.springframework.transaction.annotation.Transactional)

'@within' can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

• any join point (method execution only in Spring AOP) where the executing method has an
@Transactional annotation:

@annotation(org.springframework.transaction.annotation.Transactional)

'@annotation' can also be used in a binding form :- see the following section on advice for how to
make the annotation object available in the advice body.

Spring Framework

3.1 Reference Documentation 209

• any join point (method execution only in Spring AOP) which takes a single parameter, and where the
runtime type of the argument passed has the @Classified annotation:

@args(com.xyz.security.Classified)

'@args' can also be used in a binding form :- see the following section on advice for how to make the
annotation object(s) available in the advice body.

• any join point (method execution only in Spring AOP) on a Spring bean named 'tradeService':

bean(tradeService)

• any join point (method execution only in Spring AOP) on Spring beans having names that match the
wildcard expression '*Service':

bean(*Service)

Writing good pointcuts

During compilation, AspectJ processes pointcuts in order to try and optimize matching performance.
Examining code and determining if each join point matches (statically or dynamically) a given pointcut is
a costly process. (A dynamic match means the match cannot be fully determined from static analysis and
a test will be placed in the code to determine if there is an actual match when the code is running). On
first encountering a pointcut declaration, AspectJ will rewrite it into an optimal form for the matching
process. What does this mean? Basically pointcuts are rewritten in DNF (Disjunctive Normal Form) and
the components of the pointcut are sorted such that those components that are cheaper to evaluate are
checked first. This means you do not have to worry about understanding the performance of various
pointcut designators and may supply them in any order in a pointcut declaration.

However, AspectJ can only work with what it is told, and for optimal performance of matching you
should think about what they are trying to achieve and narrow the search space for matches as much as
possible in the definition. The existing designators naturally fall into one of three groups: kinded, scoping
and context:

• Kinded designators are those which select a particular kind of join point. For example: execution, get,
set, call, handler

• Scoping designators are those which select a group of join points of interest (of probably many kinds).
For example: within, withincode

• Contextual designators are those that match (and optionally bind) based on context. For example: this,
target, @annotation

A well written pointcut should try and include at least the first two types (kinded and scoping), whilst the
contextual designators may be included if wishing to match based on join point context, or bind that
context for use in the advice. Supplying either just a kinded designator or just a contextual designator will

Spring Framework

3.1 Reference Documentation 210

work but could affect weaving performance (time and memory used) due to all the extra processing and
analysis. Scoping designators are very fast to match and their usage means AspectJ can very quickly
dismiss groups of join points that should not be further processed - that is why a good pointcut should
always include one if possible.

Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method executions
matched by the pointcut. The pointcut expression may be either a simple reference to a named pointcut, or
a pointcut expression declared in place.

Before advice

Before advice is declared in an aspect using the @Before annotation:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class BeforeExample {

@Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
public void doAccessCheck() {

// ...
}

}

If using an in-place pointcut expression we could rewrite the above example as:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class BeforeExample {

@Before("execution(* com.xyz.myapp.dao.*.*(..))")
public void doAccessCheck() {

// ...
}

}

After returning advice

After returning advice runs when a matched method execution returns normally. It is declared using the
@AfterReturning annotation:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterReturning;

@Aspect
public class AfterReturningExample {

Spring Framework

3.1 Reference Documentation 211

@AfterReturning("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
public void doAccessCheck() {

// ...
}

}

Note: it is of course possible to have multiple advice declarations, and other members as well, all inside
the same aspect. We're just showing a single advice declaration in these examples to focus on the issue
under discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. You can use the
form of @AfterReturning that binds the return value for this:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterReturning;

@Aspect
public class AfterReturningExample {

@AfterReturning(
pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()",
returning="retVal")

public void doAccessCheck(Object retVal) {
// ...

}

}

The name used in the returning attribute must correspond to the name of a parameter in the advice
method. When a method execution returns, the return value will be passed to the advice method as the
corresponding argument value. A returning clause also restricts matching to only those method
executions that return a value of the specified type (Object in this case, which will match any return
value).

Please note that it is not possible to return a totally different reference when using after-returning advice.

After throwing advice

After throwing advice runs when a matched method execution exits by throwing an exception. It is
declared using the @AfterThrowing annotation:

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterThrowing;

@Aspect
public class AfterThrowingExample {

@AfterThrowing("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
public void doRecoveryActions() {

// ...
}

}

Often you want the advice to run only when exceptions of a given type are thrown, and you also often
need access to the thrown exception in the advice body. Use the throwing attribute to both restrict

Spring Framework

3.1 Reference Documentation 212

matching (if desired, use Throwable as the exception type otherwise) and bind the thrown exception to
an advice parameter.

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.AfterThrowing;

@Aspect
public class AfterThrowingExample {

@AfterThrowing(
pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()",
throwing="ex")

public void doRecoveryActions(DataAccessException ex) {
// ...

}

}

The name used in the throwing attribute must correspond to the name of a parameter in the advice
method. When a method execution exits by throwing an exception, the exception will be passed to the
advice method as the corresponding argument value. A throwing clause also restricts matching to only
those method executions that throw an exception of the specified type (DataAccessException in
this case).

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the @After
annotation. After advice must be prepared to handle both normal and exception return conditions. It is
typically used for releasing resources, etc.

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.After;

@Aspect
public class AfterFinallyExample {

@After("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
public void doReleaseLock() {

// ...
}

}

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It
has the opportunity to do work both before and after the method executes, and to determine when, how,
and even if, the method actually gets to execute at all. Around advice is often used if you need to share
state before and after a method execution in a thread-safe manner (starting and stopping a timer for
example). Always use the least powerful form of advice that meets your requirements (i.e. don't use
around advice if simple before advice would do).

Around advice is declared using the @Around annotation. The first parameter of the advice method must
be of type ProceedingJoinPoint. Within the body of the advice, calling proceed() on the

Spring Framework

3.1 Reference Documentation 213

ProceedingJoinPoint causes the underlying method to execute. The proceed method may also
be called passing in an Object[] - the values in the array will be used as the arguments to the method
execution when it proceeds.
The behavior of proceed when called with an Object[] is a little different than the behavior of proceed
for around advice compiled by the AspectJ compiler. For around advice written using the traditional
AspectJ language, the number of arguments passed to proceed must match the number of arguments
passed to the around advice (not the number of arguments taken by the underlying join point), and the
value passed to proceed in a given argument position supplants the original value at the join point for the
entity the value was bound to (Don't worry if this doesn't make sense right now!). The approach taken by
Spring is simpler and a better match to its proxy-based, execution only semantics. You only need to be
aware of this difference if you are compiling @AspectJ aspects written for Spring and using proceed with
arguments with the AspectJ compiler and weaver. There is a way to write such aspects that is 100%
compatible across both Spring AOP and AspectJ, and this is discussed in the following section on advice
parameters.

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.ProceedingJoinPoint;

@Aspect
public class AroundExample {

@Around("com.xyz.myapp.SystemArchitecture.businessService()")
public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable {

// start stopwatch
Object retVal = pjp.proceed();
// stop stopwatch
return retVal;

}

}

The value returned by the around advice will be the return value seen by the caller of the method. A
simple caching aspect for example could return a value from a cache if it has one, and invoke proceed() if
it does not. Note that proceed may be invoked once, many times, or not at all within the body of the
around advice, all of these are quite legal.

Advice parameters

Spring 2.0 offers fully typed advice - meaning that you declare the parameters you need in the advice
signature (as we saw for the returning and throwing examples above) rather than work with Object[]
arrays all the time. We'll see how to make argument and other contextual values available to the advice
body in a moment. First let's take a look at how to write generic advice that can find out about the method
the advice is currently advising.

Access to the current JoinPoint

Any advice method may declare as its first parameter, a parameter of type
org.aspectj.lang.JoinPoint (please note that around advice is required to declare a first
parameter of type ProceedingJoinPoint, which is a subclass of JoinPoint. The JoinPoint
interface provides a number of useful methods such as getArgs() (returns the method arguments),

Spring Framework

3.1 Reference Documentation 214

getThis() (returns the proxy object), getTarget() (returns the target object), getSignature()
(returns a description of the method that is being advised) and toString() (prints a useful description
of the method being advised). Please do consult the Javadocs for full details.

Passing parameters to advice

We've already seen how to bind the returned value or exception value (using after returning and after
throwing advice). To make argument values available to the advice body, you can use the binding form of
args. If a parameter name is used in place of a type name in an args expression, then the value of the
corresponding argument will be passed as the parameter value when the advice is invoked. An example
should make this clearer. Suppose you want to advise the execution of dao operations that take an
Account object as the first parameter, and you need access to the account in the advice body. You could
write the following:

@Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation() &&" +
"args(account,..)")

public void validateAccount(Account account) {
// ...

}

The args(account,..) part of the pointcut expression serves two purposes: firstly, it restricts
matching to only those method executions where the method takes at least one parameter, and the
argument passed to that parameter is an instance of Account; secondly, it makes the actual Account
object available to the advice via the account parameter.

Another way of writing this is to declare a pointcut that "provides" the Account object value when it
matches a join point, and then just refer to the named pointcut from the advice. This would look as
follows:

@Pointcut("com.xyz.myapp.SystemArchitecture.dataAccessOperation() &&" +
"args(account,..)")

private void accountDataAccessOperation(Account account) {}

@Before("accountDataAccessOperation(account)")
public void validateAccount(Account account) {
// ...

}

The interested reader is once more referred to the AspectJ programming guide for more details.

The proxy object (this), target object (target), and annotations (@within, @target,
@annotation, @args) can all be bound in a similar fashion. The following example shows how you
could match the execution of methods annotated with an @Auditable annotation, and extract the audit
code.

First the definition of the @Auditable annotation:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface Auditable {

AuditCode value();
}

Spring Framework

3.1 Reference Documentation 215

And then the advice that matches the execution of @Auditable methods:

@Before("com.xyz.lib.Pointcuts.anyPublicMethod() && " +
"@annotation(auditable)")

public void audit(Auditable auditable) {
AuditCode code = auditable.value();
// ...

}

Advice parameters and generics

Spring AOP can handle generics used in class declarations and method parameters. Suppose you have a
generic type like this:

public interface Sample<T> {
void sampleGenericMethod(T param);
void sampleGenericCollectionMethod(Collection>T> param);

}

You can restrict interception of method types to certain parameter types by simply typing the advice
parameter to the parameter type you want to intercept the method for:

@Before("execution(* ..Sample+.sampleGenericMethod(*)) && args(param)")
public void beforeSampleMethod(MyType param) {
// Advice implementation

}

That this works is pretty obvious as we already discussed above. However, it's worth pointing out that this
won't work for generic collections. So you cannot define a pointcut like this:

@Before("execution(* ..Sample+.sampleGenericCollectionMethod(*)) && args(param)")
public void beforeSampleMethod(Collection<MyType> param) {
// Advice implementation

}

To make this work we would have to inspect every element of the collection, which is not reasonable as
we also cannot decide how to treat null values in general. To achieve something similar to this you have
to type the parameter to Collection<?> and manually check the type of the elements.

Determining argument names

The parameter binding in advice invocations relies on matching names used in pointcut expressions to
declared parameter names in (advice and pointcut) method signatures. Parameter names are not available
through Java reflection, so Spring AOP uses the following strategies to determine parameter names:

1. If the parameter names have been specified by the user explicitly, then the specified parameter names
are used: both the advice and the pointcut annotations have an optional "argNames" attribute which
can be used to specify the argument names of the annotated method - these argument names are
available at runtime. For example:

@Before(
value="com.xyz.lib.Pointcuts.anyPublicMethod() && target(bean) && @annotation(auditable)",

Spring Framework

3.1 Reference Documentation 216

argNames="bean,auditable")
public void audit(Object bean, Auditable auditable) {
AuditCode code = auditable.value();
// ... use code and bean

}

If the first parameter is of the JoinPoint, ProceedingJoinPoint, or
JoinPoint.StaticPart type, you may leave out the name of the parameter from the value of the
"argNames" attribute. For example, if you modify the preceding advice to receive the join point object,
the "argNames" attribute need not include it:

@Before(
value="com.xyz.lib.Pointcuts.anyPublicMethod() && target(bean) && @annotation(auditable)",
argNames="bean,auditable")

public void audit(JoinPoint jp, Object bean, Auditable auditable) {
AuditCode code = auditable.value();
// ... use code, bean, and jp

}

The special treatment given to the first parameter of the JoinPoint, ProceedingJoinPoint,
and JoinPoint.StaticPart types is particularly convenient for advice that do not collect any
other join point context. In such situations, you may simply omit the "argNames" attribute. For
example, the following advice need not declare the "argNames" attribute:

@Before(
"com.xyz.lib.Pointcuts.anyPublicMethod()")

public void audit(JoinPoint jp) {
// ... use jp

}

2. Using the 'argNames' attribute is a little clumsy, so if the 'argNames' attribute has not been
specified, then Spring AOP will look at the debug information for the class and try to determine the
parameter names from the local variable table. This information will be present as long as the classes
have been compiled with debug information ('-g:vars' at a minimum). The consequences of
compiling with this flag on are: (1) your code will be slightly easier to understand (reverse engineer),
(2) the class file sizes will be very slightly bigger (typically inconsequential), (3) the optimization to
remove unused local variables will not be applied by your compiler. In other words, you should
encounter no difficulties building with this flag on.
If an @AspectJ aspect has been compiled by the AspectJ compiler (ajc) even without the debug
information then there is no need to add the argNames attribute as the compiler will retain the
needed information.

3. If the code has been compiled without the necessary debug information, then Spring AOP will attempt
to deduce the pairing of binding variables to parameters (for example, if only one variable is bound in
the pointcut expression, and the advice method only takes one parameter, the pairing is obvious!). If
the binding of variables is ambiguous given the available information, then an
AmbiguousBindingException will be thrown.

4. If all of the above strategies fail then an IllegalArgumentException will be thrown.

Spring Framework

3.1 Reference Documentation 217

Proceeding with arguments

We remarked earlier that we would describe how to write a proceed call with arguments that works
consistently across Spring AOP and AspectJ. The solution is simply to ensure that the advice signature
binds each of the method parameters in order. For example:

@Around("execution(List<Account> find*(..)) &&" +
"com.xyz.myapp.SystemArchitecture.inDataAccessLayer() && " +
"args(accountHolderNamePattern)")

public Object preProcessQueryPattern(ProceedingJoinPoint pjp, String accountHolderNamePattern)
throws Throwable {
String newPattern = preProcess(accountHolderNamePattern);
return pjp.proceed(new Object[] {newPattern});

}

In many cases you will be doing this binding anyway (as in the example above).

Advice ordering

What happens when multiple pieces of advice all want to run at the same join point? Spring AOP follows
the same precedence rules as AspectJ to determine the order of advice execution. The highest precedence
advice runs first "on the way in" (so given two pieces of before advice, the one with highest precedence
runs first). "On the way out" from a join point, the highest precedence advice runs last (so given two
pieces of after advice, the one with the highest precedence will run second).

When two pieces of advice defined in different aspects both need to run at the same join point, unless you
specify otherwise the order of execution is undefined. You can control the order of execution by
specifying precedence. This is done in the normal Spring way by either implementing the
org.springframework.core.Ordered interface in the aspect class or annotating it with the
Order annotation. Given two aspects, the aspect returning the lower value from
Ordered.getValue() (or the annotation value) has the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same join point, the
ordering is undefined (since there is no way to retrieve the declaration order via reflection for
javac-compiled classes). Consider collapsing such advice methods into one advice method per join point
in each aspect class, or refactor the pieces of advice into separate aspect classes - which can be ordered at
the aspect level.

Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf of those
objects.

An introduction is made using the @DeclareParents annotation. This annotation is used to declare
that matching types have a new parent (hence the name). For example, given an interface
UsageTracked, and an implementation of that interface DefaultUsageTracked, the following

Spring Framework

3.1 Reference Documentation 218

aspect declares that all implementors of service interfaces also implement the UsageTracked interface.
(In order to expose statistics via JMX for example.)

@Aspect
public class UsageTracking {

@DeclareParents(value="com.xzy.myapp.service.*+",
defaultImpl=DefaultUsageTracked.class)

public static UsageTracked mixin;

@Before("com.xyz.myapp.SystemArchitecture.businessService() &&" +
"this(usageTracked)")

public void recordUsage(UsageTracked usageTracked) {
usageTracked.incrementUseCount();

}

}

The interface to be implemented is determined by the type of the annotated field. The value attribute of
the @DeclareParents annotation is an AspectJ type pattern :- any bean of a matching type will
implement the UsageTracked interface. Note that in the before advice of the above example, service
beans can be directly used as implementations of the UsageTracked interface. If accessing a bean
programmatically you would write the following:

UsageTracked usageTracked = (UsageTracked) context.getBean("myService");

Aspect instantiation models
(This is an advanced topic, so if you are just starting out with AOP you can safely skip it until later.)

By default there will be a single instance of each aspect within the application context. AspectJ calls this
the singleton instantiation model. It is possible to define aspects with alternate lifecycles :- Spring
supports AspectJ's perthis and pertarget instantiation models (percflow, percflowbelow,
and pertypewithin are not currently supported).

A "perthis" aspect is declared by specifying a perthis clause in the @Aspect annotation. Let's look at
an example, and then we'll explain how it works.

@Aspect("perthis(com.xyz.myapp.SystemArchitecture.businessService())")
public class MyAspect {

private int someState;

@Before(com.xyz.myapp.SystemArchitecture.businessService())
public void recordServiceUsage() {

// ...
}

}

The effect of the 'perthis' clause is that one aspect instance will be created for each unique service
object executing a business service (each unique object bound to 'this' at join points matched by the
pointcut expression). The aspect instance is created the first time that a method is invoked on the service
object. The aspect goes out of scope when the service object goes out of scope. Before the aspect instance

Spring Framework

3.1 Reference Documentation 219

is created, none of the advice within it executes. As soon as the aspect instance has been created, the
advice declared within it will execute at matched join points, but only when the service object is the one
this aspect is associated with. See the AspectJ programming guide for more information on per-clauses.

The 'pertarget' instantiation model works in exactly the same way as perthis, but creates one aspect
instance for each unique target object at matched join points.

Example

Now that you have seen how all the constituent parts work, let's put them together to do something useful!

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock
loser). If the operation is retried, it is quite likely to succeed next time round. For business services where
it is appropriate to retry in such conditions (idempotent operations that don't need to go back to the user
for conflict resolution), we'd like to transparently retry the operation to avoid the client seeing a
PessimisticLockingFailureException. This is a requirement that clearly cuts across multiple
services in the service layer, and hence is ideal for implementing via an aspect.

Because we want to retry the operation, we will need to use around advice so that we can call proceed
multiple times. Here's how the basic aspect implementation looks:

@Aspect
public class ConcurrentOperationExecutor implements Ordered {

private static final int DEFAULT_MAX_RETRIES = 2;

private int maxRetries = DEFAULT_MAX_RETRIES;
private int order = 1;

public void setMaxRetries(int maxRetries) {
this.maxRetries = maxRetries;

}

public int getOrder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

@Around("com.xyz.myapp.SystemArchitecture.businessService()")
public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {

int numAttempts = 0;
PessimisticLockingFailureException lockFailureException;
do {

numAttempts++;
try {

return pjp.proceed();
}
catch(PessimisticLockingFailureException ex) {

lockFailureException = ex;
}

}
while(numAttempts <= this.maxRetries);
throw lockFailureException;

}

Spring Framework

3.1 Reference Documentation 220

}

Note that the aspect implements the Ordered interface so we can set the precedence of the aspect higher
than the transaction advice (we want a fresh transaction each time we retry). The maxRetries and
order properties will both be configured by Spring. The main action happens in the
doConcurrentOperation around advice. Notice that for the moment we're applying the retry logic
to all businessService()s. We try to proceed, and if we fail with an
PessimisticLockingFailureException we simply try again unless we have exhausted all of
our retry attempts.

The corresponding Spring configuration is:

<aop:aspectj-autoproxy/>

<bean id="concurrentOperationExecutor"
class="com.xyz.myapp.service.impl.ConcurrentOperationExecutor">

<property name="maxRetries" value="3"/>
<property name="order" value="100"/>

</bean>

To refine the aspect so that it only retries idempotent operations, we might define an Idempotent
annotation:

@Retention(RetentionPolicy.RUNTIME)
public @interface Idempotent {
// marker annotation

}

and use the annotation to annotate the implementation of service operations. The change to the aspect to
only retry idempotent operations simply involves refining the pointcut expression so that only
@Idempotent operations match:

@Around("com.xyz.myapp.SystemArchitecture.businessService() && " +
"@annotation(com.xyz.myapp.service.Idempotent)")

public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {
...

}

8.3 Schema-based AOP support

If you are unable to use Java 5, or simply prefer an XML-based format, then Spring 2.0 also offers
support for defining aspects using the new "aop" namespace tags. The exact same pointcut expressions
and advice kinds are supported as when using the @AspectJ style, hence in this section we will focus on
the new syntax and refer the reader to the discussion in the previous section (Section 8.2, “@AspectJ
support”) for an understanding of writing pointcut expressions and the binding of advice parameters.

To use the aop namespace tags described in this section, you need to import the spring-aop schema as
described in Appendix C, XML Schema-based configuration. See the section called “The aop schema” for
how to import the tags in the aop namespace.

Spring Framework

3.1 Reference Documentation 221

Within your Spring configurations, all aspect and advisor elements must be placed within an
<aop:config> element (you can have more than one <aop:config> element in an application
context configuration). An <aop:config> element can contain pointcut, advisor, and aspect elements
(note these must be declared in that order).

Warning

The <aop:config> style of configuration makes heavy use of Spring's auto-proxying
mechanism. This can cause issues (such as advice not being woven) if you are already using
explicit auto-proxying via the use of BeanNameAutoProxyCreator or suchlike. The
recommended usage pattern is to use either just the <aop:config> style, or just the
AutoProxyCreator style.

Declaring an aspect

Using the schema support, an aspect is simply a regular Java object defined as a bean in your Spring
application context. The state and behavior is captured in the fields and methods of the object, and the
pointcut and advice information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the ref
attribute:

<aop:config>
<aop:aspect id="myAspect" ref="aBean">

...
</aop:aspect>

</aop:config>

<bean id="aBean" class="...">
...

</bean>

The bean backing the aspect ("aBean" in this case) can of course be configured and dependency injected
just like any other Spring bean.

Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition to be
shared across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could be defined as
follows:

<aop:config>

<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.*.*(..))"/>

</aop:config>

Spring Framework

3.1 Reference Documentation 222

Note that the pointcut expression itself is using the same AspectJ pointcut expression language as
described in Section 8.2, “@AspectJ support”. If you are using the schema based declaration style with
Java 5, you can refer to named pointcuts defined in types (@Aspects) within the pointcut expression, but
this feature is not available on JDK 1.4 and below (it relies on the Java 5 specific AspectJ reflection
APIs). On JDK 1.5 therefore, another way of defining the above pointcut would be:

<aop:config>

<aop:pointcut id="businessService"
expression="com.xyz.myapp.SystemArchitecture.businessService()"/>

</aop:config>

Assuming you have a SystemArchitecture aspect as described in the section called “Sharing
common pointcut definitions”.

Declaring a pointcut inside an aspect is very similar to declaring a top-level pointcut:

<aop:config>

<aop:aspect id="myAspect" ref="aBean">

<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.*.*(..))"/>

...

</aop:aspect>

</aop:config>

Much the same way in an @AspectJ aspect, pointcuts declared using the schema based definition style
may collect join point context. For example, the following pointcut collects the 'this' object as the join
point context and passes it to advice:

<aop:config>

<aop:aspect id="myAspect" ref="aBean">

<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.*.*(..)) && this(service)"/>

<aop:before pointcut-ref="businessService" method="monitor"/>
...

</aop:aspect>

</aop:config>

The advice must be declared to receive the collected join point context by including parameters of the
matching names:

public void monitor(Object service) {
...

}

When combining pointcut sub-expressions, '&&' is awkward within an XML document, and so the

Spring Framework

3.1 Reference Documentation 223

keywords 'and', 'or' and 'not' can be used in place of '&&', '||' and '!' respectively. For example, the
previous pointcut may be better written as:

<aop:config>

<aop:aspect id="myAspect" ref="aBean">

<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.*.*(..)) and this(service)"/>

<aop:before pointcut-ref="businessService" method="monitor"/>
...

</aop:aspect>

</aop:config>

Note that pointcuts defined in this way are referred to by their XML id and cannot be used as named
pointcuts to form composite pointcuts. The named pointcut support in the schema based definition style is
thus more limited than that offered by the @AspectJ style.

Declaring advice

The same five advice kinds are supported as for the @AspectJ style, and they have exactly the same
semantics.

Before advice

Before advice runs before a matched method execution. It is declared inside an <aop:aspect> using
the <aop:before> element.

<aop:aspect id="beforeExample" ref="aBean">

<aop:before
pointcut-ref="dataAccessOperation"
method="doAccessCheck"/>

...

</aop:aspect>

Here dataAccessOperation is the id of a pointcut defined at the top (<aop:config>) level. To
define the pointcut inline instead, replace the pointcut-ref attribute with a pointcut attribute:

<aop:aspect id="beforeExample" ref="aBean">

<aop:before
pointcut="execution(* com.xyz.myapp.dao.*.*(..))"
method="doAccessCheck"/>

...

</aop:aspect>

As we noted in the discussion of the @AspectJ style, using named pointcuts can significantly improve the

Spring Framework

3.1 Reference Documentation 224

readability of your code.

The method attribute identifies a method (doAccessCheck) that provides the body of the advice. This
method must be defined for the bean referenced by the aspect element containing the advice. Before a
data access operation is executed (a method execution join point matched by the pointcut expression), the
"doAccessCheck" method on the aspect bean will be invoked.

After returning advice

After returning advice runs when a matched method execution completes normally. It is declared inside
an <aop:aspect> in the same way as before advice. For example:

<aop:aspect id="afterReturningExample" ref="aBean">

<aop:after-returning
pointcut-ref="dataAccessOperation"
method="doAccessCheck"/>

...

</aop:aspect>

Just as in the @AspectJ style, it is possible to get hold of the return value within the advice body. Use the
returning attribute to specify the name of the parameter to which the return value should be passed:

<aop:aspect id="afterReturningExample" ref="aBean">

<aop:after-returning
pointcut-ref="dataAccessOperation"
returning="retVal"
method="doAccessCheck"/>

...

</aop:aspect>

The doAccessCheck method must declare a parameter named retVal. The type of this parameter
constrains matching in the same way as described for @AfterReturning. For example, the method
signature may be declared as:

public void doAccessCheck(Object retVal) {...

After throwing advice

After throwing advice executes when a matched method execution exits by throwing an exception. It is
declared inside an <aop:aspect> using the after-throwing element:

<aop:aspect id="afterThrowingExample" ref="aBean">

<aop:after-throwing
pointcut-ref="dataAccessOperation"
method="doRecoveryActions"/>

...

Spring Framework

3.1 Reference Documentation 225

</aop:aspect>

Just as in the @AspectJ style, it is possible to get hold of the thrown exception within the advice body.
Use the throwing attribute to specify the name of the parameter to which the exception should be passed:

<aop:aspect id="afterThrowingExample" ref="aBean">

<aop:after-throwing
pointcut-ref="dataAccessOperation"
throwing="dataAccessEx"
method="doRecoveryActions"/>

...

</aop:aspect>

The doRecoveryActions method must declare a parameter named dataAccessEx. The type of this
parameter constrains matching in the same way as described for @AfterThrowing. For example, the
method signature may be declared as:

public void doRecoveryActions(DataAccessException dataAccessEx) {...

After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the after
element:

<aop:aspect id="afterFinallyExample" ref="aBean">

<aop:after
pointcut-ref="dataAccessOperation"
method="doReleaseLock"/>

...

</aop:aspect>

Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It
has the opportunity to do work both before and after the method executes, and to determine when, how,
and even if, the method actually gets to execute at all. Around advice is often used if you need to share
state before and after a method execution in a thread-safe manner (starting and stopping a timer for
example). Always use the least powerful form of advice that meets your requirements; don't use around
advice if simple before advice would do.

Around advice is declared using the aop:around element. The first parameter of the advice method
must be of type ProceedingJoinPoint. Within the body of the advice, calling proceed() on the
ProceedingJoinPoint causes the underlying method to execute. The proceed method may also
be calling passing in an Object[] - the values in the array will be used as the arguments to the method
execution when it proceeds. See the section called “Around advice” for notes on calling proceed with an

Spring Framework

3.1 Reference Documentation 226

Object[].

<aop:aspect id="aroundExample" ref="aBean">

<aop:around
pointcut-ref="businessService"
method="doBasicProfiling"/>

...

</aop:aspect>

The implementation of the doBasicProfiling advice would be exactly the same as in the @AspectJ
example (minus the annotation of course):

public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable {
// start stopwatch
Object retVal = pjp.proceed();
// stop stopwatch
return retVal;

}

Advice parameters

The schema based declaration style supports fully typed advice in the same way as described for the
@AspectJ support - by matching pointcut parameters by name against advice method parameters. See the
section called “Advice parameters” for details. If you wish to explicitly specify argument names for the
advice methods (not relying on the detection strategies previously described) then this is done using the
arg-names attribute of the advice element, which is treated in the same manner to the "argNames"
attribute in an advice annotation as described in the section called “Determining argument names”. For
example:

<aop:before
pointcut="com.xyz.lib.Pointcuts.anyPublicMethod() and @annotation(auditable)"
method="audit"
arg-names="auditable"/>

The arg-names attribute accepts a comma-delimited list of parameter names.

Find below a slightly more involved example of the XSD-based approach that illustrates some around
advice used in conjunction with a number of strongly typed parameters.

package x.y.service;

public interface FooService {

Foo getFoo(String fooName, int age);
}

public class DefaultFooService implements FooService {

public Foo getFoo(String name, int age) {
return new Foo(name, age);

}
}

Spring Framework

3.1 Reference Documentation 227

Next up is the aspect. Notice the fact that the profile(..) method accepts a number of strongly-typed
parameters, the first of which happens to be the join point used to proceed with the method call: the
presence of this parameter is an indication that the profile(..) is to be used as around advice:

package x.y;

import org.aspectj.lang.ProceedingJoinPoint;
import org.springframework.util.StopWatch;

public class SimpleProfiler {

public Object profile(ProceedingJoinPoint call, String name, int age) throws Throwable {
StopWatch clock = new StopWatch(

"Profiling for '" + name + "' and '" + age + "'");
try {

clock.start(call.toShortString());
return call.proceed();

} finally {
clock.stop();
System.out.println(clock.prettyPrint());

}
}

}

Finally, here is the XML configuration that is required to effect the execution of the above advice for a
particular join point:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<!-- this is the object that will be proxied by Spring's AOP infrastructure -->
<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- this is the actual advice itself -->
<bean id="profiler" class="x.y.SimpleProfiler"/>

<aop:config>
<aop:aspect ref="profiler">

<aop:pointcut id="theExecutionOfSomeFooServiceMethod"
expression="execution(* x.y.service.FooService.getFoo(String,int))
and args(name, age)"/>

<aop:around pointcut-ref="theExecutionOfSomeFooServiceMethod"
method="profile"/>

</aop:aspect>
</aop:config>

</beans>

If we had the following driver script, we would get output something like this on standard output:

import org.springframework.beans.factory.BeanFactory;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import x.y.service.FooService;

public final class Boot {

Spring Framework

3.1 Reference Documentation 228

public static void main(final String[] args) throws Exception {
BeanFactory ctx = new ClassPathXmlApplicationContext("x/y/plain.xml");
FooService foo = (FooService) ctx.getBean("fooService");
foo.getFoo("Pengo", 12);

}
}

StopWatch 'Profiling for 'Pengo' and '12'': running time (millis) = 0

ms % Task name

00000 ? execution(getFoo)

Advice ordering

When multiple advice needs to execute at the same join point (executing method) the ordering rules are as
described in the section called “Advice ordering”. The precedence between aspects is determined by
either adding the Order annotation to the bean backing the aspect or by having the bean implement the
Ordered interface.

Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised
objects implement a given interface, and to provide an implementation of that interface on behalf of those
objects.

An introduction is made using the aop:declare-parents element inside an aop:aspect This
element is used to declare that matching types have a new parent (hence the name). For example, given an
interface UsageTracked, and an implementation of that interface DefaultUsageTracked, the
following aspect declares that all implementors of service interfaces also implement the UsageTracked
interface. (In order to expose statistics via JMX for example.)

<aop:aspect id="usageTrackerAspect" ref="usageTracking">

<aop:declare-parents
types-matching="com.xzy.myapp.service.*+"
implement-interface="com.xyz.myapp.service.tracking.UsageTracked"
default-impl="com.xyz.myapp.service.tracking.DefaultUsageTracked"/>

<aop:before
pointcut="com.xyz.myapp.SystemArchitecture.businessService()

and this(usageTracked)"
method="recordUsage"/>

</aop:aspect>

The class backing the usageTracking bean would contain the method:

public void recordUsage(UsageTracked usageTracked) {
usageTracked.incrementUseCount();

}

Spring Framework

3.1 Reference Documentation 229

The interface to be implemented is determined by implement-interface attribute. The value of the
types-matching attribute is an AspectJ type pattern :- any bean of a matching type will implement
the UsageTracked interface. Note that in the before advice of the above example, service beans can be
directly used as implementations of the UsageTracked interface. If accessing a bean programmatically
you would write the following:

UsageTracked usageTracked = (UsageTracked) context.getBean("myService");

Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton model. Other
instantiation models may be supported in future releases.

Advisors

The concept of "advisors" is brought forward from the AOP support defined in Spring 1.2 and does not
have a direct equivalent in AspectJ. An advisor is like a small self-contained aspect that has a single piece
of advice. The advice itself is represented by a bean, and must implement one of the advice interfaces
described in the section called “Advice types in Spring”. Advisors can take advantage of AspectJ pointcut
expressions though.

Spring 2.0 supports the advisor concept with the <aop:advisor> element. You will most commonly
see it used in conjunction with transactional advice, which also has its own namespace support in Spring
2.0. Here's how it looks:

<aop:config>

<aop:pointcut id="businessService"
expression="execution(* com.xyz.myapp.service.*.*(..))"/>

<aop:advisor
pointcut-ref="businessService"
advice-ref="tx-advice"/>

</aop:config>

<tx:advice id="tx-advice">
<tx:attributes>

<tx:method name="*" propagation="REQUIRED"/>
</tx:attributes>

</tx:advice>

As well as the pointcut-ref attribute used in the above example, you can also use the pointcut
attribute to define a pointcut expression inline.

To define the precedence of an advisor so that the advice can participate in ordering, use the order
attribute to define the Ordered value of the advisor.

Example

Spring Framework

3.1 Reference Documentation 230

Let's see how the concurrent locking failure retry example from the section called “Example” looks when
rewritten using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock
loser). If the operation is retried, it is quite likely it will succeed next time round. For business services
where it is appropriate to retry in such conditions (idempotent operations that don't need to go back to the
user for conflict resolution), we'd like to transparently retry the operation to avoid the client seeing a
PessimisticLockingFailureException. This is a requirement that clearly cuts across multiple
services in the service layer, and hence is ideal for implementing via an aspect.

Because we want to retry the operation, we'll need to use around advice so that we can call proceed
multiple times. Here's how the basic aspect implementation looks (it's just a regular Java class using the
schema support):

public class ConcurrentOperationExecutor implements Ordered {

private static final int DEFAULT_MAX_RETRIES = 2;

private int maxRetries = DEFAULT_MAX_RETRIES;
private int order = 1;

public void setMaxRetries(int maxRetries) {
this.maxRetries = maxRetries;

}

public int getOrder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {
int numAttempts = 0;
PessimisticLockingFailureException lockFailureException;
do {

numAttempts++;
try {

return pjp.proceed();
}
catch(PessimisticLockingFailureException ex) {

lockFailureException = ex;
}

}
while(numAttempts <= this.maxRetries);
throw lockFailureException;

}

}

Note that the aspect implements the Ordered interface so we can set the precedence of the aspect higher
than the transaction advice (we want a fresh transaction each time we retry). The maxRetries and
order properties will both be configured by Spring. The main action happens in the
doConcurrentOperation around advice method. We try to proceed, and if we fail with a
PessimisticLockingFailureException we simply try again unless we have exhausted all of
our retry attempts.

Spring Framework

3.1 Reference Documentation 231

This class is identical to the one used in the @AspectJ example, but with the annotations removed.

The corresponding Spring configuration is:

<aop:config>

<aop:aspect id="concurrentOperationRetry" ref="concurrentOperationExecutor">

<aop:pointcut id="idempotentOperation"
expression="execution(* com.xyz.myapp.service.*.*(..))"/>

<aop:around
pointcut-ref="idempotentOperation"
method="doConcurrentOperation"/>

</aop:aspect>

</aop:config>

<bean id="concurrentOperationExecutor"
class="com.xyz.myapp.service.impl.ConcurrentOperationExecutor">

<property name="maxRetries" value="3"/>
<property name="order" value="100"/>

</bean>

Notice that for the time being we assume that all business services are idempotent. If this is not the case
we can refine the aspect so that it only retries genuinely idempotent operations, by introducing an
Idempotent annotation:

@Retention(RetentionPolicy.RUNTIME)
public @interface Idempotent {
// marker annotation

}

and using the annotation to annotate the implementation of service operations. The change to the aspect to
retry only idempotent operations simply involves refining the pointcut expression so that only
@Idempotent operations match:

<aop:pointcut id="idempotentOperation"
expression="execution(* com.xyz.myapp.service.*.*(..)) and

@annotation(com.xyz.myapp.service.Idempotent)"/>

8.4 Choosing which AOP declaration style to use

Once you have decided that an aspect is the best approach for implementing a given requirement, how do
you decide between using Spring AOP or AspectJ, and between the Aspect language (code) style,
@AspectJ annotation style, or the Spring XML style? These decisions are influenced by a number of
factors including application requirements, development tools, and team familiarity with AOP.

Spring AOP or full AspectJ?

Use the simplest thing that can work. Spring AOP is simpler than using full AspectJ as there is no
requirement to introduce the AspectJ compiler / weaver into your development and build processes. If

Spring Framework

3.1 Reference Documentation 232

you only need to advise the execution of operations on Spring beans, then Spring AOP is the right choice.
If you need to advise objects not managed by the Spring container (such as domain objects typically),
then you will need to use AspectJ. You will also need to use AspectJ if you wish to advise join points
other than simple method executions (for example, field get or set join points, and so on).

When using AspectJ, you have the choice of the AspectJ language syntax (also known as the "code style")
or the @AspectJ annotation style. Clearly, if you are not using Java 5+ then the choice has been made for
you... use the code style. If aspects play a large role in your design, and you are able to use the AspectJ
Development Tools (AJDT) plugin for Eclipse, then the AspectJ language syntax is the preferred option:
it is cleaner and simpler because the language was purposefully designed for writing aspects. If you are
not using Eclipse, or have only a few aspects that do not play a major role in your application, then you
may want to consider using the @AspectJ style and sticking with a regular Java compilation in your IDE,
and adding an aspect weaving phase to your build script.

@AspectJ or XML for Spring AOP?

If you have chosen to use Spring AOP, then you have a choice of @AspectJ or XML style. Clearly if you
are not running on Java 5+, then the XML style is the appropriate choice; for Java 5 projects there are
various tradeoffs to consider.

The XML style will be most familiar to existing Spring users. It can be used with any JDK level
(referring to named pointcuts from within pointcut expressions does still require Java 5+ though) and is
backed by genuine POJOs. When using AOP as a tool to configure enterprise services then XML can be a
good choice (a good test is whether you consider the pointcut expression to be a part of your
configuration you might want to change independently). With the XML style arguably it is clearer from
your configuration what aspects are present in the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of the
requirement it addresses in a single place. The DRY principle says that there should be a single,
unambiguous, authoritative representation of any piece of knowledge within a system. When using the
XML style, the knowledge of how a requirement is implemented is split across the declaration of the
backing bean class, and the XML in the configuration file. When using the @AspectJ style there is a
single module - the aspect - in which this information is encapsulated. Secondly, the XML style is slightly
more limited in what it can express than the @AspectJ style: only the "singleton" aspect instantiation
model is supported, and it is not possible to combine named pointcuts declared in XML. For example, in
the @AspectJ style you can write something like:

@Pointcut(execution(* get*()))
public void propertyAccess() {}

@Pointcut(execution(org.xyz.Account+ *(..))
public void operationReturningAnAccount() {}

@Pointcut(propertyAccess() && operationReturningAnAccount())
public void accountPropertyAccess() {}

In the XML style I can declare the first two pointcuts:

Spring Framework

3.1 Reference Documentation 233

http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/

<aop:pointcut id="propertyAccess"
expression="execution(* get*())"/>

<aop:pointcut id="operationReturningAnAccount"
expression="execution(org.xyz.Account+ *(..))"/>

The downside of the XML approach is that you cannot define the 'accountPropertyAccess'
pointcut by combining these definitions.

The @AspectJ style supports additional instantiation models, and richer pointcut composition. It has the
advantage of keeping the aspect as a modular unit. It also has the advantage the @AspectJ aspects can be
understood (and thus consumed) both by Spring AOP and by AspectJ - so if you later decide you need the
capabilities of AspectJ to implement additional requirements then it is very easy to migrate to an
AspectJ-based approach. On balance the Spring team prefer the @AspectJ style whenever you have
aspects that do more than simple "configuration" of enterprise services.

8.5 Mixing aspect types

It is perfectly possible to mix @AspectJ style aspects using the autoproxying support, schema-defined
<aop:aspect> aspects, <aop:advisor> declared advisors and even proxies and interceptors
defined using the Spring 1.2 style in the same configuration. All of these are implemented using the same
underlying support mechanism and will co-exist without any difficulty.

8.6 Proxying mechanisms

Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object.
(JDK dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at least one interface then a JDK dynamic proxy will be
used. All of the interfaces implemented by the target type will be proxied. If the target object does not
implement any interfaces then a CGLIB proxy will be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the
target object, not just those implemented by its interfaces) you can do so. However, there are some issues
to consider:

• final methods cannot be advised, as they cannot be overriden.

• You will need the CGLIB 2 binaries on your classpath, whereas dynamic proxies are available with the
JDK. Spring will automatically warn you when it needs CGLIB and the CGLIB library classes are not
found on the classpath.

• The constructor of your proxied object will be called twice. This is a natural consequence of the
CGLIB proxy model whereby a subclass is generated for each proxied object. For each proxied
instance, two objects are created: the actual proxied object and an instance of the subclass that

Spring Framework

3.1 Reference Documentation 234

implements the advice. This behavior is not exhibited when using JDK proxies. Usually, calling the
constructor of the proxied type twice, is not an issue, as there are usually only assignments taking place
and no real logic is implemented in the constructor.

To force the use of CGLIB proxies set the value of the proxy-target-class attribute of the
<aop:config> element to true:

<aop:config proxy-target-class="true">
<!-- other beans defined here... -->

</aop:config>

To force CGLIB proxying when using the @AspectJ autoproxy support, set the
'proxy-target-class' attribute of the <aop:aspectj-autoproxy> element to true:

<aop:aspectj-autoproxy proxy-target-class="true"/>

Note

Multiple <aop:config/> sections are collapsed into a single unified auto-proxy creator at
runtime, which applies the strongest proxy settings that any of the <aop:config/>
sections (typically from different XML bean definition files) specified. This also applies to
the <tx:annotation-driven/> and <aop:aspectj-autoproxy/> elements.

To be clear: using 'proxy-target-class="true"' on
<tx:annotation-driven/>, <aop:aspectj-autoproxy/> or
<aop:config/> elements will force the use of CGLIB proxies for all three of them.

Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last statement
actually means before you write your own aspects or use any of the Spring AOP-based aspects supplied
with the Spring Framework.

Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it, straight
object reference, as illustrated by the following code snippet.

public class SimplePojo implements Pojo {

public void foo() {
// this next method invocation is a direct call on the 'this' reference
this.bar();

}

public void bar() {
// some logic...

}
}

If you invoke a method on an object reference, the method is invoked directly on that object reference, as

Spring Framework

3.1 Reference Documentation 235

can be seen below.

public class Main {

public static void main(String[] args) {

Pojo pojo = new SimplePojo();

// this is a direct method call on the 'pojo' reference
pojo.foo();

}
}

Things change slightly when the reference that client code has is a proxy. Consider the following diagram
and code snippet.

public class Main {

public static void main(String[] args) {

ProxyFactory factory = new ProxyFactory(new SimplePojo());
factory.addInterface(Pojo.class);
factory.addAdvice(new RetryAdvice());

Spring Framework

3.1 Reference Documentation 236

Pojo pojo = (Pojo) factory.getProxy();

// this is a method call on the proxy!
pojo.foo();

}
}

The key thing to understand here is that the client code inside the main(..) of the Main class has a
reference to the proxy. This means that method calls on that object reference will be calls on the proxy,
and as such the proxy will be able to delegate to all of the interceptors (advice) that are relevant to that
particular method call. However, once the call has finally reached the target object, the SimplePojo
reference in this case, any method calls that it may make on itself, such as this.bar() or
this.foo(), are going to be invoked against the this reference, and not the proxy. This has
important implications. It means that self-invocation is not going to result in the advice associated with a
method invocation getting a chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to
refactor your code such that the self-invocation does not happen. For sure, this does entail some work on
your part, but it is the best, least-invasive approach. The next approach is absolutely horrendous, and I am
almost reticent to point it out precisely because it is so horrendous. You can (choke!) totally tie the logic
within your class to Spring AOP by doing this:

public class SimplePojo implements Pojo {

public void foo() {
// this works, but... gah!
((Pojo) AopContext.currentProxy()).bar();

}

public void bar() {
// some logic...

}
}

This totally couples your code to Spring AOP, and it makes the class itself aware of the fact that it is
being used in an AOP context, which flies in the face of AOP. It also requires some additional
configuration when the proxy is being created:

public class Main {

public static void main(String[] args) {

ProxyFactory factory = new ProxyFactory(new SimplePojo());
factory.adddInterface(Pojo.class);
factory.addAdvice(new RetryAdvice());
factory.setExposeProxy(true);

Pojo pojo = (Pojo) factory.getProxy();

// this is a method call on the proxy!
pojo.foo();

}
}

Finally, it must be noted that AspectJ does not have this self-invocation issue because it is not a
proxy-based AOP framework.

Spring Framework

3.1 Reference Documentation 237

8.7 Programmatic creation of @AspectJ Proxies

In addition to declaring aspects in your configuration using either <aop:config> or
<aop:aspectj-autoproxy>, it is also possible programmatically to create proxies that advise target
objects. For the full details of Spring's AOP API, see the next chapter. Here we want to focus on the
ability to automatically create proxies using @AspectJ aspects.

The class org.springframework.aop.aspectj.annotation.AspectJProxyFactory
can be used to create a proxy for a target object that is advised by one or more @AspectJ aspects. Basic
usage for this class is very simple, as illustrated below. See the Javadocs for full information.

// create a factory that can generate a proxy for the given target object
AspectJProxyFactory factory = new AspectJProxyFactory(targetObject);

// add an aspect, the class must be an @AspectJ aspect
// you can call this as many times as you need with different aspects
factory.addAspect(SecurityManager.class);

// you can also add existing aspect instances, the type of the object supplied must be an @AspectJ aspect
factory.addAspect(usageTracker);

// now get the proxy object...
MyInterfaceType proxy = factory.getProxy();

8.8 Using AspectJ with Spring applications

Everything we've covered so far in this chapter is pure Spring AOP. In this section, we're going to look at
how you can use the AspectJ compiler/weaver instead of, or in addition to, Spring AOP if your needs go
beyond the facilities offered by Spring AOP alone.

Spring ships with a small AspectJ aspect library, which is available standalone in your distribution as
spring-aspects.jar; you'll need to add this to your classpath in order to use the aspects in it. the
section called “Using AspectJ to dependency inject domain objects with Spring” and the section called
“Other Spring aspects for AspectJ” discuss the content of this library and how you can use it. the section
called “Configuring AspectJ aspects using Spring IoC” discusses how to dependency inject AspectJ
aspects that are woven using the AspectJ compiler. Finally, the section called “Load-time weaving with
AspectJ in the Spring Framework” provides an introduction to load-time weaving for Spring applications
using AspectJ.

Using AspectJ to dependency inject domain objects with Spring

The Spring container instantiates and configures beans defined in your application context. It is also
possible to ask a bean factory to configure a pre-existing object given the name of a bean definition
containing the configuration to be applied. The spring-aspects.jar contains an annotation-driven
aspect that exploits this capability to allow dependency injection of any object. The support is intended to
be used for objects created outside of the control of any container. Domain objects often fall into this

Spring Framework

3.1 Reference Documentation 238

category because they are often created programmatically using the new operator, or by an ORM tool as a
result of a database query.

The @Configurable annotation marks a class as eligible for Spring-driven configuration. In the
simplest case it can be used just as a marker annotation:

package com.xyz.myapp.domain;

import org.springframework.beans.factory.annotation.Configurable;

@Configurable
public class Account {

// ...
}

When used as a marker interface in this way, Spring will configure new instances of the annotated type
(Account in this case) using a prototype-scoped bean definition with the same name as the
fully-qualified type name (com.xyz.myapp.domain.Account). Since the default name for a bean
is the fully-qualified name of its type, a convenient way to declare the prototype definition is simply to
omit the id attribute:

<bean class="com.xyz.myapp.domain.Account" scope="prototype">
<property name="fundsTransferService" ref="fundsTransferService"/>

</bean>

If you want to explicitly specify the name of the prototype bean definition to use, you can do so directly
in the annotation:

package com.xyz.myapp.domain;

import org.springframework.beans.factory.annotation.Configurable;

@Configurable("account")
public class Account {

// ...
}

Spring will now look for a bean definition named "account" and use that as the definition to configure
new Account instances.

You can also use autowiring to avoid having to specify a prototype-scoped bean definition at all. To have
Spring apply autowiring use the 'autowire' property of the @Configurable annotation: specify
either @Configurable(autowire=Autowire.BY_TYPE) or
@Configurable(autowire=Autowire.BY_NAME for autowiring by type or by name
respectively. As an alternative, as of Spring 2.5 it is preferable to specify explicit, annotation-driven
dependency injection for your @Configurable beans by using @Autowired or @Inject at the
field or method level (see Section 4.9, “Annotation-based container configuration” for further details).

Finally you can enable Spring dependency checking for the object references in the newly created and
configured object by using the dependencyCheck attribute (for example:
@Configurable(autowire=Autowire.BY_NAME,dependencyCheck=true)). If this
attribute is set to true, then Spring will validate after configuration that all properties (which are not

Spring Framework

3.1 Reference Documentation 239

primitives or collections) have been set.

Using the annotation on its own does nothing of course. It is the
AnnotationBeanConfigurerAspect in spring-aspects.jar that acts on the presence of
the annotation. In essence the aspect says "after returning from the initialization of a new object of a type
annotated with @Configurable, configure the newly created object using Spring in accordance with
the properties of the annotation". In this context, initialization refers to newly instantiated objects (e.g.,
objects instantiated with the 'new' operator) as well as to Serializable objects that are undergoing
deserialization (e.g., via readResolve()).

Note

One of the key phrases in the above paragraph is 'in essence'. For most cases, the exact
semantics of 'after returning from the initialization of a new object' will be fine... in this
context, 'after initialization' means that the dependencies will be injected after the object has
been constructed - this means that the dependencies will not be available for use in the
constructor bodies of the class. If you want the dependencies to be injected before the
constructor bodies execute, and thus be available for use in the body of the constructors, then
you need to define this on the @Configurable declaration like so:

@Configurable(preConstruction=true)

You can find out more information about the language semantics of the various pointcut
types in AspectJ in this appendix of the AspectJ Programming Guide.

For this to work the annotated types must be woven with the AspectJ weaver - you can either use a
build-time Ant or Maven task to do this (see for example the AspectJ Development Environment Guide)
or load-time weaving (see the section called “Load-time weaving with AspectJ in the Spring
Framework”). The AnnotationBeanConfigurerAspect itself needs configuring by Spring (in
order to obtain a reference to the bean factory that is to be used to configure new objects). The Spring
context namespace defines a convenient tag for doing this: just include the following in your
application context configuration:

<context:spring-configured/>

If you are using the DTD instead of schema, the equivalent definition is:

<bean
class="org.springframework.beans.factory.aspectj.AnnotationBeanConfigurerAspect"
factory-method="aspectOf"/>

Instances of @Configurable objects created before the aspect has been configured will result in a
warning being issued to the log and no configuration of the object taking place. An example might be a
bean in the Spring configuration that creates domain objects when it is initialized by Spring. In this case
you can use the "depends-on" bean attribute to manually specify that the bean depends on the
configuration aspect.

Spring Framework

3.1 Reference Documentation 240

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.eclipse.org/aspectj/doc/next/progguide/semantics-joinPoints.html
http://www.eclipse.org/aspectj/doc/next/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/devguide/antTasks.html

<bean id="myService"
class="com.xzy.myapp.service.MyService"
depends-on="org.springframework.beans.factory.aspectj.AnnotationBeanConfigurerAspect">

<!-- ... -->

</bean>

Note

Do not activate @Configurable processing through the bean configurer aspect unless you
really mean to rely on its semantics at runtime. In particular, make sure that you do not use
@Configurable on bean classes which are registered as regular Spring beans with the
container: You would get double initialization otherwise, once through the container and once
through the aspect.

Unit testing @Configurable objects

One of the goals of the @Configurable support is to enable independent unit testing of domain objects
without the difficulties associated with hard-coded lookups. If @Configurable types have not been
woven by AspectJ then the annotation has no affect during unit testing, and you can simply set mock or
stub property references in the object under test and proceed as normal. If @Configurable types have
been woven by AspectJ then you can still unit test outside of the container as normal, but you will see a
warning message each time that you construct an @Configurable object indicating that it has not been
configured by Spring.

Working with multiple application contexts

The AnnotationBeanConfigurerAspect used to implement the @Configurable support is an
AspectJ singleton aspect. The scope of a singleton aspect is the same as the scope of static members,
that is to say there is one aspect instance per classloader that defines the type. This means that if you
define multiple application contexts within the same classloader hierarchy you need to consider where to
define the <context:spring-configured/> bean and where to place spring-aspects.jar
on the classpath.

Consider a typical Spring web-app configuration with a shared parent application context defining
common business services and everything needed to support them, and one child application context per
servlet containing definitions particular to that servlet. All of these contexts will co-exist within the same
classloader hierarchy, and so the AnnotationBeanConfigurerAspect can only hold a reference
to one of them. In this case we recommend defining the <context:spring-configured/> bean in
the shared (parent) application context: this defines the services that you are likely to want to inject into
domain objects. A consequence is that you cannot configure domain objects with references to beans
defined in the child (servlet-specific) contexts using the @Configurable mechanism (probably not
something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each web-application loads the

Spring Framework

3.1 Reference Documentation 241

types in spring-aspects.jar using its own classloader (for example, by placing
spring-aspects.jar in 'WEB-INF/lib'). If spring-aspects.jar is only added to the
container wide classpath (and hence loaded by the shared parent classloader), all web applications will
share the same aspect instance which is probably not what you want.

Other Spring aspects for AspectJ

In addition to the @Configurable aspect, spring-aspects.jar contains an AspectJ aspect that
can be used to drive Spring's transaction management for types and methods annotated with the
@Transactional annotation. This is primarily intended for users who want to use the Spring
Framework's transaction support outside of the Spring container.

The aspect that interprets @Transactional annotations is the
AnnotationTransactionAspect. When using this aspect, you must annotate the implementation
class (and/or methods within that class), not the interface (if any) that the class implements. AspectJ
follows Java's rule that annotations on interfaces are not inherited.

A @Transactional annotation on a class specifies the default transaction semantics for the execution
of any public operation in the class.

A @Transactional annotation on a method within the class overrides the default transaction
semantics given by the class annotation (if present). Methods with public, protected, and default
visibility may all be annotated. Annotating protected and default visibility methods directly is the
only way to get transaction demarcation for the execution of such methods.

For AspectJ programmers that want to use the Spring configuration and transaction management support
but don't want to (or cannot) use annotations, spring-aspects.jar also contains abstract
aspects you can extend to provide your own pointcut definitions. See the sources for the
AbstractBeanConfigurerAspect and AbstractTransactionAspect aspects for more
information. As an example, the following excerpt shows how you could write an aspect to configure all
instances of objects defined in the domain model using prototype bean definitions that match the
fully-qualified class names:

public aspect DomainObjectConfiguration extends AbstractBeanConfigurerAspect {

public DomainObjectConfiguration() {
setBeanWiringInfoResolver(new ClassNameBeanWiringInfoResolver());

}

// the creation of a new bean (any object in the domain model)
protected pointcut beanCreation(Object beanInstance) :

initialization(new(..)) &&
SystemArchitecture.inDomainModel() &&
this(beanInstance);

}

Configuring AspectJ aspects using Spring IoC

Spring Framework

3.1 Reference Documentation 242

When using AspectJ aspects with Spring applications, it is natural to both want and expect to be able to
configure such aspects using Spring. The AspectJ runtime itself is responsible for aspect creation, and the
means of configuring the AspectJ created aspects via Spring depends on the AspectJ instantiation model
(the 'per-xxx' clause) used by the aspect.

The majority of AspectJ aspects are singleton aspects. Configuration of these aspects is very easy: simply
create a bean definition referencing the aspect type as normal, and include the bean attribute
'factory-method="aspectOf"'. This ensures that Spring obtains the aspect instance by asking
AspectJ for it rather than trying to create an instance itself. For example:

<bean id="profiler" class="com.xyz.profiler.Profiler"
factory-method="aspectOf">

<property name="profilingStrategy" ref="jamonProfilingStrategy"/>
</bean>

Non-singleton aspects are harder to configure: however it is possible to do so by creating prototype bean
definitions and using the @Configurable support from spring-aspects.jar to configure the
aspect instances once they have bean created by the AspectJ runtime.

If you have some @AspectJ aspects that you want to weave with AspectJ (for example, using load-time
weaving for domain model types) and other @AspectJ aspects that you want to use with Spring AOP, and
these aspects are all configured using Spring, then you will need to tell the Spring AOP @AspectJ
autoproxying support which exact subset of the @AspectJ aspects defined in the configuration should be
used for autoproxying. You can do this by using one or more <include/> elements inside the
<aop:aspectj-autoproxy/> declaration. Each <include/> element specifies a name pattern,
and only beans with names matched by at least one of the patterns will be used for Spring AOP autoproxy
configuration:

<aop:aspectj-autoproxy>
<aop:include name="thisBean"/>
<aop:include name="thatBean"/>

</aop:aspectj-autoproxy>

Note

Do not be misled by the name of the <aop:aspectj-autoproxy/> element: using it
will result in the creation of Spring AOP proxies. The @AspectJ style of aspect declaration is
just being used here, but the AspectJ runtime is not involved.

Load-time weaving with AspectJ in the Spring Framework

Load-time weaving (LTW) refers to the process of weaving AspectJ aspects into an application's class
files as they are being loaded into the Java virtual machine (JVM). The focus of this section is on
configuring and using LTW in the specific context of the Spring Framework: this section is not an
introduction to LTW though. For full details on the specifics of LTW and configuring LTW with just
AspectJ (with Spring not being involved at all), see the LTW section of the AspectJ Development

Spring Framework

3.1 Reference Documentation 243

Environment Guide.

The value-add that the Spring Framework brings to AspectJ LTW is in enabling much finer-grained
control over the weaving process. 'Vanilla' AspectJ LTW is effected using a Java (5+) agent, which is
switched on by specifying a VM argument when starting up a JVM. It is thus a JVM-wide setting, which
may be fine in some situations, but often is a little too coarse. Spring-enabled LTW enables you to switch
on LTW on a per-ClassLoader basis, which obviously is more fine-grained and which can make more
sense in a 'single-JVM-multiple-application' environment (such as is found in a typical application server
environment).

Further, in certain environments, this support enables load-time weaving without making any
modifications to the application server's launch script that will be needed to add
-javaagent:path/to/aspectjweaver.jar or (as we describe later in this section)
-javaagent:path/to/org.springframework.instrument-{version}.jar
(previously named spring-agent.jar). Developers simply modify one or more files that form the
application context to enable load-time weaving instead of relying on administrators who typically are in
charge of the deployment configuration such as the launch script.

Now that the sales pitch is over, let us first walk through a quick example of AspectJ LTW using Spring,
followed by detailed specifics about elements introduced in the following example. For a complete
example, please see the Petclinic sample application.

A first example

Let us assume that you are an application developer who has been tasked with diagnosing the cause of
some performance problems in a system. Rather than break out a profiling tool, what we are going to do
is switch on a simple profiling aspect that will enable us to very quickly get some performance metrics, so
that we can then apply a finer-grained profiling tool to that specific area immediately afterwards.

Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based profiler, using the
@AspectJ-style of aspect declaration.

package foo;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.util.StopWatch;
import org.springframework.core.annotation.Order;

@Aspect
public class ProfilingAspect {

@Around("methodsToBeProfiled()")
public Object profile(ProceedingJoinPoint pjp) throws Throwable {

StopWatch sw = new StopWatch(getClass().getSimpleName());
try {

sw.start(pjp.getSignature().getName());
return pjp.proceed();

} finally {
sw.stop();
System.out.println(sw.prettyPrint());

}

Spring Framework

3.1 Reference Documentation 244

http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

}

@Pointcut("execution(public * foo..*.*(..))")
public void methodsToBeProfiled(){}

}

We will also need to create an 'META-INF/aop.xml' file, to inform the AspectJ weaver that we want to
weave our ProfilingAspect into our classes. This file convention, namely the presence of a file (or
files) on the Java classpath called ' META-INF/aop.xml' is standard AspectJ.

<!DOCTYPE aspectj PUBLIC
"-//AspectJ//DTD//EN" "http://www.eclipse.org/aspectj/dtd/aspectj.dtd">

<aspectj>

<weaver>

<!-- only weave classes in our application-specific packages -->
<include within="foo.*"/>

</weaver>

<aspects>

<!-- weave in just this aspect -->
<aspect name="foo.ProfilingAspect"/>

</aspects>

</aspectj>

Now to the Spring-specific portion of the configuration. We need to configure a LoadTimeWeaver (all
explained later, just take it on trust for now). This load-time weaver is the essential component
responsible for weaving the aspect configuration in one or more 'META-INF/aop.xml' files into the
classes in your application. The good thing is that it does not require a lot of configuration, as can be seen
below (there are some more options that you can specify, but these are detailed later).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<!-- a service object; we will be profiling its methods -->
<bean id="entitlementCalculationService"

class="foo.StubEntitlementCalculationService"/>

<!-- this switches on the load-time weaving -->
<context:load-time-weaver/>

</beans>

Now that all the required artifacts are in place - the aspect, the 'META-INF/aop.xml' file, and the
Spring configuration -, let us create a simple driver class with a main(..) method to demonstrate the
LTW in action.

Spring Framework

3.1 Reference Documentation 245

package foo;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public final class Main {

public static void main(String[] args) {

ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml", Main.class);

EntitlementCalculationService entitlementCalculationService
= (EntitlementCalculationService) ctx.getBean("entitlementCalculationService");

// the profiling aspect is 'woven' around this method execution
entitlementCalculationService.calculateEntitlement();

}
}

There is one last thing to do. The introduction to this section did say that one could switch on LTW
selectively on a per-ClassLoader basis with Spring, and this is true. However, just for this example,
we are going to use a Java agent (supplied with Spring) to switch on the LTW. This is the command line
we will use to run the above Main class:

java -javaagent:C:/projects/foo/lib/global/spring-instrument.jar foo.Main

The '-javaagent' is a Java 5+ flag for specifying and enabling agents to instrument programs running
on the JVM. The Spring Framework ships with such an agent, the InstrumentationSavingAgent,
which is packaged in the spring-instrument.jar that was supplied as the value of the
-javaagent argument in the above example.

The output from the execution of the Main program will look something like that below. (I have
introduced a Thread.sleep(..) statement into the calculateEntitlement() implementation
so that the profiler actually captures something other than 0 milliseconds - the 01234 milliseconds is not
an overhead introduced by the AOP :))

Calculating entitlement

StopWatch 'ProfilingAspect': running time (millis) = 1234
------ ----- ----------------------------
ms % Task name
------ ----- ----------------------------
01234 100% calculateEntitlement

Since this LTW is effected using full-blown AspectJ, we are not just limited to advising Spring beans; the
following slight variation on the Main program will yield the same result.

package foo;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public final class Main {

public static void main(String[] args) {

new ClassPathXmlApplicationContext("beans.xml", Main.class);

EntitlementCalculationService entitlementCalculationService =

Spring Framework

3.1 Reference Documentation 246

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html

new StubEntitlementCalculationService();

// the profiling aspect will be 'woven' around this method execution
entitlementCalculationService.calculateEntitlement();

}
}

Notice how in the above program we are simply bootstrapping the Spring container, and then creating a
new instance of the StubEntitlementCalculationService totally outside the context of
Spring... the profiling advice still gets woven in.

The example admittedly is simplistic... however the basics of the LTW support in Spring have all been
introduced in the above example, and the rest of this section will explain the 'why' behind each bit of
configuration and usage in detail.

Note

The ProfilingAspect used in this example may be basic, but it is quite useful. It is a
nice example of a development-time aspect that developers can use during development (of
course), and then quite easily exclude from builds of the application being deployed into
UAT or production.

Aspects

The aspects that you use in LTW have to be AspectJ aspects. They can be written in either the AspectJ
language itself or you can write your aspects in the @AspectJ-style. The latter option is of course only an
option if you are using Java 5+, but it does mean that your aspects are then both valid AspectJ and Spring
AOP aspects. Furthermore, the compiled aspect classes need to be available on the classpath.

'META-INF/aop.xml'

The AspectJ LTW infrastructure is configured using one or more 'META-INF/aop.xml' files, that are
on the Java classpath (either directly, or more typically in jar files).

The structure and contents of this file is detailed in the main AspectJ reference documentation, and the
interested reader is referred to that resource. (I appreciate that this section is brief, but the 'aop.xml' file
is 100% AspectJ - there is no Spring-specific information or semantics that apply to it, and so there is no
extra value that I can contribute either as a result), so rather than rehash the quite satisfactory section that
the AspectJ developers wrote, I am just directing you there.)

Required libraries (JARS)

At a minimum you will need the following libraries to use the Spring Framework's support for AspectJ
LTW:

1. spring-aop.jar (version 2.5 or later, plus all mandatory dependencies)

Spring Framework

3.1 Reference Documentation 247

http://www.eclipse.org/aspectj/doc/released/devguide/ltw-configuration.html

2. aspectjweaver.jar (version 1.6.8 or later)

If you are using the Spring-provided agent to enable instrumentation, you will also need:

1. spring-instrument.jar

Spring configuration

The key component in Spring's LTW support is the LoadTimeWeaver interface (in the
org.springframework.instrument.classloading package), and the numerous
implementations of it that ship with the Spring distribution. A LoadTimeWeaver is responsible for
adding one or more java.lang.instrument.ClassFileTransformers to a ClassLoader
at runtime, which opens the door to all manner of interesting applications, one of which happens to be the
LTW of aspects.

Tip

If you are unfamiliar with the idea of runtime class file transformation, you are encouraged to
read the Javadoc API documentation for the java.lang.instrument package before
continuing. This is not a huge chore because there is - rather annoyingly - precious little
documentation there... the key interfaces and classes will at least be laid out in front of you
for reference as you read through this section.

Configuring a LoadTimeWeaver using XML for a particular ApplicationContext can be as easy
as adding one line. (Please note that you almost certainly will need to be using an
ApplicationContext as your Spring container - typically a BeanFactory will not be enough
because the LTW support makes use of BeanFactoryPostProcessors.)

To enable the Spring Framework's LTW support, you need to configure a LoadTimeWeaver, which
typically is done using the <context:load-time-weaver/> element. Find below a valid
<context:load-time-weaver/> definition that uses default settings.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:load-time-weaver/>

</beans>

The above <context:load-time-weaver/> bean definition will define and register a number of
LTW-specific infrastructure beans for you automatically, such as a LoadTimeWeaver and an
AspectJWeavingEnabler. Notice how the <context:load-time-weaver/> is defined in the

Spring Framework

3.1 Reference Documentation 248

'context' namespace; note also that the referenced XML Schema file is only available in versions of
Spring 2.5 and later.

What the above configuration does is define and register a default LoadTimeWeaver bean for you. The
default LoadTimeWeaver is the DefaultContextLoadTimeWeaver class, which attempts to
decorate an automatically detected LoadTimeWeaver: the exact type of LoadTimeWeaver that will
be 'automatically detected' is dependent upon your runtime environment (summarised in the following
table).

Table 8.1. DefaultContextLoadTimeWeaver LoadTimeWeavers

Runtime Environment LoadTimeWeaver implementation

Running in BEA's Weblogic 10 WebLogicLoadTimeWeaver

Running in IBM WebSphere Application Server 7 WebSphereLoadTimeWeaver

Running in Oracle's OC4J OC4JLoadTimeWeaver

Running in GlassFish GlassFishLoadTimeWeaver

Running in JBoss AS JBossLoadTimeWeaver

JVM started with Spring
InstrumentationSavingAgent

(java
-javaagent:path/to/spring-instrument.jar)

InstrumentationLoadTimeWeaver

Fallback, expecting the underlying ClassLoader to
follow common conventions (e.g. applicable to
TomcatInstrumentableClassLoader and
Resin)

ReflectiveLoadTimeWeaver

Note that these are just the LoadTimeWeavers that are autodetected when using the
DefaultContextLoadTimeWeaver: it is of course possible to specify exactly which
LoadTimeWeaver implementation that you wish to use by specifying the fully-qualified classname as
the value of the 'weaver-class' attribute of the <context:load-time-weaver/> element. Find
below an example of doing just that:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

Spring Framework

3.1 Reference Documentation 249

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/weblogic/server
http://www-01.ibm.com/software/webservers/appserv/was/
http://www.oracle.com/technology/products/oc4j/index.html
http://glassfish.dev.java.net/
http://www.jboss.org/jbossas/
http://www.caucho.com/

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:load-time-weaver
weaver-class="org.springframework.instrument.classloading.ReflectiveLoadTimeWeaver"/>

</beans>

The LoadTimeWeaver that is defined and registered by the <context:load-time-weaver/>
element can be later retrieved from the Spring container using the well-known name
'loadTimeWeaver'. Remember that the LoadTimeWeaver exists just as a mechanism for Spring's
LTW infrastructure to add one or more ClassFileTransformers. The actual
ClassFileTransformer that does the LTW is the ClassPreProcessorAgentAdapter (from
the org.aspectj.weaver.loadtime package) class. See the class-level Javadoc for the
ClassPreProcessorAgentAdapter class for further details, because the specifics of how the
weaving is actually effected is beyond the scope of this section.

There is one final attribute of the <context:load-time-weaver/> left to discuss: the
'aspectj-weaving' attribute. This is a simple attribute that controls whether LTW is enabled or not, it
is as simple as that. It accepts one of three possible values, summarised below, with the default value if
the attribute is not present being ' autodetect'

Table 8.2. 'aspectj-weaving' attribute values

Attribute Value Explanation

on AspectJ weaving is on, and aspects will be woven
at load-time as appropriate.

off LTW is off... no aspect will be woven at load-time.

autodetect If the Spring LTW infrastructure can find at least
one 'META-INF/aop.xml' file, then AspectJ
weaving is on, else it is off. This is the default
value.

Environment-specific configuration

This last section contains any additional settings and configuration that you will need when using Spring's
LTW support in environments such as application servers and web containers.

Tomcat

Apache Tomcat's default class loader does not support class transformation which is why Spring provides

Spring Framework

3.1 Reference Documentation 250

http://tomcat.apache.org/

an enhanced implementation that addresses this need. Named
TomcatInstrumentableClassLoader, the loader works on Tomcat 5.0 and above and can be
registered individually for each web application as follows:

• Tomcat 6.0.x or higher

1. Copy org.springframework.instrument.tomcat.jar into $CATALINA_HOME/lib,
where $CATALINA_HOME represents the root of the Tomcat installation)

2. Instruct Tomcat to use the custom class loader (instead of the default) by editing the web application
context file:

<Context path="/myWebApp" docBase="/my/webApp/location">
<Loader

loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"/>
</Context>

Apache Tomcat 6.0.x (similar to 5.0.x/5.5.x) series supports several context locations:

• server configuration file - $CATALINA_HOME/conf/server.xml

• default context configuration - $CATALINA_HOME/conf/context.xml - that affects all deployed
web applications

• per-web application configuration which can be deployed either on the server-side at
$CATALINA_HOME/conf/[enginename]/[hostname]/[webapp]-context.xml or embedded inside
the web-app archive at META-INF/context.xml

For efficiency, the embedded per-web-app configuration style is recommended because it will
impact only applications that use the custom class loader and does not require any changes to the
server configuration. See the Tomcat 6.0.x documentation for more details about available context
locations.

• Tomcat 5.0.x/5.5.x

1. Copy org.springframework.instrument.tomcat.jar into
$CATALINA_HOME/server/lib, where $CATALINA_HOME represents the root of the Tomcat
installation.

2. Instruct Tomcat to use the custom class loader instead of the default one by editing the web
application context file:

<Context path="/myWebApp" docBase="/my/webApp/location">
<Loader

loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"/>
</Context>

Tomcat 5.0.x and 5.5.x series supports several context locations:

• server configuration file - $CATALINA_HOME/conf/server.xml

Spring Framework

3.1 Reference Documentation 251

http://tomcat.apache.org/tomcat-6.0-doc/config/context.html

• default context configuration - $CATALINA_HOME/conf/context.xml - that affects all deployed
web applications

• per-web application configuration which can be deployed either on the server-side at
$CATALINA_HOME/conf/[enginename]/[hostname]/[webapp]-context.xml or embedded inside
the web-app archive at META-INF/context.xml

For efficiency, the embedded web-app configuration style is recommended recommended because it
will impact only applications that use the class loader. See the Tomcat 5.x documentation for more
details about available context locations.

Tomcat versions prior to 5.5.20 contained a bug in the XML configuration parsing that prevented
usage of the Loader tag inside server.xml configuration, regardless of whether a class loader is
specified or whether it is the official or a custom one. See Tomcat's bugzilla for more details.

In Tomcat 5.5.x, versions 5.5.20 or later, you should set useSystemClassLoaderAsParent to false
to fix this problem:

<Context path="/myWebApp" docBase="/my/webApp/location">
<Loader

loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"
useSystemClassLoaderAsParent="false"/>

</Context>

This setting is not needed on Tomcat 6 or higher.

Alternatively, consider the use of the Spring-provided generic VM agent, to be specified in Tomcat's
launch script (see above). This will make instrumentation available to all deployed web applications, no
matter what ClassLoader they happen to run on.

WebLogic, WebSphere, OC4J, Resin, GlassFish, JBoss

Recent versions of BEA WebLogic (version 10 and above), IBM WebSphere Application Server (version
7 and above), Oracle Containers for Java EE (OC4J 10.1.3.1 and above), Resin (3.1 and above) and JBoss
(5.x or above) provide a ClassLoader that is capable of local instrumentation. Spring's native LTW
leverages such ClassLoaders to enable AspectJ weaving. You can enable LTW by simply activating
context:load-time-weaver as described earlier. Specifically, you do not need to modify the
launch script to add -javaagent:path/to/spring-instrument.jar.

Note that GlassFish instrumentation-capable ClassLoader is available only in its EAR environment. For
GlassFish web applications, follow the Tomcat setup instructions as outlined above.

Note that on JBoss 6.x, the app server scanning needs to be disabled to prevent it from loading the classes
before the application actually starts. A quick workaround is to add to your artifact a file named
WEB-INF/jboss-scanning.xml with the following content:

<scanning xmlns="urn:jboss:scanning:1.0"/>

Spring Framework

3.1 Reference Documentation 252

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html
http://issues.apache.org/bugzilla/show_bug.cgi?id=39704

Generic Java applications

When class instrumentation is required in environments that do not support or are not supported by the
existing LoadTimeWeaver implementations, a JDK agent can be the only solution. For such cases,
Spring provides InstrumentationLoadTimeWeaver, which requires a Spring-specific (but very
general) VM agent, org.springframework.instrument-{version}.jar (previously named
spring-agent.jar).

To use it, you must start the virtual machine with the Spring agent, by supplying the following JVM
options:

-javaagent:/path/to/org.springframework.instrument-{version}.jar

Note that this requires modification of the VM launch script which may prevent you from using this in
application server environments (depending on your operation policies). Additionally, the JDK agent will
instrument the entire VM which can prove expensive.

For performance reasons, it is recommended to use this configuration only if your target environment
(such as Jetty) does not have (or does not support) a dedicated LTW.

8.9 Further Resources

More information on AspectJ can be found on the AspectJ website.

The book Eclipse AspectJ by Adrian Colyer et. al. (Addison-Wesley, 2005) provides a comprehensive
introduction and reference for the AspectJ language.

The book AspectJ in Action by Ramnivas Laddad (Manning, 2003) comes highly recommended; the focus
of the book is on AspectJ, but a lot of general AOP themes are explored (in some depth).

Spring Framework

3.1 Reference Documentation 253

http://www.eclipse.org/jetty/
http://www.eclipse.org/aspectj

9. Spring AOP APIs

9.1 Introduction

The previous chapter described the Spring 2.0 and later version's support for AOP using @AspectJ and
schema-based aspect definitions. In this chapter we discuss the lower-level Spring AOP APIs and the
AOP support used in Spring 1.2 applications. For new applications, we recommend the use of the Spring
2.0 and later AOP support described in the previous chapter, but when working with existing applications,
or when reading books and articles, you may come across Spring 1.2 style examples. Spring 3.0 is
backwards compatible with Spring 1.2 and everything described in this chapter is fully supported in
Spring 3.0.

9.2 Pointcut API in Spring

Let's look at how Spring handles the crucial pointcut concept.

Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target
different advice using the same pointcut.

The org.springframework.aop.Pointcut interface is the central interface, used to target
advices to particular classes and methods. The complete interface is shown below:

public interface Pointcut {

ClassFilter getClassFilter();

MethodMatcher getMethodMatcher();

}

Splitting the Pointcut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a "union" with another method matcher).

The ClassFilter interface is used to restrict the pointcut to a given set of target classes. If the
matches() method always returns true, all target classes will be matched:

public interface ClassFilter {

boolean matches(Class clazz);
}

The MethodMatcher interface is normally more important. The complete interface is shown below:

public interface MethodMatcher {

Spring Framework

3.1 Reference Documentation 254

boolean matches(Method m, Class targetClass);

boolean isRuntime();

boolean matches(Method m, Class targetClass, Object[] args);
}

The matches(Method, Class) method is used to test whether this pointcut will ever match a
given method on a target class. This evaluation can be performed when an AOP proxy is created, to avoid
the need for a test on every method invocation. If the 2-argument matches method returns true for a given
method, and the isRuntime() method for the MethodMatcher returns true, the 3-argument matches
method will be invoked on every method invocation. This enables a pointcut to look at the arguments
passed to the method invocation immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their isRuntime() method returns false. In this case,
the 3-argument matches method will never be invoked.

Tip

If possible, try to make pointcuts static, allowing the AOP framework to cache the results of
pointcut evaluation when an AOP proxy is created.

Operations on pointcuts

Spring supports operations on pointcuts: notably, union and intersection.

• Union means the methods that either pointcut matches.

• Intersection means the methods that both pointcuts match.

• Union is usually more useful.

• Pointcuts can be composed using the static methods in the org.springframework.aop.support.Pointcuts
class, or using the ComposablePointcut class in the same package. However, using AspectJ pointcut
expressions is usually a simpler approach.

AspectJ expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
org.springframework.aop.aspectj.AspectJExpressionPointcut. This is a pointcut
that uses an AspectJ supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.

Convenience pointcut implementations

Spring Framework

3.1 Reference Documentation 255

Spring provides several convenient pointcut implementations. Some can be used out of the box; others are
intended to be subclassed in application-specific pointcuts.

Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's
arguments. Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate a
static pointcut only once, when a method is first invoked: after that, there is no need to evaluate the
pointcut again with each method invocation.

Let's consider some static pointcut implementations included with Spring.

Regular expression pointcuts

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides
Spring make this possible.
org.springframework.aop.support.JdkRegexpMethodPointcut is a generic regular
expression pointcut, using the regular expression support in JDK 1.4+.

Using the JdkRegexpMethodPointcut class, you can provide a list of pattern Strings. If any of
these is a match, the pointcut will evaluate to true. (So the result is effectively the union of these
pointcuts.)

The usage is shown below:

<bean id="settersAndAbsquatulatePointcut"
class="org.springframework.aop.support.JdkRegexpMethodPointcut">
<property name="patterns">

<list>
<value>.*set.*</value>
<value>.*absquatulate</value>

</list>
</property>

</bean>

Spring provides a convenience class, RegexpMethodPointcutAdvisor, that allows us to also
reference an Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.).
Behind the scenes, Spring will use a JdkRegexpMethodPointcut. Using
RegexpMethodPointcutAdvisor simplifies wiring, as the one bean encapsulates both pointcut and
advice, as shown below:

<bean id="settersAndAbsquatulateAdvisor"
class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
<property name="advice">

<ref local="beanNameOfAopAllianceInterceptor"/>
</property>
<property name="patterns">

<list>
<value>.*set.*</value>
<value>.*absquatulate</value>

Spring Framework

3.1 Reference Documentation 256

</list>
</property>

</bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata
attributes: typically, source-level metadata.

Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method
arguments, as well as static information. This means that they must be evaluated with every method
invocation; the result cannot be cached, as arguments will vary.

The main example is the control flow pointcut.

Control flow pointcuts

Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less powerful.
(There is currently no way to specify that a pointcut executes below a join point matched by another
pointcut.) A control flow pointcut matches the current call stack. For example, it might fire if the join
point was invoked by a method in the com.mycompany.web package, or by the SomeCaller class.
Control flow pointcuts are specified using the
org.springframework.aop.support.ControlFlowPointcut class.

Note

Control flow pointcuts are significantly more expensive to evaluate at runtime than even
other dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic
pointcuts.

Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticMethodMatcherPointcut, as
shown below. This requires implementing just one abstract method (although it's possible to override
other methods to customize behavior):

class TestStaticPointcut extends StaticMethodMatcherPointcut {

public boolean matches(Method m, Class targetClass) {
// return true if custom criteria match

Spring Framework

3.1 Reference Documentation 257

}
}

There are also superclasses for dynamic pointcuts.

You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ) it's
possible to declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be
arbitrarily complex. However, using the AspectJ pointcut expression language is recommended if
possible.

Note

Later versions of Spring may offer support for "semantic pointcuts" as offered by JAC: for
example, "all methods that change instance variables in the target object."

9.3 Advice API in Spring

Let's now look at how Spring AOP handles advice.

Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique to
each advised object. This corresponds to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors.
These do not depend on the state of the proxied object or add new state; they merely act on the method
and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state
to the proxied object.

It's possible to use a mix of shared and per-instance advice in the same AOP proxy.

Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice types.
Let us look at the basic concepts and standard advice types.

Interception around advice

Spring Framework

3.1 Reference Documentation 258

The most fundamental advice type in Spring is interception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
MethodInterceptors implementing around advice should implement the following interface:

public interface MethodInterceptor extends Interceptor {

Object invoke(MethodInvocation invocation) throws Throwable;
}

The MethodInvocation argument to the invoke() method exposes the method being invoked; the
target join point; the AOP proxy; and the arguments to the method. The invoke() method should return
the invocation's result: the return value of the join point.

A simple MethodInterceptor implementation looks as follows:

public class DebugInterceptor implements MethodInterceptor {

public Object invoke(MethodInvocation invocation) throws Throwable {
System.out.println("Before: invocation=[" + invocation + "]");
Object rval = invocation.proceed();
System.out.println("Invocation returned");
return rval;

}
}

Note the call to the MethodInvocation's proceed() method. This proceeds down the interceptor chain
towards the join point. Most interceptors will invoke this method, and return its return value. However, a
MethodInterceptor, like any around advice, can return a different value or throw an exception rather than
invoke the proceed method. However, you don't want to do this without good reason!

Note

MethodInterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section implement
common AOP concepts, but in a Spring-specific way. While there is an advantage in using
the most specific advice type, stick with MethodInterceptor around advice if you are likely to
want to run the aspect in another AOP framework. Note that pointcuts are not currently
interoperable between frameworks, and the AOP Alliance does not currently define pointcut
interfaces.

Before advice

A simpler advice type is a before advice. This does not need a MethodInvocation object, since it
will only be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed() method, and
therefore no possibility of inadvertently failing to proceed down the interceptor chain.

Spring Framework

3.1 Reference Documentation 259

The MethodBeforeAdvice interface is shown below. (Spring's API design would allow for field
before advice, although the usual objects apply to field interception and it's unlikely that Spring will ever
implement it).

public interface MethodBeforeAdvice extends BeforeAdvice {

void before(Method m, Object[] args, Object target) throws Throwable;
}

Note the return type is void. Before advice can insert custom behavior before the join point executes, but
cannot change the return value. If a before advice throws an exception, this will abort further execution of
the interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on
the signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped
in an unchecked exception by the AOP proxy.

An example of a before advice in Spring, which counts all method invocations:

public class CountingBeforeAdvice implements MethodBeforeAdvice {

private int count;

public void before(Method m, Object[] args, Object target) throws Throwable {
++count;

}

public int getCount() {
return count;

}
}

Tip

Before advice can be used with any pointcut.

Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception. Spring
offers typed throws advice. Note that this means that the
org.springframework.aop.ThrowsAdvice interface does not contain any methods: It is a tag
interface identifying that the given object implements one or more typed throws advice methods. These
should be in the form of:

afterThrowing([Method, args, target], subclassOfThrowable)

Only the last argument is required. The method signatures may have either one or four arguments,
depending on whether the advice method is interested in the method and arguments. The following
classes are examples of throws advice.

The advice below is invoked if a RemoteException is thrown (including subclasses):

Spring Framework

3.1 Reference Documentation 260

public class RemoteThrowsAdvice implements ThrowsAdvice {

public void afterThrowing(RemoteException ex) throws Throwable {
// Do something with remote exception

}
}

The following advice is invoked if a ServletException is thrown. Unlike the above advice, it
declares 4 arguments, so that it has access to the invoked method, method arguments and target object:

public class ServletThrowsAdviceWithArguments implements ThrowsAdvice {

public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
// Do something with all arguments

}
}

The final example illustrates how these two methods could be used in a single class, which handles both
RemoteException and ServletException. Any number of throws advice methods can be
combined in a single class.

public static class CombinedThrowsAdvice implements ThrowsAdvice {

public void afterThrowing(RemoteException ex) throws Throwable {
// Do something with remote exception

}

public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
// Do something with all arguments

}
}

Note: If a throws-advice method throws an exception itself, it will override the original exception (i.e.
change the exception thrown to the user). The overriding exception will typically be a RuntimeException;
this is compatible with any method signature. However, if a throws-advice method throws a checked
exception, it will have to match the declared exceptions of the target method and is hence to some degree
coupled to specific target method signatures. Do not throw an undeclared checked exception that is
incompatible with the target method's signature!

Tip

Throws advice can be used with any pointcut.

After Returning advice

An after returning advice in Spring must implement the org.springframework.aop.AfterReturningAdvice
interface, shown below:

public interface AfterReturningAdvice extends Advice {

void afterReturning(Object returnValue, Method m, Object[] args, Object target)
throws Throwable;

}

Spring Framework

3.1 Reference Documentation 261

An after returning advice has access to the return value (which it cannot modify), invoked method,
methods arguments and target.

The following after returning advice counts all successful method invocations that have not thrown
exceptions:

public class CountingAfterReturningAdvice implements AfterReturningAdvice {

private int count;

public void afterReturning(Object returnValue, Method m, Object[] args, Object target)
throws Throwable {

++count;
}

public int getCount() {
return count;

}
}

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the
interceptor chain instead of the return value.

Tip

After returning advice can be used with any pointcut.

Introduction advice

Spring treats introduction advice as a special kind of interception advice.

Introduction requires an IntroductionAdvisor, and an IntroductionInterceptor,
implementing the following interface:

public interface IntroductionInterceptor extends MethodInterceptor {

boolean implementsInterface(Class intf);
}

The invoke() method inherited from the AOP Alliance MethodInterceptor interface must
implement the introduction: that is, if the invoked method is on an introduced interface, the introduction
interceptor is responsible for handling the method call - it cannot invoke proceed().

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method, level.
You can only use introduction advice with the IntroductionAdvisor, which has the following
methods:

public interface IntroductionAdvisor extends Advisor, IntroductionInfo {

ClassFilter getClassFilter();

void validateInterfaces() throws IllegalArgumentException;
}

Spring Framework

3.1 Reference Documentation 262

public interface IntroductionInfo {

Class[] getInterfaces();
}

There is no MethodMatcher, and hence no Pointcut, associated with introduction advice. Only
class filtering is logical.

The getInterfaces() method returns the interfaces introduced by this advisor.
The validateInterfaces() method is used internally to see whether or not the introduced
interfaces can be implemented by the configured IntroductionInterceptor .

Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the
following interface to one or more objects:

public interface Lockable {
void lock();
void unlock();
boolean locked();

}

This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type, and
call lock and unlock methods. If we call the lock() method, we want all setter methods to throw a
LockedException. Thus we can add an aspect that provides the ability to make objects immutable,
without them having any knowledge of it: a good example of AOP.

Firstly, we'll need an IntroductionInterceptor that does the heavy lifting. In this case, we
extend the
org.springframework.aop.support.DelegatingIntroductionInterceptor
convenience class. We could implement IntroductionInterceptor directly, but using
DelegatingIntroductionInterceptor is best for most cases.

The DelegatingIntroductionInterceptor is designed to delegate an introduction to an actual
implementation of the introduced interface(s), concealing the use of interception to do so. The delegate
can be set to any object using a constructor argument; the default delegate (when the no-arg constructor is
used) is this. Thus in the example below, the delegate is the LockMixin subclass of
DelegatingIntroductionInterceptor. Given a delegate (by default itself), a
DelegatingIntroductionInterceptor instance looks for all interfaces implemented by the
delegate (other than IntroductionInterceptor), and will support introductions against any of them. It's
possible for subclasses such as LockMixin to call the suppressInterface(Class intf)
method to suppress interfaces that should not be exposed. However, no matter how many interfaces an
IntroductionInterceptor is prepared to support, the IntroductionAdvisor used will
control which interfaces are actually exposed. An introduced interface will conceal any implementation of
the same interface by the target.

Thus LockMixin subclasses DelegatingIntroductionInterceptor and implements Lockable
itself. The superclass automatically picks up that Lockable can be supported for introduction, so we don't

Spring Framework

3.1 Reference Documentation 263

need to specify that. We could introduce any number of interfaces in this way.

Note the use of the locked instance variable. This effectively adds additional state to that held in the
target object.

public class LockMixin extends DelegatingIntroductionInterceptor
implements Lockable {

private boolean locked;

public void lock() {
this.locked = true;

}

public void unlock() {
this.locked = false;

}

public boolean locked() {
return this.locked;

}

public Object invoke(MethodInvocation invocation) throws Throwable {
if (locked() && invocation.getMethod().getName().indexOf("set") == 0)

throw new LockedException();
return super.invoke(invocation);

}

}

Often it isn't necessary to override the invoke() method: the
DelegatingIntroductionInterceptor implementation - which calls the delegate method if the
method is introduced, otherwise proceeds towards the join point - is usually sufficient. In the present case,
we need to add a check: no setter method can be invoked if in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct LockMixin instance,
and specify the introduced interfaces - in this case, just Lockable. A more complex example might take
a reference to the introduction interceptor (which would be defined as a prototype): in this case, there's no
configuration relevant for a LockMixin, so we simply create it using new.

public class LockMixinAdvisor extends DefaultIntroductionAdvisor {

public LockMixinAdvisor() {
super(new LockMixin(), Lockable.class);

}
}

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It's
impossible to use an IntroductionInterceptor without an IntroductionAdvisor.) As usual with
introductions, the advisor must be per-instance, as it is stateful. We need a different instance of
LockMixinAdvisor, and hence LockMixin, for each advised object. The advisor comprises part of
the advised object's state.

We can apply this advisor programmatically, using the Advised.addAdvisor() method, or (the

Spring Framework

3.1 Reference Documentation 264

recommended way) in XML configuration, like any other advisor. All proxy creation choices discussed
below, including "auto proxy creators," correctly handle introductions and stateful mixins.

9.4 Advisor API in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut
expression.

Apart from the special case of introductions, any advisor can be used with any advice.
org.springframework.aop.support.DefaultPointcutAdvisor is the most commonly
used advisor class. For example, it can be used with a MethodInterceptor, BeforeAdvice or
ThrowsAdvice.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could
use a interception around advice, throws advice and before advice in one proxy configuration: Spring will
automatically create the necessary interceptor chain.

9.5 Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring IoC container (an ApplicationContext or BeanFactory) for your business
objects - and you should be! - you will want to use one of Spring's AOP FactoryBeans. (Remember that a
factory bean introduces a layer of indirection, enabling it to create objects of a different type.)

Note

The Spring 2.0 AOP support also uses factory beans under the covers.

The basic way to create an AOP proxy in Spring is to use the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts
and advice that will apply, and their ordering. However, there are simpler options that are preferable if
you don't need such control.

Basics

The ProxyFactoryBean, like other Spring FactoryBean implementations, introduces a level of
indirection. If you define a ProxyFactoryBean with name foo, what objects referencing foo see is
not the ProxyFactoryBean instance itself, but an object created by the ProxyFactoryBean's
implementation of the getObject() method. This method will create an AOP proxy wrapping a target
object.

One of the most important benefits of using a ProxyFactoryBean or another IoC-aware class to
create AOP proxies, is that it means that advices and pointcuts can also be managed by IoC. This is a
powerful feature, enabling certain approaches that are hard to achieve with other AOP frameworks. For

Spring Framework

3.1 Reference Documentation 265

example, an advice may itself reference application objects (besides the target, which should be available
in any AOP framework), benefiting from all the pluggability provided by Dependency Injection.

JavaBean properties

In common with most FactoryBean implementations provided with Spring, the
ProxyFactoryBean class is itself a JavaBean. Its properties are used to:

• Specify the target you want to proxy.

• Specify whether to use CGLIB (see below and also the section called “JDK- and CGLIB-based
proxies”).

Some key properties are inherited from
org.springframework.aop.framework.ProxyConfig (the superclass for all AOP proxy
factories in Spring). These key properties include:

• proxyTargetClass: true if the target class is to be proxied, rather than the target class'
interfaces. If this property value is set to true, then CGLIB proxies will be created (but see also the
section called “JDK- and CGLIB-based proxies”).

• optimize: controls whether or not aggressive optimizations are applied to proxies created via
CGLIB. One should not blithely use this setting unless one fully understands how the relevant AOP
proxy handles optimization. This is currently used only for CGLIB proxies; it has no effect with JDK
dynamic proxies.

• frozen: if a proxy configuration is frozen, then changes to the configuration are no longer allowed.
This is useful both as a slight optimization and for those cases when you don't want callers to be able to
manipulate the proxy (via the Advised interface) after the proxy has been created. The default value
of this property is false, so changes such as adding additional advice are allowed.

• exposeProxy: determines whether or not the current proxy should be exposed in a ThreadLocal
so that it can be accessed by the target. If a target needs to obtain the proxy and the exposeProxy
property is set to true, the target can use the AopContext.currentProxy() method.

Other properties specific to ProxyFactoryBean include:

• proxyInterfaces: array of String interface names. If this isn't supplied, a CGLIB proxy for the
target class will be used (but see also the section called “JDK- and CGLIB-based proxies”).

• interceptorNames: String array of Advisor, interceptor or other advice names to apply.
Ordering is significant, on a first come-first served basis. That is to say that the first interceptor in the
list will be the first to be able to intercept the invocation.

The names are bean names in the current factory, including bean names from ancestor factories. You
can't mention bean references here since doing so would result in the ProxyFactoryBean ignoring
the singleton setting of the advice.

Spring Framework

3.1 Reference Documentation 266

You can append an interceptor name with an asterisk (*). This will result in the application of all
advisor beans with names starting with the part before the asterisk to be applied. An example of using
this feature can be found in the section called “Using 'global' advisors”.

• singleton: whether or not the factory should return a single object, no matter how often the
getObject() method is called. Several FactoryBean implementations offer such a method. The
default value is true. If you want to use stateful advice - for example, for stateful mixins - use
prototype advices along with a singleton value of false.

JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the ProxyFactoryBean chooses to create
one of either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

Note

The behavior of the ProxyFactoryBean with regard to creating JDK- or CGLIB-based
proxies changed between versions 1.2.x and 2.0 of Spring. The ProxyFactoryBean now
exhibits similar semantics with regard to auto-detecting interfaces as those of the
TransactionProxyFactoryBean class.

If the class of a target object that is to be proxied (hereafter simply referred to as the target class) doesn't
implement any interfaces, then a CGLIB-based proxy will be created. This is the easiest scenario, because
JDK proxies are interface based, and no interfaces means JDK proxying isn't even possible. One simply
plugs in the target bean, and specifies the list of interceptors via the interceptorNames property.
Note that a CGLIB-based proxy will be created even if the proxyTargetClass property of the
ProxyFactoryBean has been set to false. (Obviously this makes no sense, and is best removed
from the bean definition because it is at best redundant, and at worst confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created depends on
the configuration of the ProxyFactoryBean.

If the proxyTargetClass property of the ProxyFactoryBean has been set to true, then a
CGLIB-based proxy will be created. This makes sense, and is in keeping with the principle of least
surprise. Even if the proxyInterfaces property of the ProxyFactoryBean has been set to one or
more fully qualified interface names, the fact that the proxyTargetClass property is set to true will
cause CGLIB-based proxying to be in effect.

If the proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully
qualified interface names, then a JDK-based proxy will be created. The created proxy will implement all
of the interfaces that were specified in the proxyInterfaces property; if the target class happens to
implement a whole lot more interfaces than those specified in the proxyInterfaces property, that is
all well and good but those additional interfaces will not be implemented by the returned proxy.

Spring Framework

3.1 Reference Documentation 267

If the proxyInterfaces property of the ProxyFactoryBean has not been set, but the target class
does implement one (or more) interfaces, then the ProxyFactoryBean will auto-detect the fact that
the target class does actually implement at least one interface, and a JDK-based proxy will be created.
The interfaces that are actually proxied will be all of the interfaces that the target class implements; in
effect, this is the same as simply supplying a list of each and every interface that the target class
implements to the proxyInterfaces property. However, it is significantly less work, and less prone
to typos.

Proxying interfaces

Let's look at a simple example of ProxyFactoryBean in action. This example involves:

• A target bean that will be proxied. This is the "personTarget" bean definition in the example below.

• An Advisor and an Interceptor used to provide advice.

• An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces
to proxy, along with the advices to apply.

<bean id="personTarget" class="com.mycompany.PersonImpl">
<property name="name" value="Tony"/>
<property name="age" value="51"/>

</bean>

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
<property name="someProperty" value="Custom string property value"/>

</bean>

<bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor">
</bean>

<bean id="person"
class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces" value="com.mycompany.Person"/>

<property name="target" ref="personTarget"/>
<property name="interceptorNames">

<list>
<value>myAdvisor</value>
<value>debugInterceptor</value>

</list>
</property>

</bean>

Note that the interceptorNames property takes a list of String: the bean names of the interceptor or
advisors in the current factory. Advisors, interceptors, before, after returning and throws advice objects
can be used. The ordering of advisors is significant.

Note

You might be wondering why the list doesn't hold bean references. The reason for this is that
if the ProxyFactoryBean's singleton property is set to false, it must be able to return

Spring Framework

3.1 Reference Documentation 268

independent proxy instances. If any of the advisors is itself a prototype, an independent
instance would need to be returned, so it's necessary to be able to obtain an instance of the
prototype from the factory; holding a reference isn't sufficient.

The "person" bean definition above can be used in place of a Person implementation, as follows:

Person person = (Person) factory.getBean("person");

Other beans in the same IoC context can express a strongly typed dependency on it, as with an ordinary
Java object:

<bean id="personUser" class="com.mycompany.PersonUser">
<property name="person"><ref local="person"/></property>

</bean>

The PersonUser class in this example would expose a property of type Person. As far as it's concerned,
the AOP proxy can be used transparently in place of a "real" person implementation. However, its class
would be a dynamic proxy class. It would be possible to cast it to the Advised interface (discussed
below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as
follows. Only the ProxyFactoryBean definition is different; the advice is included only for
completeness:

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
<property name="someProperty" value="Custom string property value"/>

</bean>

<bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor"/>

<bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces" value="com.mycompany.Person"/>
<!-- Use inner bean, not local reference to target -->
<property name="target">

<bean class="com.mycompany.PersonImpl">
<property name="name" value="Tony"/>
<property name="age" value="51"/>

</bean>
</property>
<property name="interceptorNames">

<list>
<value>myAdvisor</value>
<value>debugInterceptor</value>

</list>
</property>

</bean>

This has the advantage that there's only one object of type Person: useful if we want to prevent users of
the application context from obtaining a reference to the un-advised object, or need to avoid any
ambiguity with Spring IoC autowiring. There's also arguably an advantage in that the ProxyFactoryBean

Spring Framework

3.1 Reference Documentation 269

definition is self-contained. However, there are times when being able to obtain the un-advised target
from the factory might actually be an advantage: for example, in certain test scenarios.

Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Person interface: we needed to advise a class called
Person that didn't implement any business interface. In this case, you can configure Spring to use
CGLIB proxying, rather than dynamic proxies. Simply set the proxyTargetClass property on the
ProxyFactoryBean above to true. While it's best to program to interfaces, rather than classes, the ability to
advise classes that don't implement interfaces can be useful when working with legacy code. (In general,
Spring isn't prescriptive. While it makes it easy to apply good practices, it avoids forcing a particular
approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this
generated subclass to delegate method calls to the original target: the subclass is used to implement the
Decorator pattern, weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:

• Final methods can't be advised, as they can't be overridden.

• You'll need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK.

There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are slightly faster. However, this may change in the future. Performance should not be a
decisive consideration in this case.

Using 'global' advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before
the asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard set
of 'global' advisors:

<bean id="proxy" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="target" ref="service"/>
<property name="interceptorNames">

<list>
<value>global*</value>

</list>
</property>

</bean>

<bean id="global_debug" class="org.springframework.aop.interceptor.DebugInterceptor"/>
<bean id="global_performance" class="org.springframework.aop.interceptor.PerformanceMonitorInterceptor"/>

Spring Framework

3.1 Reference Documentation 270

9.6 Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy definitions. The
use of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and
more concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean id="txProxyTemplate" abstract="true"
class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">

<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributes">

<props>
<prop key="*">PROPAGATION_REQUIRED</prop>

</props>
</property>

</bean>

This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be
created is just a child bean definition, which wraps the target of the proxy as an inner bean definition,
since the target will never be used on its own anyway.

<bean id="myService" parent="txProxyTemplate">
<property name="target">

<bean class="org.springframework.samples.MyServiceImpl">
</bean>

</property>
</bean>

It is of course possible to override properties from the parent template, such as in this case, the transaction
propagation settings:

<bean id="mySpecialService" parent="txProxyTemplate">
<property name="target">

<bean class="org.springframework.samples.MySpecialServiceImpl">
</bean>

</property>
<property name="transactionAttributes">

<props>
<prop key="get*">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="find*">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="load*">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="store*">PROPAGATION_REQUIRED</prop>

</props>
</property>

</bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using
the abstract attribute, as described previously, so that it may not actually ever be instantiated. Application
contexts (but not simple bean factories) will by default pre-instantiate all singletons. It is therefore
important (at least for singleton beans) that if you have a (parent) bean definition which you intend to use
only as a template, and this definition specifies a class, you must make sure to set the abstract attribute to
true, otherwise the application context will actually try to pre-instantiate it.

Spring Framework

3.1 Reference Documentation 271

9.7 Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP
without dependency on Spring IoC.

The following listing shows creation of a proxy for a target object, with one interceptor and one advisor.
The interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFactory(myBusinessInterfaceImpl);
factory.addAdvice(myMethodInterceptor);
factory.addAdvisor(myAdvisor);
MyBusinessInterface tb = (MyBusinessInterface) factory.getProxy();

The first step is to construct an object of type
org.springframework.aop.framework.ProxyFactory. You can create this with a target
object, as in the above example, or specify the interfaces to be proxied in an alternate constructor.

You can add advices (with interceptors as a specialized kind of advice) and/or advisors, and manipulate
them for the life of the ProxyFactory. If you add an IntroductionInterceptionAroundAdvisor, you can
cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport) which allow
you to add other advice types such as before and throws advice. AdvisedSupport is the superclass of both
ProxyFactory and ProxyFactoryBean.

Tip

Integrating AOP proxy creation with the IoC framework is best practice in most applications.
We recommend that you externalize configuration from Java code with AOP, as in general.

9.8 Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org.springframework.aop.framework.Advised interface. Any AOP proxy can be cast to
this interface, whichever other interfaces it implements. This interface includes the following methods:

Advisor[] getAdvisors();

void addAdvice(Advice advice) throws AopConfigException;

void addAdvice(int pos, Advice advice)
throws AopConfigException;

void addAdvisor(Advisor advisor) throws AopConfigException;

Spring Framework

3.1 Reference Documentation 272

void addAdvisor(int pos, Advisor advisor) throws AopConfigException;

int indexOf(Advisor advisor);

boolean removeAdvisor(Advisor advisor) throws AopConfigException;

void removeAdvisor(int index) throws AopConfigException;

boolean replaceAdvisor(Advisor a, Advisor b) throws AopConfigException;

boolean isFrozen();

The getAdvisors() method will return an Advisor for every advisor, interceptor or other advice type
that has been added to the factory. If you added an Advisor, the returned advisor at this index will be the
object that you added. If you added an interceptor or other advice type, Spring will have wrapped this in
an advisor with a pointcut that always returns true. Thus if you added a MethodInterceptor, the
advisor returned for this index will be an DefaultPointcutAdvisor returning your
MethodInterceptor and a pointcut that matches all classes and methods.

The addAdvisor() methods can be used to add any Advisor. Usually the advisor holding pointcut and
advice will be the generic DefaultPointcutAdvisor, which can be used with any advice or
pointcut (but not for introductions).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The
only restriction is that it's impossible to add or remove an introduction advisor, as existing proxies from
the factory will not show the interface change. (You can obtain a new proxy from the factory to avoid this
problem.)

A simple example of casting an AOP proxy to the Advised interface and examining and manipulating
its advice:

Advised advised = (Advised) myObject;
Advisor[] advisors = advised.getAdvisors();
int oldAdvisorCount = advisors.length;
System.out.println(oldAdvisorCount + " advisors");

// Add an advice like an interceptor without a pointcut
// Will match all proxied methods
// Can use for interceptors, before, after returning or throws advice
advised.addAdvice(new DebugInterceptor());

// Add selective advice using a pointcut
advised.addAdvisor(new DefaultPointcutAdvisor(mySpecialPointcut, myAdvice));

assertEquals("Added two advisors",
oldAdvisorCount + 2, advised.getAdvisors().length);

Note

It's questionable whether it's advisable (no pun intended) to modify advice on a business
object in production, although there are no doubt legitimate usage cases. However, it can be
very useful in development: for example, in tests. I have sometimes found it very useful to be
able to add test code in the form of an interceptor or other advice, getting inside a method

Spring Framework

3.1 Reference Documentation 273

invocation I want to test. (For example, the advice can get inside a transaction created for that
method: for example, to run SQL to check that a database was correctly updated, before
marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set a frozen flag, in which case the
Advised isFrozen() method will return true, and any attempts to modify advice through addition or
removal will result in an AopConfigException. The ability to freeze the state of an advised object is
useful in some cases, for example, to prevent calling code removing a security interceptor. It may also be
used in Spring 1.1 to allow aggressive optimization if runtime advice modification is known not to be
required.

9.9 Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a ProxyFactoryBean or similar
factory bean.

Spring also allows us to use "autoproxy" bean definitions, which can automatically proxy selected bean
definitions. This is built on Spring "bean post processor" infrastructure, which enables modification of
any bean definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file to configure the
auto proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't
need to use ProxyFactoryBean.

There are two ways to do this:

• Using an autoproxy creator that refers to specific beans in the current context.

• A special case of autoproxy creation that deserves to be considered separately; autoproxy creation
driven by source-level metadata attributes.

Autoproxy bean definitions

The org.springframework.aop.framework.autoproxy package provides the following
standard autoproxy creators.

BeanNameAutoProxyCreator

The BeanNameAutoProxyCreator class is a BeanPostProcessor that automatically creates
AOP proxies for beans with names matching literal values or wildcards.

<bean class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">
<property name="beanNames" value="jdk*,onlyJdk"/>

Spring Framework

3.1 Reference Documentation 274

<property name="interceptorNames">
<list>
<value>myInterceptor</value>

</list>
</property>

</bean>

As with ProxyFactoryBean, there is an interceptorNames property rather than a list of
interceptors, to allow correct behavior for prototype advisors. Named "interceptors" can be advisors or
any advice type.

As with auto proxying in general, the main point of using BeanNameAutoProxyCreator is to apply
the same configuration consistently to multiple objects, with minimal volume of configuration. It is a
popular choice for applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are
plain old bean definitions with the target class. An AOP proxy will be created automatically by the
BeanNameAutoProxyCreator. The same advice will be applied to all matching beans. Note that if
advisors are used (rather than the interceptor in the above example), the pointcuts may apply differently to
different beans.

DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is
DefaultAdvisorAutoProxyCreator. This will automagically apply eligible advisors in the
current context, without the need to include specific bean names in the autoproxy advisor's bean
definition. It offers the same merit of consistent configuration and avoidance of duplication as
BeanNameAutoProxyCreator.

Using this mechanism involves:

• Specifying a DefaultAdvisorAutoProxyCreator bean definition.

• Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors,
not just interceptors or other advices. This is necessary because there must be a pointcut to evaluate, to
check the eligibility of each advice to candidate bean definitions.

The DefaultAdvisorAutoProxyCreator will automatically evaluate the pointcut contained in
each advisor, to see what (if any) advice it should apply to each business object (such as
"businessObject1" and "businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no
pointcut in any of the advisors matches any method in a business object, the object will not be proxied. As
bean definitions are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain
an un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP
proxy, not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)

Spring Framework

3.1 Reference Documentation 275

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
<property name="transactionInterceptor" ref="transactionInterceptor"/>

</bean>

<bean id="customAdvisor" class="com.mycompany.MyAdvisor"/>

<bean id="businessObject1" class="com.mycompany.BusinessObject1">
<!-- Properties omitted -->

</bean>

<bean id="businessObject2" class="com.mycompany.BusinessObject2"/>

The DefaultAdvisorAutoProxyCreator is very useful if you want to apply the same advice
consistently to many business objects. Once the infrastructure definitions are in place, you can simply add
new business objects without including specific proxy configuration. You can also drop in additional
aspects very easily - for example, tracing or performance monitoring aspects - with minimal change to
configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only
certain advisors are evaluated, allowing use of multiple, differently configured,
AdvisorAutoProxyCreators in the same factory) and ordering. Advisors can implement the
org.springframework.core.Ordered interface to ensure correct ordering if this is an issue. The
TransactionAttributeSourceAdvisor used in the above example has a configurable order value; the default
setting is unordered.

AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy creators
by subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to
the behavior of the framework DefaultAdvisorAutoProxyCreator.

Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar
programming model to .NET ServicedComponents. Instead of using XML deployment descriptors
as in EJB, configuration for transaction management and other enterprise services is held in source-level
attributes.

In this case, you use the DefaultAdvisorAutoProxyCreator, in combination with Advisors that
understand metadata attributes. The metadata specifics are held in the pointcut part of the candidate
advisors, rather than in the autoproxy creation class itself.

This is really a special case of the DefaultAdvisorAutoProxyCreator, but deserves
consideration on its own. (The metadata-aware code is in the pointcuts contained in the advisors, not the
AOP framework itself.)

Spring Framework

3.1 Reference Documentation 276

The /attributes directory of the JPetStore sample application shows the use of attribute-driven
autoproxying. In this case, there's no need to use the TransactionProxyFactoryBean. Simply
defining transactional attributes on business objects is sufficient, because of the use of metadata-aware
pointcuts. The bean definitions include the following code, in
/WEB-INF/declarativeServices.xml. Note that this is generic, and can be used outside the
JPetStore:

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
<property name="transactionInterceptor" ref="transactionInterceptor"/>

</bean>

<bean id="transactionInterceptor"
class="org.springframework.transaction.interceptor.TransactionInterceptor">

<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributeSource">

<bean class="org.springframework.transaction.interceptor.AttributesTransactionAttributeSource">
<property name="attributes" ref="attributes"/>

</bean>
</property>

</bean>

<bean id="attributes" class="org.springframework.metadata.commons.CommonsAttributes"/>

The DefaultAdvisorAutoProxyCreator bean definition (the name is not significant, hence it can
even be omitted) will pick up all eligible pointcuts in the current application context. In this case, the
"transactionAdvisor" bean definition, of type TransactionAttributeSourceAdvisor, will
apply to classes or methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor
depends on a TransactionInterceptor, via constructor dependency. The example resolves this via
autowiring. The AttributesTransactionAttributeSource depends on an implementation of
the org.springframework.metadata.Attributes interface. In this fragment, the "attributes"
bean satisfies this, using the Jakarta Commons Attributes API to obtain attribute information. (The
application code must have been compiled using the Commons Attributes compilation task.)

The /annotation directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection
of Spring's Transactional annotation, leading to implicit proxies for beans containing that
annotation:

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
<property name="transactionInterceptor" ref="transactionInterceptor"/>

</bean>

<bean id="transactionInterceptor"
class="org.springframework.transaction.interceptor.TransactionInterceptor">

<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributeSource">

<bean class="org.springframework.transaction.annotation.AnnotationTransactionAttributeSource"/>
</property>

</bean>

Spring Framework

3.1 Reference Documentation 277

The TransactionInterceptor defined here depends on a PlatformTransactionManager
definition, which is not included in this generic file (although it could be) because it will be specific to the
application's transaction requirements (typically JTA, as in this example, or Hibernate, JDO or JDBC):

<bean id="transactionManager"
class="org.springframework.transaction.jta.JtaTransactionManager"/>

Tip

If you require only declarative transaction management, using these generic XML definitions
will result in Spring automatically proxying all classes or methods with transaction attributes.
You won't need to work directly with AOP, and the programming model is similar to that of
.NET ServicedComponents.

This mechanism is extensible. It's possible to do autoproxying based on custom attributes. You need to:

• Define your custom attribute.

• Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence of
the custom attribute on a class or method. You may be able to use an existing advice, merely
implementing a static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they simply need
to be defined as prototype, rather than singleton, bean definitions. For example, the LockMixin
introduction interceptor from the Spring test suite, shown above, could be used in conjunction with an
attribute-driven pointcut to target a mixin, as shown here. We use the generic
DefaultPointcutAdvisor, configured using JavaBean properties:

<bean id="lockMixin" class="org.springframework.aop.LockMixin"
scope="prototype"/>

<bean id="lockableAdvisor" class="org.springframework.aop.support.DefaultPointcutAdvisor"
scope="prototype">

<property name="pointcut" ref="myAttributeAwarePointcut"/>
<property name="advice" ref="lockMixin"/>

</bean>

<bean id="anyBean" class="anyclass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin
will be applied. Note that both lockMixin and lockableAdvisor definitions are prototypes. The
myAttributeAwarePointcut pointcut can be a singleton definition, as it doesn't hold state for
individual advised objects.

9.10 Using TargetSources

Spring Framework

3.1 Reference Documentation 278

Spring offers the concept of a TargetSource, expressed in the
org.springframework.aop.TargetSource interface. This interface is responsible for returning
the "target object" implementing the join point. The TargetSource implementation is asked for a
target instance each time the AOP proxy handles a method invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides
a powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a
pooling TargetSource can return a different target instance for each invocation, using a pool to manage
instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The same
target is returned for each invocation (as you would expect).

Let's look at the standard target sources provided with Spring, and how you can use them.

Tip

When using a custom target source, your target will usually need to be a prototype rather than
a singleton bean definition. This allows Spring to create a new target instance when required.

Hot swappable target sources

The org.springframework.aop.target.HotSwappableTargetSource exists to allow the
target of an AOP proxy to be switched while allowing callers to keep their references to it.

Changing the target source's target takes effect immediately. The HotSwappableTargetSource is
threadsafe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:

HotSwappableTargetSource swapper =
(HotSwappableTargetSource) beanFactory.getBean("swapper");

Object oldTarget = swapper.swap(newTarget);

The XML definitions required look as follows:

<bean id="initialTarget" class="mycompany.OldTarget"/>

<bean id="swapper" class="org.springframework.aop.target.HotSwappableTargetSource">
<constructor-arg ref="initialTarget"/>

</bean>

<bean id="swappable" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="targetSource" ref="swapper"/>

</bean>

The above swap() call changes the target of the swappable bean. Clients who hold a reference to that

Spring Framework

3.1 Reference Documentation 279

bean will be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice - and it's not necessary to add advice to use a
TargetSource - of course any TargetSource can be used in conjunction with arbitrary advice.

Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in which a
pool of identical instances is maintained, with method invocations going to free objects in the pool.

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to
any POJO. As with Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.3, which provides a fairly efficient
pooling implementation. You'll need the commons-pool Jar on your application's classpath to use this
feature. It's also possible to subclass
org.springframework.aop.target.AbstractPoolingTargetSource to support any
other pooling API.

Sample configuration is shown below:

<bean id="businessObjectTarget" class="com.mycompany.MyBusinessObject"
scope="prototype">

... properties omitted
</bean>

<bean id="poolTargetSource" class="org.springframework.aop.target.CommonsPoolTargetSource">
<property name="targetBeanName" value="businessObjectTarget"/>
<property name="maxSize" value="25"/>

</bean>

<bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="targetSource" ref="poolTargetSource"/>
<property name="interceptorNames" value="myInterceptor"/>

</bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows the
PoolingTargetSource implementation to create new instances of the target to grow the pool as
necessary. See the javadoc for AbstractPoolingTargetSource and the concrete subclass you
wish to use for information about its properties: "maxSize" is the most basic, and always guaranteed to be
present.

In this case, "myInterceptor" is the name of an interceptor that would need to be defined in the same IoC
context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and
no other advice, don't set the interceptorNames property at all.

It's possible to configure Spring so as to be able to cast any pooled object to the
org.springframework.aop.target.PoolingConfig interface, which exposes information
about the configuration and current size of the pool through an introduction. You'll need to define an
advisor like this:

Spring Framework

3.1 Reference Documentation 280

<bean id="poolConfigAdvisor" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
<property name="targetObject" ref="poolTargetSource"/>
<property name="targetMethod" value="getPoolingConfigMixin"/>

</bean>

This advisor is obtained by calling a convenience method on the AbstractPoolingTargetSource
class, hence the use of MethodInvokingFactoryBean. This advisor's name ("poolConfigAdvisor" here)
must be in the list of interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look as follows:

PoolingConfig conf = (PoolingConfig) beanFactory.getBean("businessObject");
System.out.println("Max pool size is " + conf.getMaxSize());

Note

Pooling stateless service objects is not usually necessary. We don't believe it should be the
default choice, as most stateless objects are naturally thread safe, and instance pooling is
problematic if resources are cached.

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any
autoproxy creator.

Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance of
the target will be created on every method invocation. Although the cost of creating a new object isn't
high in a modern JVM, the cost of wiring up the new object (satisfying its IoC dependencies) may be
more expensive. Thus you shouldn't use this approach without very good reason.

To do this, you could modify the poolTargetSource definition shown above as follows. (I've also
changed the name, for clarity.)

<bean id="prototypeTargetSource" class="org.springframework.aop.target.PrototypeTargetSource">
<property name="targetBeanName" ref="businessObjectTarget"/>

</bean>

There's only one property: the name of the target bean. Inheritance is used in the TargetSource
implementations to ensure consistent naming. As with the pooling target source, the target bean must be a
prototype bean definition.

ThreadLocal target sources

ThreadLocal target sources are useful if you need an object to be created for each incoming request
(per thread that is). The concept of a ThreadLocal provide a JDK-wide facility to transparently store

Spring Framework

3.1 Reference Documentation 281

resource alongside a thread. Setting up a ThreadLocalTargetSource is pretty much the same as
was explained for the other types of target source:

<bean id="threadlocalTargetSource" class="org.springframework.aop.target.ThreadLocalTargetSource">
<property name="targetBeanName" value="businessObjectTarget"/>

</bean>

Note

ThreadLocals come with serious issues (potentially resulting in memory leaks) when
incorrectly using them in a multi-threaded and multi-classloader environments. One should
always consider wrapping a threadlocal in some other class and never directly use the
ThreadLocal itself (except of course in the wrapper class). Also, one should always
remember to correctly set and unset (where the latter simply involved a call to
ThreadLocal.set(null)) the resource local to the thread. Unsetting should be done in
any case since not unsetting it might result in problematic behavior. Spring's ThreadLocal
support does this for you and should always be considered in favor of using ThreadLocals
without other proper handling code.

9.11 Defining new Advice types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently used
internally, it is possible to support arbitrary advice types in addition to the out-of-the-box interception
around advice, before, throws advice and after returning advice.

The org.springframework.aop.framework.adapter package is an SPI package allowing
support for new custom advice types to be added without changing the core framework. The only
constraint on a custom Advice type is that it must implement the org.aopalliance.aop.Advice
tag interface.

Please refer to the org.springframework.aop.framework.adapter package's Javadocs for
further information.

9.12 Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:

• The JPetStore's default configuration illustrates the use of the TransactionProxyFactoryBean
for declarative transaction management.

• The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative
transaction management.

Spring Framework

3.1 Reference Documentation 282

10. Testing

10.1 Introduction to Spring Testing

Testing is an integral part of enterprise software development. This chapter focuses on the value-add of
the IoC principle to unit testing and on the benefits of the Spring Framework's support for integration
testing. (A thorough treatment of testing in the enterprise is beyond the scope of this reference manual.)

10.2 Unit Testing

Dependency Injection should make your code less dependent on the container than it would be with
traditional Java EE development. The POJOs that make up your application should be testable in JUnit or
TestNG tests, with objects simply instantiated using the new operator, without Spring or any other
container. You can use mock objects (in conjunction with other valuable testing techniques) to test your
code in isolation. If you follow the architecture recommendations for Spring, the resulting clean layering
and componentization of your codebase will facilitate easier unit testing. For example, you can test
service layer objects by stubbing or mocking DAO or Repository interfaces, without needing to access
persistent data while running unit tests.

True unit tests typically run extremely quickly, as there is no runtime infrastructure to set up.
Emphasizing true unit tests as part of your development methodology will boost your productivity. You
may not need this section of the testing chapter to help you write effective unit tests for your IoC-based
applications. For certain unit testing scenarios, however, the Spring Framework provides the following
mock objects and testing support classes.

Mock Objects

JNDI

The org.springframework.mock.jndi package contains an implementation of the JNDI SPI,
which you can use to set up a simple JNDI environment for test suites or stand-alone applications. If, for
example, JDBC DataSources get bound to the same JNDI names in test code as within a Java EE
container, you can reuse both application code and configuration in testing scenarios without
modification.

Servlet API

The org.springframework.mock.web package contains a comprehensive set of Servlet API
mock objects, targeted at usage with Spring's Web MVC framework, which are useful for testing web
contexts and controllers. These mock objects are generally more convenient to use than dynamic mock
objects such as EasyMock or existing Servlet API mock objects such as MockObjects.

Spring Framework

3.1 Reference Documentation 283

http://www.easymock.org
http://www.mockobjects.com

Portlet API

The org.springframework.mock.web.portlet package contains a set of Portlet API mock
objects, targeted at usage with Spring's Portlet MVC framework.

Unit Testing support Classes

General utilities

The org.springframework.test.util package contains ReflectionTestUtils, which is a
collection of reflection-based utility methods. Developers use these methods in unit and integration
testing scenarios in which they need to set a non-public field or invoke a non-public setter method
when testing application code involving, for example:

• ORM frameworks such as JPA and Hibernate that condone private or protected field access as
opposed to public setter methods for properties in a domain entity.

• Spring's support for annotations such as @Autowired, @Inject, and @Resource, which provides
dependency injection for private or protected fields, setter methods, and configuration methods.

Spring MVC

The org.springframework.test.web package contains ModelAndViewAssert, which you
can use in combination with JUnit, TestNG, or any other testing framework for unit tests dealing with
Spring MVC ModelAndView objects.

Unit testing Spring MVC Controllers

To test your Spring MVC Controllers, use ModelAndViewAssert combined with
MockHttpServletRequest, MockHttpSession, and so on from the
org.springframework.mock.web package.

10.3 Integration Testing

Overview

It is important to be able to perform some integration testing without requiring deployment to your
application server or connecting to other enterprise infrastructure. This will enable you to test things such
as:

• The correct wiring of your Spring IoC container contexts.

Spring Framework

3.1 Reference Documentation 284

• Data access using JDBC or an ORM tool. This would include such things as the correctness of SQL
statements, Hibernate queries, JPA entity mappings, etc.

The Spring Framework provides first-class support for integration testing in the spring-test module.
The name of the actual JAR file might include the release version and might also be in the long
org.springframework.test form, depending on where you get it from (see the section on
Dependency Management for an explanation). This library includes the
org.springframework.test package, which contains valuable classes for integration testing with
a Spring container. This testing does not rely on an application server or other deployment environment.
Such tests are slower to run than unit tests but much faster than the equivalent Cactus tests or remote tests
that rely on deployment to an application server.

In Spring 2.5 and later, unit and integration testing support is provided in the form of the
annotation-driven Spring TestContext Framework. The TestContext framework is agnostic of the actual
testing framework in use, thus allowing instrumentation of tests in various environments including JUnit,
TestNG, and so on.

JUnit 3.8 support is deprecated

As of Spring 3.0, the legacy JUnit 3.8 base class hierarchy (i.e.,
AbstractDependencyInjectionSpringContextTests,
AbstractTransactionalDataSourceSpringContextTests, etc.) is officially
deprecated and will be removed in a later release. Any test classes based on this code should
be migrated to the Spring TestContext Framework.

As of Spring 3.1, the JUnit 3.8 base classes in the Spring TestContext Framework (i.e.,
AbstractJUnit38SpringContextTests and
AbstractTransactionalJUnit38SpringContextTests) and
@ExpectedException have been officially deprecated and will be removed in a later
release. Any test classes based on this code should be migrated to the JUnit 4 or TestNG
support provided by the Spring TestContext Framework. Similarly, any test methods
annotated with @ExpectedException should be modified to use the built-in support for
expected exceptions in JUnit and TestNG.

Goals of Integration Testing

Spring's integration testing support has the following primary goals:

• To manage Spring IoC container caching between test execution.

• To provide Dependency Injection of test fixture instances.

• To provide transaction management appropriate to integration testing.

• To supply Spring-specific base classes that assist developers in writing integration tests.

Spring Framework

3.1 Reference Documentation 285

The next few sections describe each goal and provide links to implementation and configuration details.

Context management and caching

The Spring TestContext Framework provides consistent loading of Spring ApplicationContexts
and caching of those contexts. Support for the caching of loaded contexts is important, because startup
time can become an issue — not because of the overhead of Spring itself, but because the objects
instantiated by the Spring container take time to instantiate. For example, a project with 50 to 100
Hibernate mapping files might take 10 to 20 seconds to load the mapping files, and incurring that cost
before running every test in every test fixture leads to slower overall test runs that could reduce
productivity.

Test classes can provide either an array containing the resource locations of XML configuration metadata
— typically in the classpath — or an array containing @Configuration classes that is used to
configure the application. These locations or classes are the same as or similar to those specified in
web.xml or other deployment configuration files.

By default, once loaded, the configured ApplicationContext is reused for each test. Thus the setup
cost is incurred only once (per test suite), and subsequent test execution is much faster. In this context, the
term test suite means all tests run in the same JVM — for example, all tests run from an Ant or Maven
build for a given project or module. In the unlikely case that a test corrupts the application context and
requires reloading — for example, by modifying a bean definition or the state of an application object —
the TestContext framework can be configured to reload the configuration and rebuild the application
context before executing the next test.

See context management and caching with the TestContext framework.

Dependency Injection of test fixtures

When the TestContext framework loads your application context, it can optionally configure instances of
your test classes via Dependency Injection. This provides a convenient mechanism for setting up test
fixtures using preconfigured beans from your application context. A strong benefit here is that you can
reuse application contexts across various testing scenarios (e.g., for configuring Spring-managed object
graphs, transactional proxies, DataSources, etc.), thus avoiding the need to duplicate complex test
fixture set up for individual test cases.

As an example, consider the scenario where we have a class, HibernateTitleRepository, that
performs data access logic for a Title domain entity. We want to write integration tests that test the
following areas:

• The Spring configuration: basically, is everything related to the configuration of the
HibernateTitleRepository bean correct and present?

• The Hibernate mapping file configuration: is everything mapped correctly, and are the correct
lazy-loading settings in place?

Spring Framework

3.1 Reference Documentation 286

• The logic of the HibernateTitleRepository: does the configured instance of this class perform
as anticipated?

See dependency injection of test fixtures with the TestContext framework.

Transaction management

One common issue in tests that access a real database is their affect on the state of the persistence store.
Even when you're using a development database, changes to the state may affect future tests. Also, many
operations — such as inserting or modifying persistent data — cannot be performed (or verified) outside
a transaction.

The TestContext framework addresses this issue. By default, the framework will create and roll back a
transaction for each test. You simply write code that can assume the existence of a transaction. If you call
transactionally proxied objects in your tests, they will behave correctly, according to their configured
transactional semantics. In addition, if test methods delete the contents of selected tables while running
within a transaction, the transaction will roll back by default, and the database will return to its state prior
to execution of the test. Transactional support is provided to your test class via a
PlatformTransactionManager bean defined in the test's application context.

If you want a transaction to commit — unusual, but occasionally useful when you want a particular test to
populate or modify the database — the TestContext framework can be instructed to cause the transaction
to commit instead of roll back via the @TransactionConfiguration and @Rollback
annotations.

See transaction management with the TestContext framework.

Support classes for integration testing

The Spring TestContext Framework provides several abstract support classes that simplify the writing
of integration tests. These base test classes provide well-defined hooks into the testing framework as well
as convenient instance variables and methods, which enable you to access:

• The ApplicationContext, for performing explicit bean lookups or testing the state of the context
as a whole.

• A SimpleJdbcTemplate, for executing SQL statements to query the database. Such queries can be
used to confirm database state both prior to and after execution of database-related application code,
and Spring ensures that such queries run in the scope of the same transaction as the application code.
When used in conjunction with an ORM tool, be sure to avoid false positives.

In addition, you may want to create your own custom, application-wide superclass with instance variables
and methods specific to your project.

See support classes for the TestContext framework.

Spring Framework

3.1 Reference Documentation 287

JDBC Testing Support

The org.springframework.test.jdbc package contains SimpleJdbcTestUtils, which is a
collection of JDBC related utility functions intended to simplify standard database testing scenarios. Note
that AbstractTransactionalJUnit4SpringContextTests and
AbstractTransactionalTestNGSpringContextTests provide convenience methods which
delegate to SimpleJdbcTestUtils internally.

Annotations

Spring Testing Annotations

The Spring Framework provides the following set of Spring-specific annotations that you can use in your
unit and integration tests in conjunction with the TestContext framework. Refer to the respective Javadoc
for further information, including default attribute values, attribute aliases, and so on.

• @ContextConfiguration

Defines class-level metadata that is used to determine how to load and configure an
ApplicationContext for test classes. Specifically, @ContextConfiguration declares either
the application context resource locations or the @Configuration classes (but not both) to
load as well as the ContextLoader strategy to use for loading the context. Note, however, that you
typically do not need to explicitly configure the loader since the default loader supports either resource
locations or configuration classes.

@ContextConfiguration(locations="example/test-context.xml", loader=CustomContextLoader.class)
public class XmlApplicationContextTests {

// class body...
}

@ContextConfiguration(classes=MyConfig.class)
public class ConfigClassApplicationContextTests {

// class body...
}

Note

@ContextConfiguration provides support for inheriting resource locations or
configuration classes declared by superclasses by default.

See Context management and caching and Javadoc for examples and further details.

• @ActiveProfiles

A class-level annotation that is used to declare which bean definition profiles should be active when
loading an ApplicationContext for test classes.

Spring Framework

3.1 Reference Documentation 288

@ContextConfiguration
@ActiveProfiles("dev")
public class DeveloperTests {

// class body...
}

@ContextConfiguration
@ActiveProfiles({"dev", "integration"})
public class DeveloperIntegrationTests {

// class body...
}

Note

@ActiveProfiles provides support for inheriting active bean definition profiles
declared by superclasses classes by default.

See Context configuration with environment profiles and the Javadoc for @ActiveProfiles for
examples and further details.

• @DirtiesContext

Indicates that the underlying Spring ApplicationContext has been dirtied (i.e., modified or
corrupted in some manner) during the execution of a test and should be closed, regardless of whether
the test passed. @DirtiesContext is supported in the following scenarios:

• After the current test class, when declared on a class with class mode set to AFTER_CLASS, which
is the default class mode.

• After each test method in the current test class, when declared on a class with class mode set to
AFTER_EACH_TEST_METHOD.

• After the current test, when declared on a method.

Use this annotation if a test has modified the context (for example, by replacing a bean definition).
Subsequent tests are supplied a new context.

With JUnit 4.5+ or TestNG you can use @DirtiesContext as both a class-level and method-level
annotation within the same test class. In such scenarios, the ApplicationContext is marked as
dirty after any such annotated method as well as after the entire class. If the ClassMode is set to
AFTER_EACH_TEST_METHOD, the context is marked dirty after each test method in the class.

@DirtiesContext
public class ContextDirtyingTests {

// some tests that result in the Spring container being dirtied
}

@DirtiesContext(classMode = ClassMode.AFTER_EACH_TEST_METHOD)
public class ContextDirtyingTests {

// some tests that result in the Spring container being dirtied

Spring Framework

3.1 Reference Documentation 289

}

@DirtiesContext
@Test
public void testProcessWhichDirtiesAppCtx() {

// some logic that results in the Spring container being dirtied
}

When an application context is marked dirty, it is removed from the testing framework's cache and
closed; thus the underlying Spring container is rebuilt for any subsequent test that requires a context
with the same set of resource locations.

• @TestExecutionListeners

Defines class-level metadata for configuring which TestExecutionListeners should be
registered with the TestContextManager. Typically, @TestExecutionListeners is used in
conjunction with @ContextConfiguration.

@ContextConfiguration
@TestExecutionListeners({CustomTestExecutionListener.class, AnotherTestExecutionListener.class})
public class CustomTestExecutionListenerTests {

// class body...
}

@TestExecutionListeners supports inherited listeners by default. See the Javadoc for an
example and further details.

• @TransactionConfiguration

Defines class-level metadata for configuring transactional tests. Specifically, the bean name of the
PlatformTransactionManager that is to be used to drive transactions can be explicitly
configured if the bean name of the desired PlatformTransactionManager is not
"transactionManager". In addition, you can change the defaultRollback flag to false.
Typically, @TransactionConfiguration is used in conjunction with
@ContextConfiguration.

@ContextConfiguration
@TransactionConfiguration(transactionManager="txMgr", defaultRollback=false)
public class CustomConfiguredTransactionalTests {

// class body...
}

Note

If the default conventions are sufficient for your test configuration, you can avoid using
@TransactionConfiguration altogether. In other words, if your transaction
manager bean is named "transactionManager" and if you want transactions to roll back
automatically, there is no need to annotate your test class with
@TransactionConfiguration.

Spring Framework

3.1 Reference Documentation 290

• @Rollback

Indicates whether the transaction for the annotated test method should be rolled back after the test
method has completed. If true, the transaction is rolled back; otherwise, the transaction is committed.
Use @Rollback to override the default rollback flag configured at the class level.

@Rollback(false)
@Test
public void testProcessWithoutRollback() {

// ...
}

• @BeforeTransaction

Indicates that the annotated public void method should be executed before a transaction is started
for test methods configured to run within a transaction via the @Transactional annotation.

@BeforeTransaction
public void beforeTransaction() {

// logic to be executed before a transaction is started
}

• @AfterTransaction

Indicates that the annotated public void method should be executed after a transaction has ended
for test methods configured to run within a transaction via the @Transactional annotation.

@AfterTransaction
public void afterTransaction() {

// logic to be executed after a transaction has ended
}

• @NotTransactional

The presence of this annotation indicates that the annotated test method must not execute in a
transactional context.

@NotTransactional
@Test
public void testProcessWithoutTransaction() {

// ...
}

@NotTransactional is deprecated

As of Spring 3.0, @NotTransactional is deprecated in favor of moving the
non-transactional test method to a separate (non-transactional) test class or to a
@BeforeTransaction or @AfterTransaction method. As an alternative to
annotating an entire class with @Transactional, consider annotating individual
methods with @Transactional; doing so allows a mix of transactional and
non-transactional methods in the same test class without the need for using

Spring Framework

3.1 Reference Documentation 291

@NotTransactional.

Standard Annotation Support

The following annotations are supported with standard semantics for all configurations of the Spring
TestContext Framework. Note that these annotations are not specific to tests and can be used anywhere in
the Spring Framework.

• @Autowired

• @Qualifier

• @Resource (javax.annotation) if JSR-250 is present

• @Inject (javax.inject) if JSR-330 is present

• @Named (javax.inject) if JSR-330 is present

• @PersistenceContext (javax.persistence) if JPA is present

• @PersistenceUnit (javax.persistence) if JPA is present

• @Required

• @Transactional

Spring JUnit Testing Annotations

The following annotations are only supported when used in conjunction with the
SpringJUnit4ClassRunner or the JUnit support classes.

• @IfProfileValue

Indicates that the annotated test is enabled for a specific testing environment. If the configured
ProfileValueSource returns a matching value for the provided name, the test is enabled. This
annotation can be applied to an entire class or to individual methods. Class-level usage overrides
method-level usage.

@IfProfileValue(name="java.vendor", value="Sun Microsystems Inc.")
@Test
public void testProcessWhichRunsOnlyOnSunJvm() {

// some logic that should run only on Java VMs from Sun Microsystems
}

Alternatively, you can configure @IfProfileValue with a list of values (with OR semantics) to
achieve TestNG-like support for test groups in a JUnit environment. Consider the following example:

Spring Framework

3.1 Reference Documentation 292

@IfProfileValue(name="test-groups", values={"unit-tests", "integration-tests"})
@Test
public void testProcessWhichRunsForUnitOrIntegrationTestGroups() {

// some logic that should run only for unit and integration test groups
}

• @ProfileValueSourceConfiguration

Class-level annotation that specifies what type of ProfileValueSource to use when retrieving
profile values configured through the @IfProfileValue annotation. If
@ProfileValueSourceConfiguration is not declared for a test,
SystemProfileValueSource is used by default.

@ProfileValueSourceConfiguration(CustomProfileValueSource.class)
public class CustomProfileValueSourceTests {

// class body...
}

• @Timed

Indicates that the annotated test method must finish execution in a specified time period (in
milliseconds). If the text execution time exceeds the specified time period, the test fails.

The time period includes execution of the test method itself, any repetitions of the test (see @Repeat),
as well as any set up or tear down of the test fixture.

@Timed(millis=1000)
public void testProcessWithOneSecondTimeout() {

// some logic that should not take longer than 1 second to execute
}

Spring's @Timed annotation has different semantics than JUnit's @Test(timeout=...) support.
Specifically, due to the manner in which JUnit handles test execution timeouts (that is, by executing the
test method in a separate Thread), @Test(timeout=...) applies to each iteration in the case of
repetitions and preemptively fails the test if the test takes too long. Spring's @Timed, on the other
hand, times the total test execution time (including all repetitions) and does not preemptively fail the
test but rather waits for the test to complete before failing.

• @Repeat

Indicates that the annotated test method must be executed repeatedly. The number of times that the test
method is to be executed is specified in the annotation.

The scope of execution to be repeated includes execution of the test method itself as well as any set up
or tear down of the test fixture.

@Repeat(10)
@Test
public void testProcessRepeatedly() {

// ...
}

Spring Framework

3.1 Reference Documentation 293

Spring TestContext Framework

The Spring TestContext Framework (located in the org.springframework.test.context
package) provides generic, annotation-driven unit and integration testing support that is agnostic of the
testing framework in use, whether JUnit or TestNG. The TestContext framework also places a great deal
of importance on convention over configuration with reasonable defaults that can be overridden through
annotation-based configuration.

In addition to generic testing infrastructure, the TestContext framework provides explicit support for
JUnit and TestNG in the form of abstract support classes. For JUnit, Spring also provides a custom
JUnit Runner that allows one to write so called POJO test classes. POJO test classes are not required to
extend a particular class hierarchy.

The following section provides an overview of the internals of the TestContext framework. If you are
only interested in using the framework and not necessarily interested in extending it with your own
custom listeners or custom loaders, feel free to go directly to the configuration (context management,
dependency injection, transaction management), support classes, and annotation support sections.

Key abstractions

The core of the framework consists of the TestContext and TestContextManager classes and the
TestExecutionListener, ContextLoader, and SmartContextLoader interfaces. A
TestContextManager is created on a per-test basis (e.g., for the execution of a single test method in
JUnit). The TestContextManager in turn manages a TestContext that holds the context of the
current test. The TestContextManager also updates the state of the TestContext as the test
progresses and delegates to TestExecutionListeners, which instrument the actual test execution
by providing dependency injection, managing transactions, and so on. A ContextLoader (or
SmartContextLoader) is responsible for loading an ApplicationContext for a given test class.
Consult the Javadoc and the Spring test suite for further information and examples of various
implementations.

• TestContext: Encapsulates the context in which a test is executed, agnostic of the actual testing
framework in use, and provides context management and caching support for the test instance for
which it is responsible. The TestContext also delegates to a ContextLoader (or
SmartContextLoader) to load an ApplicationContext if requested.

• TestContextManager: The main entry point into the Spring TestContext Framework, which
manages a single TestContext and signals events to all registered TestExecutionListeners
at well-defined test execution points:

• prior to any before class methods of a particular testing framework

• test instance preparation

• prior to any before methods of a particular testing framework

Spring Framework

3.1 Reference Documentation 294

• after any after methods of a particular testing framework

• after any after class methods of a particular testing framework

• TestExecutionListener: Defines a listener API for reacting to test execution events published
by the TestContextManager with which the listener is registered.

Spring provides three TestExecutionListener implementations that are configured by default:
DependencyInjectionTestExecutionListener,
DirtiesContextTestExecutionListener, and
TransactionalTestExecutionListener. Respectively, they support dependency injection of
the test instance, handling of the @DirtiesContext annotation, and transactional test execution
with default rollback semantics.

• ContextLoader: Strategy interface introduced in Spring 2.5 for loading an
ApplicationContext for an integration test managed by the Spring TestContext Framework.

As of Spring 3.1, implement SmartContextLoader instead of this interface in order to provide
support for configuration classes and active bean definition profiles.

• SmartContextLoader: Extension of the ContextLoader interface introduced in Spring 3.1.

The SmartContextLoader SPI supersedes the ContextLoader SPI that was introduced in
Spring 2.5. Specifically, a SmartContextLoader can choose to process either resource
locations or configuration classes. Furthermore, a SmartContextLoader can set active
bean definition profiles in the context that it loads.

Spring provides the following out-of-the-box implementations:

• DelegatingSmartContextLoader: the default loader which delegates internally to an
AnnotationConfigContextLoader or a GenericXmlContextLoader depending either
on the configuration declared for the test class or on the presence of default locations or default
configuration classes.

• AnnotationConfigContextLoader: loads an application context from @Configuration
classes.

• GenericXmlContextLoader: loads an application context from XML resource locations.

• GenericPropertiesContextLoader: loads an application context from Java Properties files.

The following sections explain how to configure the TestContext framework through annotations and
provide working examples of how to write unit and integration tests with the framework.

Context management

Spring Framework

3.1 Reference Documentation 295

Each TestContext provides context management and caching support for the test instance it is
responsible for. Test instances do not automatically receive access to the configured
ApplicationContext. However, if a test class implements the ApplicationContextAware
interface, a reference to the ApplicationContext is supplied to the test instance. Note that
AbstractJUnit4SpringContextTests and AbstractTestNGSpringContextTests
implement ApplicationContextAware and therefore provide access to the
ApplicationContext out-of-the-box.

@Autowired ApplicationContext

As an alternative to implementing the ApplicationContextAware interface, you can
inject the application context for your test class through the @Autowired annotation on
either a field or setter method. For example:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class MyTest {

@Autowired
private ApplicationContext applicationContext;

// class body...
}

Dependency injection via @Autowired is provided by the
DependencyInjectionTestExecutionListener which is configured by default
(see the section called “Dependency injection of test fixtures”).

Test classes that use the TestContext framework do not need to extend any particular class or implement a
specific interface to configure their application context. Instead, configuration is achieved simply by
declaring the @ContextConfiguration annotation at the class level. If your test class does not
explicitly declare application context resource locations or configuration classes, the configured
ContextLoader determines how to load a context from a default location or default configuration
classes.

The following sections explain how to configure an ApplicationContext via XML configuration
files or @Configuration classes using Spring's @ContextConfiguration annotation.

Context configuration with XML resources

To load an ApplicationContext for your tests using XML configuration files, annotate your test
class with @ContextConfiguration and configure the locations attribute with an array that
contains the resource locations of XML configuration metadata. A plain path — for example
"context.xml" — will be treated as a classpath resource that is relative to the package in which the
test class is defined. A path starting with a slash is treated as an absolute classpath location, for example
"/org/example/config.xml". A path which represents a resource URL (i.e., a path prefixed with
classpath:, file:, http:, etc.) will be used as is. Alternatively, you can implement and configure

Spring Framework

3.1 Reference Documentation 296

your own custom ContextLoader or SmartContextLoader for advanced use cases.

@RunWith(SpringJUnit4ClassRunner.class)
// ApplicationContext will be loaded from "/app-config.xml" and
// "/test-config.xml" in the root of the classpath
@ContextConfiguration(locations={"/app-config.xml", "/test-config.xml"})
public class MyTest {

// class body...
}

@ContextConfiguration supports an alias for the locations attribute through the standard Java
value attribute. Thus, if you do not need to configure a custom ContextLoader, you can omit the
declaration of the locations attribute name and declare the resource locations by using the shorthand
format demonstrated in the following example.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration({"/app-config.xml", "/test-config.xml"})
public class MyTest {

// class body...
}

If you omit both the locations and value attributes from the @ContextConfiguration
annotation, the TestContext framework will attempt to detect a default XML resource location.
Specifically, GenericXmlContextLoader detects a default location based on the name of the test
class. If your class is named com.example.MyTest, GenericXmlContextLoader loads your
application context from "classpath:/com/example/MyTest-context.xml".

package com.example;

@RunWith(SpringJUnit4ClassRunner.class)
// ApplicationContext will be loaded from "classpath:/com/example/MyTest-context.xml"
@ContextConfiguration
public class MyTest {

// class body...
}

Context configuration with @Configuration classes

To load an ApplicationContext for your tests using @Configuration classes (see Section 4.12,
“Java-based container configuration”), annotate your test class with @ContextConfiguration and
configure the classes attribute with an array that contains references to configuration classes.
Alternatively, you can implement and configure your own custom ContextLoader or
SmartContextLoader for advanced use cases.

@RunWith(SpringJUnit4ClassRunner.class)
// ApplicationContext will be loaded from AppConfig and TestConfig
@ContextConfiguration(classes={AppConfig.class, TestConfig.class})
public class MyTest {

// class body...
}

If you omit the classes attribute from the @ContextConfiguration annotation, the TestContext
framework will attempt to detect the presence of default configuration classes. Specifically,
AnnotationConfigContextLoader will detect all static inner classes of the annotated test class

Spring Framework

3.1 Reference Documentation 297

that meet the requirements for configuration class implementations as specified in the Javadoc for
@Configuration. In the following example, the OrderServiceTest class declares a static inner
configuration class named Config that will be automatically used to load the ApplicationContext
for the test class. Note that the name of the configuration class is arbitrary. In addition, a test class can
contain more than one static inner configuration class if desired.

package com.example;

@RunWith(SpringJUnit4ClassRunner.class)
// ApplicationContext will be loaded from the static inner Config class
@ContextConfiguration
public class OrderServiceTest {

@Configuration
static class Config {

// this bean will be injected into the OrderServiceTest class
@Bean
public OrderService orderService() {

OrderService orderService = new OrderServiceImpl();
// set properties, etc.
return orderService;

}
}

@Autowired
private OrderService orderService;

@Test
public void testOrderService() {

// test the orderService
}

}

Mixing XML resources and @Configuration classes

It may sometimes be desirable to mix XML resources and @Configuration classes to configure an
ApplicationContext for your tests. For example, if you use XML configuration in production, you
may decide that you want to use @Configuration classes to configure specific Spring-managed
components for your tests, or vice versa. As mentioned in the section called “Spring Testing Annotations”
the TestContext framework does not allow you to declare both via @ContextConfiguration, but
this does not mean that you cannot use both.

If you want to use XML and @Configuration classes to configure your tests, you will have to pick
one as the entry point, and that one will have to include or import the other. For example, in XML you
can include @Configuration classes via component scanning or define them as normal Spring beans
in XML; whereas, in a @Configuration class you can use @ImportResource to import XML
configuration files. Note that this behavior is semantically equivalent to how you configure your
application in production: in production configuration you will define either a set of XML resource
locations or a set of @Configuration classes that your production ApplicationContext will be
loaded from, but you still have the freedom to include or import the other type of configuration.

Context configuration inheritance

Spring Framework

3.1 Reference Documentation 298

@ContextConfiguration supports a boolean inheritLocations attribute that denotes whether
resource locations or configuration classes declared by superclasses should be inherited. The default
value is true. This means that an annotated class inherits the resource locations or configuration classes
declared by any annotated superclasses. Specifically, the resource locations or configuration classes for an
annotated test class are appended to the list of resource locations or configuration classes declared by
annotated superclasses. Thus, subclasses have the option of extending the list of resource locations or
configuration classes.

If @ContextConfiguration's inheritLocations attribute is set to false, the resource
locations or configuration classes for the annotated class shadow and effectively replace any resource
locations or configuration classes defined by superclasses.

In the following example that uses XML resource locations, the ApplicationContext for
ExtendedTest will be loaded from "base-config.xml" and "extended-config.xml", in that order. Beans
defined in "extended-config.xml" may therefore override (i.e., replace) those defined in "base-config.xml".

@RunWith(SpringJUnit4ClassRunner.class)
// ApplicationContext will be loaded from "/base-config.xml" in the root of the classpath
@ContextConfiguration("/base-config.xml")
public class BaseTest {

// class body...
}

// ApplicationContext will be loaded from "/base-config.xml" and "/extended-config.xml"
// in the root of the classpath
@ContextConfiguration("/extended-config.xml")
public class ExtendedTest extends BaseTest {

// class body...
}

Similarly, in the following example that uses configuration classes, the ApplicationContext for
ExtendedTest will be loaded from the BaseConfig and ExtendedConfig configuration classes,
in that order. Beans defined in ExtendedConfig may therefore override (i.e., replace) those defined in
BaseConfig.

@RunWith(SpringJUnit4ClassRunner.class)
// ApplicationContext will be loaded from BaseConfig
@ContextConfiguration(classes=BaseConfig.class)
public class BaseTest {

// class body...
}

// ApplicationContext will be loaded from BaseConfig and ExtendedConfig
@ContextConfiguration(classes=ExtendedConfig.class)
public class ExtendedTest extends BaseTest {

// class body...
}

Context configuration with environment profiles

Spring 3.1 introduces first-class support in the framework for the notion of environments and profiles
(a.k.a., bean definition profiles), and integration tests can now be configured to activate particular bean
definition profiles for various testing scenarios. This is achieved by annotating a test class with the new

Spring Framework

3.1 Reference Documentation 299

@ActiveProfiles annotation and supplying a list of profiles that should be activated when loading
the ApplicationContext for the test.

Note

@ActiveProfiles may be used with any implementation of the new
SmartContextLoader SPI, but @ActiveProfiles is not supported with
implementations of the older ContextLoader SPI.

Let's take a look at some examples with XML configuration and @Configuration classes.

<!-- app-config.xml -->
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemaLocation="...">

<bean id="transferService"
class="com.bank.service.internal.DefaultTransferService">
<constructor-arg ref="accountRepository"/>
<constructor-arg ref="feePolicy"/>

</bean>

<bean id="accountRepository"
class="com.bank.repository.internal.JdbcAccountRepository">
<constructor-arg ref="dataSource"/>

</bean>

<bean id="feePolicy"
class="com.bank.service.internal.ZeroFeePolicy"/>

<beans profile="dev">
<jdbc:embedded-database id="dataSource">

<jdbc:script
location="classpath:com/bank/config/sql/schema.sql"/>

<jdbc:script
location="classpath:com/bank/config/sql/test-data.sql"/>

</jdbc:embedded-database>
</beans>

<beans profile="production">
<jee:jndi-lookup id="dataSource"

jndi-name="java:comp/env/jdbc/datasource"/>
</beans>

</beans>

package com.bank.service;

@RunWith(SpringJUnit4ClassRunner.class)
// ApplicationContext will be loaded from "classpath:/app-config.xml"
@ContextConfiguration("/app-config.xml")
@ActiveProfiles("dev")
public class TransferServiceTest {

@Autowired
private TransferService transferService;

@Test
public void testTransferService() {

// test the transferService

Spring Framework

3.1 Reference Documentation 300

}
}

When TransferServiceTest is run, its ApplicationContext will be loaded from the
app-config.xml configuration file in the root of the classpath. If you inspect app-config.xml
you'll notice that the accountRepository bean has a dependency on a dataSource bean;
however, dataSource is not defined as a top-level bean. Instead, dataSource is defined twice: once
in the production profile and once in the dev profile.

By annotating TransferServiceTest with @ActiveProfiles("dev") we instruct the Spring
TestContext Framework to load the ApplicationContext with the active profiles set to {"dev"}.
As a result, an embedded database will be created, and the accountRepository bean will be wired
with a reference to the development DataSource. And that's likely what we want in an integration test.

The following code listings demonstrate how to implement the same configuration and integration test but
using @Configuration classes instead of XML.

@Configuration
@Profile("dev")
public class StandaloneDataConfig {

@Bean
public DataSource dataSource() {

return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.HSQL)
.addScript("classpath:com/bank/config/sql/schema.sql")
.addScript("classpath:com/bank/config/sql/test-data.sql")
.build();

}
}

@Configuration
@Profile("production")
public class JndiDataConfig {

@Bean
public DataSource dataSource() throws Exception {

Context ctx = new InitialContext();
return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource");

}
}

@Configuration
public class TransferServiceConfig {

@Autowired DataSource dataSource;

@Bean
public TransferService transferService() {

return new DefaultTransferService(accountRepository(),
feePolicy());

}

@Bean
public AccountRepository accountRepository() {

return new JdbcAccountRepository(dataSource);
}

@Bean

Spring Framework

3.1 Reference Documentation 301

public FeePolicy feePolicy() {
return new ZeroFeePolicy();

}

}

package com.bank.service;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(

classes={
TransferServiceConfig.class,
StandaloneDataConfig.class,
JndiDataConfig.class})

@ActiveProfiles("dev")
public class TransferServiceTest {

@Autowired
private TransferService transferService;

@Test
public void testTransferService() {

// test the transferService
}

}

In this variation, we have split the XML configuration into three independent @Configuration
classes:

• TransferServiceConfig: acquires a dataSource via dependency injection using
@Autowired

• StandaloneDataConfig: defines a dataSource for an embedded database suitable for
developer tests

• JndiDataConfig: defines a dataSource that is retrieved from JNDI in a production environment

As with the XML-based configuration example, we still annotate TransferServiceTest with
@ActiveProfiles("dev"), but this time we specify all three configuration classes via the
@ContextConfiguration annotation. The body of the test class itself remains completely
unchanged.

Context caching

Once the TestContext framework loads an ApplicationContext for a test, that context will be
cached and reused for all subsequent tests that declare the same unique context configuration within the
same test suite. To understand how caching works, it is important to understand what is meant by unique
and test suite.

An ApplicationContext can be uniquely identified by the combination of configuration parameters
that are used to load it. Consequently, the unique combination of configuration parameters are used to
generate a key under which the context is cached. The TestContext framework uses the following
configuration parameters to build the context cache key:

Spring Framework

3.1 Reference Documentation 302

• locations (from @ContextConfiguration)

• classes (from @ContextConfiguration)

• contextLoader (from @ContextConfiguration)

• activeProfiles (from @ActiveProfiles)

For example, if TestClassA specifies {"app-config.xml", "test-config.xml"} for the
locations (or value) attribute of @ContextConfiguration, the TestContext framework will
load the corresponding ApplicationContext and store it in a static context cache under a key
that is based solely on those locations. So if TestClassB also defines {"app-config.xml",
"test-config.xml"} for its locations (either explicitly or implicitly through inheritance) and does
not define a different ContextLoader or different active profiles, then the same
ApplicationContext will be shared by both test classes. This means that the setup cost for loading
an application context is incurred only once (per test suite), and subsequent test execution is much faster.

Test suites and forked processes

The Spring TestContext framework stores application contexts in a static cache. This means
that the context is literally stored in a static variable. In other words, if tests execute in
separate processes the static cache will be cleared between each test execution, and this will
effectively disable the caching mechanism.

To benefit from the caching mechanism, all tests must run within the same process or test
suite. This can be achieved by executing all tests as a group within an IDE. Similarly, when
executing tests with a build framework such as Ant or Maven it is important to make sure that
the build framework does not fork between tests. For example, if the forkMode for the Maven
Surefire plug-in is set to always or pertest, the TestContext framework will not be able
to cache application contexts between test classes and the build process will run significantly
slower as a result.

In the unlikely case that a test corrupts the application context and requires reloading — for example, by
modifying a bean definition or the state of an application object — you can annotate your test class or test
method with @DirtiesContext (see the discussion of @DirtiesContext in the section called
“Spring Testing Annotations”). This instructs Spring to remove the context from the cache and rebuild the
application context before executing the next test. Note that support for the @DirtiesContext
annotation is provided by the DirtiesContextTestExecutionListener which is enabled by
default.

Dependency injection of test fixtures

When you use the DependencyInjectionTestExecutionListener — which is configured by
default — the dependencies of your test instances are injected from beans in the application context that
you configured with @ContextConfiguration. You may use setter injection, field injection, or

Spring Framework

3.1 Reference Documentation 303

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html#forkMode

both, depending on which annotations you choose and whether you place them on setter methods or
fields. For consistency with the annotation support introduced in Spring 2.5 and 3.0, you can use Spring's
@Autowired annotation or the @Inject annotation from JSR 300.

Tip

The TestContext framework does not instrument the manner in which a test instance is
instantiated. Thus the use of @Autowired or @Inject for constructors has no effect for
test classes.

Because @Autowired is used to perform autowiring by type, if you have multiple bean definitions of
the same type, you cannot rely on this approach for those particular beans. In that case, you can use
@Autowired in conjunction with @Qualifier. As of Spring 3.0 you may also choose to use
@Inject in conjunction with @Named. Alternatively, if your test class has access to its
ApplicationContext, you can perform an explicit lookup by using (for example) a call to
applicationContext.getBean("titleRepository").

If you do not want dependency injection applied to your test instances, simply do not annotate fields or
setter methods with @Autowired or @Inject. Alternatively, you can disable dependency injection
altogether by explicitly configuring your class with @TestExecutionListeners and omitting
DependencyInjectionTestExecutionListener.class from the list of listeners.

Consider the scenario of testing a HibernateTitleRepository class, as outlined in the Goals
section. The next two code listings demonstrate the use of @Autowired on fields and setter methods.
The application context configuration is presented after all sample code listings.

Note

The dependency injection behavior in the following code listings is not specific to JUnit. The
same DI techniques can be used in conjunction with any testing framework.

The following examples make calls to static assertion methods such as assertNotNull()
but without prepending the call with Assert. In such cases, assume that the method was
properly imported through an import static declaration that is not shown in the
example.

The first code listing shows a JUnit-based implementation of the test class that uses @Autowired for
field injection.

@RunWith(SpringJUnit4ClassRunner.class)
// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
public class HibernateTitleRepositoryTests {

// this instance will be dependency injected by type
@Autowired
private HibernateTitleRepository titleRepository;

@Test

Spring Framework

3.1 Reference Documentation 304

public void findById() {
Title title = titleRepository.findById(new Long(10));
assertNotNull(title);

}
}

Alternatively, you can configure the class to use @Autowired for setter injection as seen below.

@RunWith(SpringJUnit4ClassRunner.class)
// specifies the Spring configuration to load for this test fixture
@ContextConfiguration("repository-config.xml")
public class HibernateTitleRepositoryTests {

// this instance will be dependency injected by type
private HibernateTitleRepository titleRepository;

@Autowired
public void setTitleRepository(HibernateTitleRepository titleRepository) {

this.titleRepository = titleRepository;
}

@Test
public void findById() {

Title title = titleRepository.findById(new Long(10));
assertNotNull(title);

}
}

The preceding code listings use the same XML context file referenced by the
@ContextConfiguration annotation (that is, repository-config.xml), which looks like
this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- this bean will be injected into the HibernateTitleRepositoryTests class -->
<bean id="titleRepository" class="com.foo.repository.hibernate.HibernateTitleRepository">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

<!-- configuration elided for brevity -->
</bean>

</beans>

Note

If you are extending from a Spring-provided test base class that happens to use
@Autowired on one of its setter methods, you might have multiple beans of the affected
type defined in your application context: for example, multiple DataSource beans. In such
a case, you can override the setter method and use the @Qualifier annotation to indicate a
specific target bean as follows, but make sure to delegate to the overridden method in the
superclass as well.

Spring Framework

3.1 Reference Documentation 305

// ...

@Autowired
@Override
public void setDataSource(@Qualifier("myDataSource") DataSource dataSource) {

super.setDataSource(dataSource);
}

// ...

The specified qualifier value indicates the specific DataSource bean to inject, narrowing
the set of type matches to a specific bean. Its value is matched against <qualifier>
declarations within the corresponding <bean> definitions. The bean name is used as a
fallback qualifier value, so you may effectively also point to a specific bean by name there (as
shown above, assuming that "myDataSource" is the bean id).

Transaction management

In the TestContext framework, transactions are managed by the
TransactionalTestExecutionListener. Note that
TransactionalTestExecutionListener is configured by default, even if you do not explicitly
declare @TestExecutionListeners on your test class. To enable support for transactions, however,
you must provide a PlatformTransactionManager bean in the application context loaded by
@ContextConfiguration semantics. In addition, you must declare @Transactional either at
the class or method level for your tests.

For class-level transaction configuration (i.e., setting the bean name for the transaction manager and the
default rollback flag), see the @TransactionConfiguration entry in the annotation support
section.

If transactions are not enabled for the entire test class, you can annotate methods explicitly with
@Transactional. To control whether a transaction should commit for a particular test method, you
can use the @Rollback annotation to override the class-level default rollback setting.

AbstractTransactionalJUnit4SpringContextTests and
AbstractTransactionalTestNGSpringContextTests are preconfigured for transactional
support at the class level.

Occasionally you need to execute certain code before or after a transactional test method but outside the
transactional context, for example, to verify the initial database state prior to execution of your test or to
verify expected transactional commit behavior after test execution (if the test was configured not to roll
back the transaction). TransactionalTestExecutionListener supports the
@BeforeTransaction and @AfterTransaction annotations exactly for such scenarios. Simply
annotate any public void method in your test class with one of these annotations, and the
TransactionalTestExecutionListener ensures that your before transaction method or after
transaction method is executed at the appropriate time.

Spring Framework

3.1 Reference Documentation 306

Tip

Any before methods (such as methods annotated with JUnit's @Before) and any after
methods (such as methods annotated with JUnit's @After) are executed within a transaction.
In addition, methods annotated with @BeforeTransaction or @AfterTransaction
are naturally not executed for tests annotated with @NotTransactional. However,
@NotTransactional is deprecated as of Spring 3.0.

The following JUnit-based example displays a fictitious integration testing scenario highlighting several
transaction-related annotations. Consult the annotation support section for further information and
configuration examples.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
@TransactionConfiguration(transactionManager="txMgr", defaultRollback=false)
@Transactional
public class FictitiousTransactionalTest {

@BeforeTransaction
public void verifyInitialDatabaseState() {

// logic to verify the initial state before a transaction is started
}

@Before
public void setUpTestDataWithinTransaction() {

// set up test data within the transaction
}

@Test
// overrides the class-level defaultRollback setting
@Rollback(true)
public void modifyDatabaseWithinTransaction() {

// logic which uses the test data and modifies database state
}

@After
public void tearDownWithinTransaction() {

// execute "tear down" logic within the transaction
}

@AfterTransaction
public void verifyFinalDatabaseState() {

// logic to verify the final state after transaction has rolled back
}

}

Avoid false positives when testing ORM code

When you test application code that manipulates the state of the Hibernate session, make sure
to flush the underlying session within test methods that execute that code. Failing to flush the
underlying session can produce false positives: your test may pass, but the same code throws
an exception in a live, production environment. In the following Hibernate-based example
test case, one method demonstrates a false positive, and the other method correctly exposes
the results of flushing the session. Note that this applies to JPA and any other ORM

Spring Framework

3.1 Reference Documentation 307

frameworks that maintain an in-memory unit of work.

// ...

@Autowired
private SessionFactory sessionFactory;

@Test // no expected exception!
public void falsePositive() {

updateEntityInHibernateSession();
// False positive: an exception will be thrown once the session is
// finally flushed (i.e., in production code)

}

@Test(expected = GenericJDBCException.class)
public void updateWithSessionFlush() {

updateEntityInHibernateSession();
// Manual flush is required to avoid false positive in test
sessionFactory.getCurrentSession().flush();

}

// ...

TestContext support classes

JUnit support classes

The org.springframework.test.context.junit4 package provides support classes for JUnit
4.5+ based test cases.

• AbstractJUnit4SpringContextTests: Abstract base test class that integrates the Spring
TestContext Framework with explicit ApplicationContext testing support in a JUnit 4.5+
environment.

When you extend AbstractJUnit4SpringContextTests, you can access the following
protected instance variable:

• applicationContext: Use this variable to perform explicit bean lookups or to test the state of
the context as a whole.

• AbstractTransactionalJUnit4SpringContextTests: Abstract transactional extension
of AbstractJUnit4SpringContextTests that also adds some convenience functionality for
JDBC access. Expects a javax.sql.DataSource bean and a
PlatformTransactionManager bean to be defined in the ApplicationContext. When you
extend AbstractTransactionalJUnit4SpringContextTests you can access the
following protected instance variables:

• applicationContext: Inherited from the AbstractJUnit4SpringContextTests
superclass. Use this variable to perform explicit bean lookups or to test the state of the context as a
whole.

Spring Framework

3.1 Reference Documentation 308

• simpleJdbcTemplate: Use this variable to execute SQL statements to query the database. Such
queries can be used to confirm database state both prior to and after execution of database-related
application code, and Spring ensures that such queries run in the scope of the same transaction as the
application code. When used in conjunction with an ORM tool, be sure to avoid false positives.

Tip

These classes are a convenience for extension. If you do not want your test classes to be tied
to a Spring-specific class hierarchy — for example, if you want to directly extend the class
you are testing — you can configure your own custom test classes by using
@RunWith(SpringJUnit4ClassRunner.class), @ContextConfiguration,
@TestExecutionListeners, and so on.

Spring JUnit Runner

The Spring TestContext Framework offers full integration with JUnit 4.5+ through a custom runner
(tested on JUnit 4.5 – 4.9). By annotating test classes with
@RunWith(SpringJUnit4ClassRunner.class), developers can implement standard
JUnit-based unit and integration tests and simultaneously reap the benefits of the TestContext framework
such as support for loading application contexts, dependency injection of test instances, transactional test
method execution, and so on. The following code listing displays the minimal requirements for
configuring a test class to run with the custom Spring Runner. @TestExecutionListeners is
configured with an empty list in order to disable the default listeners, which otherwise would require an
ApplicationContext to be configured through @ContextConfiguration.

@RunWith(SpringJUnit4ClassRunner.class)
@TestExecutionListeners({})
public class SimpleTest {

@Test
public void testMethod() {

// execute test logic...
}

}

TestNG support classes

The org.springframework.test.context.testng package provides support classes for
TestNG based test cases.

• AbstractTestNGSpringContextTests: Abstract base test class that integrates the Spring
TestContext Framework with explicit ApplicationContext testing support in a TestNG
environment.

When you extend AbstractTestNGSpringContextTests, you can access the following
protected instance variable:

Spring Framework

3.1 Reference Documentation 309

• applicationContext: Use this variable to perform explicit bean lookups or to test the state of
the context as a whole.

• AbstractTransactionalTestNGSpringContextTests: Abstract transactional extension
of AbstractTestNGSpringContextTests that adds some convenience functionality for JDBC
access. Expects a javax.sql.DataSource bean and a PlatformTransactionManager
bean to be defined in the ApplicationContext. When you extend
AbstractTransactionalTestNGSpringContextTests, you can access the following
protected instance variables:

• applicationContext: Inherited from the AbstractTestNGSpringContextTests
superclass. Use this variable to perform explicit bean lookups or to test the state of the context as a
whole.

• simpleJdbcTemplate: Use this variable to execute SQL statements to query the database. Such
queries can be used to confirm database state both prior to and after execution of database-related
application code, and Spring ensures that such queries run in the scope of the same transaction as the
application code. When used in conjunction with an ORM tool, be sure to avoid false positives.

Tip

These classes are a convenience for extension. If you do not want your test classes to be tied
to a Spring-specific class hierarchy — for example, if you want to directly extend the class
you are testing — you can configure your own custom test classes by using
@ContextConfiguration, @TestExecutionListeners, and so on, and by
manually instrumenting your test class with a TestContextManager. See the source code
of AbstractTestNGSpringContextTests for an example of how to instrument your
test class.

PetClinic Example

The PetClinic application, available from the samples repository, illustrates several features of the Spring
TestContext Framework in a JUnit 4.5+ environment. Most test functionality is included in the
AbstractClinicTests, for which a partial listing is shown below:

import static org.junit.Assert.assertEquals;
// import ...

@ContextConfiguration
public abstract class AbstractClinicTests extends AbstractTransactionalJUnit4SpringContextTests {

@Autowired
protected Clinic clinic;

@Test
public void getVets() {

Collection<Vet> vets = this.clinic.getVets();
assertEquals("JDBC query must show the same number of vets",

Spring Framework

3.1 Reference Documentation 310

super.countRowsInTable("VETS"), vets.size());
Vet v1 = EntityUtils.getById(vets, Vet.class, 2);
assertEquals("Leary", v1.getLastName());
assertEquals(1, v1.getNrOfSpecialties());
assertEquals("radiology", (v1.getSpecialties().get(0)).getName());
// ...

}

// ...
}

Notes:

• This test case extends the AbstractTransactionalJUnit4SpringContextTests class,
from which it inherits configuration for Dependency Injection (through the
DependencyInjectionTestExecutionListener) and transactional behavior (through the
TransactionalTestExecutionListener).

• The clinic instance variable — the application object being tested — is set by Dependency Injection
through @Autowired semantics.

• The testGetVets() method illustrates how you can use the inherited countRowsInTable()
method to easily verify the number of rows in a given table, thus verifying correct behavior of the
application code being tested. This allows for stronger tests and lessens dependency on the exact test
data. For example, you can add additional rows in the database without breaking tests.

• Like many integration tests that use a database, most of the tests in AbstractClinicTests depend
on a minimum amount of data already in the database before the test cases run. Alternatively, you
might choose to populate the database within the test fixture set up of your test cases — again, within
the same transaction as the tests.

The PetClinic application supports three data access technologies: JDBC, Hibernate, and JPA. By
declaring @ContextConfiguration without any specific resource locations, the
AbstractClinicTests class will have its application context loaded from the default location,
AbstractClinicTests-context.xml, which declares a common DataSource. Subclasses
specify additional context locations that must declare a PlatformTransactionManager and a
concrete implementation of Clinic.

For example, the Hibernate implementation of the PetClinic tests contains the following implementation.
For this example, HibernateClinicTests does not contain a single line of code: we only need to
declare @ContextConfiguration, and the tests are inherited from AbstractClinicTests.
Because @ContextConfiguration is declared without any specific resource locations, the Spring
TestContext Framework loads an application context from all the beans defined in
AbstractClinicTests-context.xml (i.e., the inherited locations) and
HibernateClinicTests-context.xml, with HibernateClinicTests-context.xml
possibly overriding beans defined in AbstractClinicTests-context.xml.

@ContextConfiguration
public class HibernateClinicTests extends AbstractClinicTests { }

Spring Framework

3.1 Reference Documentation 311

In a large-scale application, the Spring configuration is often split across multiple files. Consequently,
configuration locations are typically specified in a common base class for all application-specific
integration tests. Such a base class may also add useful instance variables — populated by Dependency
Injection, naturally — such as a SessionFactory in the case of an application using Hibernate.

As far as possible, you should have exactly the same Spring configuration files in your integration tests as
in the deployed environment. One likely point of difference concerns database connection pooling and
transaction infrastructure. If you are deploying to a full-blown application server, you will probably use
its connection pool (available through JNDI) and JTA implementation. Thus in production you will use a
JndiObjectFactoryBean or <jee:jndi-lookup> for the DataSource and
JtaTransactionManager. JNDI and JTA will not be available in out-of-container integration tests,
so you should use a combination like the Commons DBCP BasicDataSource and
DataSourceTransactionManager or HibernateTransactionManager for them. You can
factor out this variant behavior into a single XML file, having the choice between application server and a
'local' configuration separated from all other configuration, which will not vary between the test and
production environments. In addition, it is advisable to use properties files for connection settings. See the
PetClinic application for an example.

10.4 Further Resources

Consult the following resources for more information about testing:

• JUnit: “A programmer-oriented testing framework for Java”. Used by the Spring Framework in its test
suite.

• TestNG: A testing framework inspired by JUnit with added support for Java 5 annotations, test groups,
data-driven testing, distributed testing, etc.

• MockObjects.com: Web site dedicated to mock objects, a technique for improving the design of code
within test-driven development.

• "Mock Objects": Article in Wikipedia.

• EasyMock: Java library “that provides Mock Objects for interfaces (and objects through the class
extension) by generating them on the fly using Java's proxy mechanism.” Used by the Spring
Framework in its test suite.

• JMock: Library that supports test-driven development of Java code with mock objects.

• Mockito: Java mock library based on the test spy pattern.

• DbUnit: JUnit extension (also usable with Ant and Maven) targeted for database-driven projects that,
among other things, puts your database into a known state between test runs.

• Grinder: Java load testing framework.

Spring Framework

3.1 Reference Documentation 312

http://www.junit.org/
http://testng.org/
http://www.mockobjects.com/
http://en.wikipedia.org/wiki/Mock_Object
http://www.easymock.org/
http://www.jmock.org/
http://mockito.org/
http://xunitpatterns.com/Test%20Spy.html
http://dbunit.sourceforge.net/
http://grinder.sourceforge.net/

Part IV. Data Access
This part of the reference documentation is concerned with data access and the interaction between the
data access layer and the business or service layer.

Spring's comprehensive transaction management support is covered in some detail, followed by thorough
coverage of the various data access frameworks and technologies that the Spring Framework integrates
with.

• Chapter 11, Transaction Management

• Chapter 12, DAO support

• Chapter 13, Data access with JDBC

• Chapter 14, Object Relational Mapping (ORM) Data Access

• Chapter 15, Marshalling XML using O/X Mappers

11. Transaction Management

11.1 Introduction to Spring Framework transaction
management

Comprehensive transaction support is among the most compelling reasons to use the Spring Framework.
The Spring Framework provides a consistent abstraction for transaction management that delivers the
following benefits:

• Consistent programming model across different transaction APIs such as Java Transaction API (JTA),
JDBC, Hibernate, Java Persistence API (JPA), and Java Data Objects (JDO).

• Support for declarative transaction management.

• Simpler API for programmatic transaction management than complex transaction APIs such as JTA.

• Excellent integration with Spring's data access abstractions.

The following sections describe the Spring Framework's transaction value-adds and technologies. (The
chapter also includes discussions of best practices, application server integration, and solutions to
common problems.)

• Advantages of the Spring Framework's transaction support model describes why you would use the
Spring Framework's transaction abstraction instead of EJB Container-Managed Transactions (CMT) or
choosing to drive local transactions through a proprietary API such as Hibernate.

• Understanding the Spring Framework transaction abstraction outlines the core classes and describes
how to configure and obtain DataSource instances from a variety of sources.

• Synchronizing resources with transactions describes how the application code ensures that resources
are created, reused, and cleaned up properly.

• Declarative transaction management describes support for declarative transaction management.

• Programmatic transaction management covers support for programmatic (that is, explicitly coded)
transaction management.

11.2 Advantages of the Spring Framework's transaction
support model

Traditionally, Java EE developers have had two choices for transaction management: global or local
transactions, both of which have profound limitations. Global and local transaction management is

Spring Framework

3.1 Reference Documentation 314

reviewed in the next two sections, followed by a discussion of how the Spring Framework's transaction
management support addresses the limitations of the global and local transaction models.

Global transactions

Global transactions enable you to work with multiple transactional resources, typically relational
databases and message queues. The application server manages global transactions through the JTA,
which is a cumbersome API to use (partly due to its exception model). Furthermore, a JTA
UserTransaction normally needs to be sourced from JNDI, meaning that you also need to use JNDI
in order to use JTA. Obviously the use of global transactions would limit any potential reuse of
application code, as JTA is normally only available in an application server environment.

Previously, the preferred way to use global transactions was via EJB CMT (Container Managed
Transaction): CMT is a form of declarative transaction management (as distinguished from
programmatic transaction management). EJB CMT removes the need for transaction-related JNDI
lookups, although of course the use of EJB itself necessitates the use of JNDI. It removes most but not all
of the need to write Java code to control transactions. The significant downside is that CMT is tied to JTA
and an application server environment. Also, it is only available if one chooses to implement business
logic in EJBs, or at least behind a transactional EJB facade. The negatives of EJB in general are so great
that this is not an attractive proposition, especially in the face of compelling alternatives for declarative
transaction management.

Local transactions

Local transactions are resource-specific, such as a transaction associated with a JDBC connection. Local
transactions may be easier to use, but have significant disadvantages: they cannot work across multiple
transactional resources. For example, code that manages transactions using a JDBC connection cannot run
within a global JTA transaction. Because the application server is not involved in transaction
management, it cannot help ensure correctness across multiple resources. (It is worth noting that most
applications use a single transaction resource.) Another downside is that local transactions are invasive to
the programming model.

Spring Framework's consistent programming model

Spring resolves the disadvantages of global and local transactions. It enables application developers to use
a consistent programming model in any environment. You write your code once, and it can benefit from
different transaction management strategies in different environments. The Spring Framework provides
both declarative and programmatic transaction management. Most users prefer declarative transaction
management, which is recommended in most cases.

With programmatic transaction management, developers work with the Spring Framework transaction
abstraction, which can run over any underlying transaction infrastructure. With the preferred declarative
model, developers typically write little or no code related to transaction management, and hence do not
depend on the Spring Framework transaction API, or any other transaction API.

Spring Framework

3.1 Reference Documentation 315

Do you need an application server for transaction management?

The Spring Framework's transaction management support changes traditional rules as to when an
enterprise Java application requires an application server.

In particular, you do not need an application server simply for declarative transactions through
EJBs. In fact, even if your application server has powerful JTA capabilities, you may decide that the
Spring Framework's declarative transactions offer more power and a more productive programming
model than EJB CMT.

Typically you need an application server's JTA capability only if your application needs to handle
transactions across multiple resources, which is not a requirement for many applications. Many
high-end applications use a single, highly scalable database (such as Oracle RAC) instead.
Standalone transaction managers such as Atomikos Transactions and JOTM are other options. Of
course, you may need other application server capabilities such as Java Message Service (JMS) and
J2EE Connector Architecture (JCA).

The Spring Framework gives you the choice of when to scale your application to a fully loaded
application server. Gone are the days when the only alternative to using EJB CMT or JTA was to
write code with local transactions such as those on JDBC connections, and face a hefty rework if
you need that code to run within global, container-managed transactions. With the Spring
Framework, only some of the bean definitions in your configuration file, rather than your code,
need to change.

11.3 Understanding the Spring Framework transaction
abstraction

The key to the Spring transaction abstraction is the notion of a transaction strategy. A transaction strategy
is defined by the org.springframework.transaction.PlatformTransactionManager
interface:

public interface PlatformTransactionManager {

TransactionStatus getTransaction(TransactionDefinition definition)
throws TransactionException;

void commit(TransactionStatus status) throws TransactionException;

void rollback(TransactionStatus status) throws TransactionException;
}

This is primarily a service provider interface (SPI), although it can be used programmatically from your
application code. Because PlatformTransactionManager is an interface, it can be easily mocked
or stubbed as necessary. It is not tied to a lookup strategy such as JNDI.
PlatformTransactionManager implementations are defined like any other object (or bean) in the

Spring Framework

3.1 Reference Documentation 316

http://www.atomikos.com/
http://jotm.objectweb.org/

Spring Framework IoC container. This benefit alone makes Spring Framework transactions a worthwhile
abstraction even when you work with JTA. Transactional code can be tested much more easily than if it
used JTA directly.

Again in keeping with Spring's philosophy, the TransactionException that can be thrown by any
of the PlatformTransactionManager interface's methods is unchecked (that is, it extends the
java.lang.RuntimeException class). Transaction infrastructure failures are almost invariably
fatal. In rare cases where application code can actually recover from a transaction failure, the application
developer can still choose to catch and handle TransactionException. The salient point is that
developers are not forced to do so.

The getTransaction(..) method returns a TransactionStatus object, depending on a
TransactionDefinition parameter. The returned TransactionStatus might represent a new
transaction, or can represent an existing transaction if a matching transaction exists in the current call
stack. The implication in this latter case is that, as with Java EE transaction contexts, a
TransactionStatus is associated with a thread of execution.

The TransactionDefinition interface specifies:

• Isolation: The degree to which this transaction is isolated from the work of other transactions. For
example, can this transaction see uncommitted writes from other transactions?

• Propagation: Typically, all code executed within a transaction scope will run in that transaction.
However, you have the option of specifying the behavior in the event that a transactional method is
executed when a transaction context already exists. For example, code can continue running in the
existing transaction (the common case); or the existing transaction can be suspended and a new
transaction created. Spring offers all of the transaction propagation options familiar from EJB CMT.
To read about the semantics of transaction propagation in Spring, see the section called “Transaction
propagation”.

• Timeout: How long this transaction runs before timing out and being rolled back automatically by the
underlying transaction infrastructure.

• Read-only status: A read-only transaction can be used when your code reads but does not modify data.
Read-only transactions can be a useful optimization in some cases, such as when you are using
Hibernate.

These settings reflect standard transactional concepts. If necessary, refer to resources that discuss
transaction isolation levels and other core transaction concepts. Understanding these concepts is essential
to using the Spring Framework or any transaction management solution.

The TransactionStatus interface provides a simple way for transactional code to control
transaction execution and query transaction status. The concepts should be familiar, as they are common
to all transaction APIs:

public interface TransactionStatus extends SavepointManager {

boolean isNewTransaction();

Spring Framework

3.1 Reference Documentation 317

boolean hasSavepoint();

void setRollbackOnly();

boolean isRollbackOnly();

void flush();

boolean isCompleted();

}

Regardless of whether you opt for declarative or programmatic transaction management in Spring,
defining the correct PlatformTransactionManager implementation is absolutely essential. You
typically define this implementation through dependency injection.

PlatformTransactionManager implementations normally require knowledge of the environment
in which they work: JDBC, JTA, Hibernate, and so on. The following examples show how you can define
a local PlatformTransactionManager implementation. (This example works with plain JDBC.)

You define a JDBC DataSource

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="${jdbc.driverClassName}" />
<property name="url" value="${jdbc.url}" />
<property name="username" value="${jdbc.username}" />
<property name="password" value="${jdbc.password}" />

</bean>

The related PlatformTransactionManager bean definition will then have a reference to the
DataSource definition. It will look like this:

<bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>

</bean>

If you use JTA in a Java EE container then you use a container DataSource, obtained through JNDI, in
conjunction with Spring's JtaTransactionManager. This is what the JTA and JNDI lookup version
would look like:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee-3.0.xsd">

<jee:jndi-lookup id="dataSource" jndi-name="jdbc/jpetstore"/>

<bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager" />

<!-- other <bean/> definitions here -->

</beans>

Spring Framework

3.1 Reference Documentation 318

The JtaTransactionManager does not need to know about the DataSource, or any other specific
resources, because it uses the container's global transaction management infrastructure.

Note

The above definition of the dataSource bean uses the <jndi-lookup/> tag from the
jee namespace. For more information on schema-based configuration, see Appendix C,
XML Schema-based configuration, and for more information on the <jee/> tags see the
section entitled the section called “The jee schema”.

You can also use Hibernate local transactions easily, as shown in the following examples. In this case,
you need to define a Hibernate LocalSessionFactoryBean, which your application code will use
to obtain Hibernate Session instances.

The DataSource bean definition will be similar to the local JDBC example shown previously and thus
is not shown in the following example.

Note

If the DataSource, used by any non-JTA transaction manager, is looked up via JNDI and
managed by a Java EE container, then it should be non-transactional because the Spring
Framework, rather than the Java EE container, will manage the transactions.

The txManager bean in this case is of the HibernateTransactionManager type. In the same
way as the DataSourceTransactionManager needs a reference to the DataSource, the
HibernateTransactionManager needs a reference to the SessionFactory.

<bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<property name="dataSource" ref="dataSource" />
<property name="mappingResources">
<list>

<value>org/springframework/samples/petclinic/hibernate/petclinic.hbm.xml</value>
</list>
</property>
<property name="hibernateProperties">

<value>
hibernate.dialect=${hibernate.dialect}

</value>
</property>

</bean>

<bean id="txManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">
<property name="sessionFactory" ref="sessionFactory" />

</bean>

If you are using Hibernate and Java EE container-managed JTA transactions, then you should simply use
the same JtaTransactionManager as in the previous JTA example for JDBC.

<bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager"/>

Spring Framework

3.1 Reference Documentation 319

Note

If you use JTA , then your transaction manager definition will look the same regardless of
what data access technology you use, be it JDBC, Hibernate JPA or any other supported
technology. This is due to the fact that JTA transactions are global transactions, which can
enlist any transactional resource.

In all these cases, application code does not need to change. You can change how transactions are
managed merely by changing configuration, even if that change means moving from local to global
transactions or vice versa.

11.4 Synchronizing resources with transactions

It should now be clear how you create different transaction managers, and how they are linked to related
resources that need to be synchronized to transactions (for example
DataSourceTransactionManager to a JDBC DataSource,
HibernateTransactionManager to a Hibernate SessionFactory, and so forth). This section
describes how the application code, directly or indirectly using a persistence API such as JDBC,
Hibernate, or JDO, ensures that these resources are created, reused, and cleaned up properly. The section
also discusses how transaction synchronization is triggered (optionally) through the relevant
PlatformTransactionManager.

High-level synchronization approach

The preferred approach is to use Spring's highest level template based persistence integration APIs or to
use native ORM APIs with transaction- aware factory beans or proxies for managing the native resource
factories. These transaction-aware solutions internally handle resource creation and reuse, cleanup,
optional transaction synchronization of the resources, and exception mapping. Thus user data access code
does not have to address these tasks, but can be focused purely on non-boilerplate persistence logic.
Generally, you use the native ORM API or take a template approach for JDBC access by using the
JdbcTemplate. These solutions are detailed in subsequent chapters of this reference documentation.

Low-level synchronization approach

Classes such as DataSourceUtils (for JDBC), EntityManagerFactoryUtils (for JPA),
SessionFactoryUtils (for Hibernate), PersistenceManagerFactoryUtils (for JDO), and
so on exist at a lower level. When you want the application code to deal directly with the resource types
of the native persistence APIs, you use these classes to ensure that proper Spring Framework-managed
instances are obtained, transactions are (optionally) synchronized, and exceptions that occur in the
process are properly mapped to a consistent API.

For example, in the case of JDBC, instead of the traditional JDBC approach of calling the

Spring Framework

3.1 Reference Documentation 320

getConnection() method on the DataSource, you instead use Spring's
org.springframework.jdbc.datasource.DataSourceUtils class as follows:

Connection conn = DataSourceUtils.getConnection(dataSource);

If an existing transaction already has a connection synchronized (linked) to it, that instance is returned.
Otherwise, the method call triggers the creation of a new connection, which is (optionally) synchronized
to any existing transaction, and made available for subsequent reuse in that same transaction. As
mentioned, any SQLException is wrapped in a Spring Framework
CannotGetJdbcConnectionException, one of the Spring Framework's hierarchy of unchecked
DataAccessExceptions. This approach gives you more information than can be obtained easily from the
SQLException, and ensures portability across databases, even across different persistence
technologies.

This approach also works without Spring transaction management (transaction synchronization is
optional), so you can use it whether or not you are using Spring for transaction management.

Of course, once you have used Spring's JDBC support, JPA support or Hibernate support, you will
generally prefer not to use DataSourceUtils or the other helper classes, because you will be much
happier working through the Spring abstraction than directly with the relevant APIs. For example, if you
use the Spring JdbcTemplate or jdbc.object package to simplify your use of JDBC, correct
connection retrieval occurs behind the scenes and you won't need to write any special code.

TransactionAwareDataSourceProxy

At the very lowest level exists the TransactionAwareDataSourceProxy class. This is a proxy for
a target DataSource, which wraps the target DataSource to add awareness of Spring-managed
transactions. In this respect, it is similar to a transactional JNDI DataSource as provided by a Java EE
server.

It should almost never be necessary or desirable to use this class, except when existing code must be
called and passed a standard JDBC DataSource interface implementation. In that case, it is possible
that this code is usable, but participating in Spring managed transactions. It is preferable to write your
new code by using the higher level abstractions mentioned above.

11.5 Declarative transaction management

Note

Most Spring Framework users choose declarative transaction management. This option has
the least impact on application code, and hence is most consistent with the ideals of a
non-invasive lightweight container.

The Spring Framework's declarative transaction management is made possible with Spring

Spring Framework

3.1 Reference Documentation 321

aspect-oriented programming (AOP), although, as the transactional aspects code comes with the Spring
Framework distribution and may be used in a boilerplate fashion, AOP concepts do not generally have to
be understood to make effective use of this code.

The Spring Framework's declarative transaction management is similar to EJB CMT in that you can
specify transaction behavior (or lack of it) down to individual method level. It is possible to make a
setRollbackOnly() call within a transaction context if necessary. The differences between the two
types of transaction management are:

• Unlike EJB CMT, which is tied to JTA, the Spring Framework's declarative transaction management
works in any environment. It can work with JTA transactions or local transactions using JDBC, JPA,
Hibernate or JDO by simply adjusting the configuration files.

• You can apply the Spring Framework declarative transaction management to any class, not merely
special classes such as EJBs.

• The Spring Framework offers declarative rollback rules, a feature with no EJB equivalent. Both
programmatic and declarative support for rollback rules is provided.

• The Spring Framework enables you to customize transactional behavior, by using AOP. For example,
you can insert custom behavior in the case of transaction rollback. You can also add arbitrary advice,
along with the transactional advice. With EJB CMT, you cannot influence the container's transaction
management except with setRollbackOnly().

• The Spring Framework does not support propagation of transaction contexts across remote calls, as do
high-end application servers. If you need this feature, we recommend that you use EJB. However,
consider carefully before using such a feature, because normally, one does not want transactions to
span remote calls.

Where is TransactionProxyFactoryBean?

Declarative transaction configuration in versions of Spring 2.0 and above differs considerably from
previous versions of Spring. The main difference is that there is no longer any need to configure
TransactionProxyFactoryBean beans.

The pre-Spring 2.0 configuration style is still 100% valid configuration; think of the new
<tx:tags/> as simply defining TransactionProxyFactoryBean beans on your behalf.

The concept of rollback rules is important: they enable you to specify which exceptions (and throwables)
should cause automatic rollback. You specify this declaratively, in configuration, not in Java code. So,
although you can still call setRollbackOnly()on the TransactionStatus object to roll back
the current transaction back, most often you can specify a rule that MyApplicationException must
always result in rollback. The significant advantage to this option is that business objects do not depend
on the transaction infrastructure. For example, they typically do not need to import Spring transaction
APIs or other Spring APIs.

Spring Framework

3.1 Reference Documentation 322

Although EJB container default behavior automatically rolls back the transaction on a system exception
(usually a runtime exception), EJB CMT does not roll back the transaction automatically on an
application exception (that is, a checked exception other than java.rmi.RemoteException). While
the Spring default behavior for declarative transaction management follows EJB convention (roll back is
automatic only on unchecked exceptions), it is often useful to customize this behavior.

Understanding the Spring Framework's declarative transaction
implementation

It is not sufficient to tell you simply to annotate your classes with the @Transactional annotation,
add the line (<tx:annotation-driven/>) to your configuration, and then expect you to understand
how it all works. This section explains the inner workings of the Spring Framework's declarative
transaction infrastructure in the event of transaction-related issues.

The most important concepts to grasp with regard to the Spring Framework's declarative transaction
support are that this support is enabled via AOP proxies, and that the transactional advice is driven by
metadata (currently XML- or annotation-based). The combination of AOP with transactional metadata
yields an AOP proxy that uses a TransactionInterceptor in conjunction with an appropriate
PlatformTransactionManager implementation to drive transactions around method invocations.

Note

Spring AOP is covered in Chapter 8, Aspect Oriented Programming with Spring.

Conceptually, calling a method on a transactional proxy looks like this...

Spring Framework

3.1 Reference Documentation 323

Example of declarative transaction implementation

Consider the following interface, and its attendant implementation. This example uses Foo and Bar
classes as placeholders so that you can concentrate on the transaction usage without focusing on a
particular domain model. For the purposes of this example, the fact that the DefaultFooService
class throws UnsupportedOperationException instances in the body of each implemented
method is good; it allows you to see transactions created and then rolled back in response to the
UnsupportedOperationException instance.

// the service interface that we want to make transactional

package x.y.service;

public interface FooService {

Foo getFoo(String fooName);

Foo getFoo(String fooName, String barName);

void insertFoo(Foo foo);

void updateFoo(Foo foo);

}

// an implementation of the above interface

package x.y.service;

public class DefaultFooService implements FooService {

Spring Framework

3.1 Reference Documentation 324

public Foo getFoo(String fooName) {
throw new UnsupportedOperationException();

}

public Foo getFoo(String fooName, String barName) {
throw new UnsupportedOperationException();

}

public void insertFoo(Foo foo) {
throw new UnsupportedOperationException();

}

public void updateFoo(Foo foo) {
throw new UnsupportedOperationException();

}

}

Assume that the first two methods of the FooService interface, getFoo(String) and
getFoo(String, String), must execute in the context of a transaction with read-only semantics,
and that the other methods,insertFoo(Foo) and updateFoo(Foo), must execute in the context
of a transaction with read-write semantics. The following configuration is explained in detail in the next
few paragraphs.

<!-- from the file 'context.xml' -->
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<!-- this is the service object that we want to make transactional -->
<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- the transactional advice (what 'happens'; see the <aop:advisor/> bean below) -->
<tx:advice id="txAdvice" transaction-manager="txManager">
<!-- the transactional semantics... -->
<tx:attributes>

<!-- all methods starting with 'get' are read-only -->
<tx:method name="get*" read-only="true"/>
<!-- other methods use the default transaction settings (see below) -->
<tx:method name="*"/>

</tx:attributes>
</tx:advice>

<!-- ensure that the above transactional advice runs for any execution
of an operation defined by the FooService interface -->

<aop:config>
<aop:pointcut id="fooServiceOperation" expression="execution(* x.y.service.FooService.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceOperation"/>
</aop:config>

<!-- don't forget the DataSource -->
<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/>

Spring Framework

3.1 Reference Documentation 325

<property name="username" value="scott"/>
<property name="password" value="tiger"/>
</bean>

<!-- similarly, don't forget the PlatformTransactionManager -->
<bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>
</bean>

<!-- other <bean/> definitions here -->

</beans>

Examine the preceding configuration. You want to make a service object, the fooService bean,
transactional. The transaction semantics to apply are encapsulated in the <tx:advice/> definition. The
<tx:advice/> definition reads as “... all methods on starting with 'get' are to execute in the context
of a read-only transaction, and all other methods are to execute with the default transaction semantics”.
The transaction-manager attribute of the <tx:advice/> tag is set to the name of the
PlatformTransactionManager bean that is going to drive the transactions, in this case, the
txManager bean.

Tip

You can omit the transaction-manager attribute in the transactional advice
(<tx:advice/>) if the bean name of the PlatformTransactionManager that you
want to wire in has the name transactionManager. If the
PlatformTransactionManager bean that you want to wire in has any other name,
then you must use the transaction-manager attribute explicitly, as in the preceding
example.

The <aop:config/> definition ensures that the transactional advice defined by the txAdvice bean
executes at the appropriate points in the program. First you define a pointcut that matches the execution
of any operation defined in the FooService interface (fooServiceOperation). Then you
associate the pointcut with the txAdvice using an advisor. The result indicates that at the execution of a
fooServiceOperation, the advice defined by txAdvice will be run.

The expression defined within the <aop:pointcut/> element is an AspectJ pointcut expression; see
Chapter 8, Aspect Oriented Programming with Spring for more details on pointcut expressions in Spring
2.0.

A common requirement is to make an entire service layer transactional. The best way to do this is simply
to change the pointcut expression to match any operation in your service layer. For example:

<aop:config>
<aop:pointcut id="fooServiceMethods" expression="execution(* x.y.service.*.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceMethods"/>

</aop:config>

Note

Spring Framework

3.1 Reference Documentation 326

In this example it is assumed that all your service interfaces are defined in the
x.y.service package; see Chapter 8, Aspect Oriented Programming with Spring for
more details.

Now that we've analyzed the configuration, you may be asking yourself, “Okay... but what does all this
configuration actually do?”.

The above configuration will be used to create a transactional proxy around the object that is created from
the fooService bean definition. The proxy will be configured with the transactional advice, so that
when an appropriate method is invoked on the proxy, a transaction is started, suspended, marked as
read-only, and so on, depending on the transaction configuration associated with that method. Consider
the following program that test drives the above configuration:

public final class Boot {

public static void main(final String[] args) throws Exception {
ApplicationContext ctx = new ClassPathXmlApplicationContext("context.xml", Boot.class);
FooService fooService = (FooService) ctx.getBean("fooService");
fooService.insertFoo (new Foo());

}
}

The output from running the preceding program will resemble the following. (The Log4J output and the
stack trace from the UnsupportedOperationException thrown by the insertFoo(..) method of the
DefaultFooService class have been truncated for clarity.)

<!-- the Spring container is starting up... -->
[AspectJInvocationContextExposingAdvisorAutoProxyCreator] - Creating implicit proxy

for bean 'fooService' with 0 common interceptors and 1 specific interceptors
<!-- the DefaultFooService is actually proxied -->

[JdkDynamicAopProxy] - Creating JDK dynamic proxy for [x.y.service.DefaultFooService]

<!-- ... the insertFoo(..) method is now being invoked on the proxy -->

[TransactionInterceptor] - Getting transaction for x.y.service.FooService.insertFoo
<!-- the transactional advice kicks in here... -->

[DataSourceTransactionManager] - Creating new transaction with name [x.y.service.FooService.insertFoo]
[DataSourceTransactionManager] - Acquired Connection

[org.apache.commons.dbcp.PoolableConnection@a53de4] for JDBC transaction

<!-- the insertFoo(..) method from DefaultFooService throws an exception... -->
[RuleBasedTransactionAttribute] - Applying rules to determine whether transaction should

rollback on java.lang.UnsupportedOperationException
[TransactionInterceptor] - Invoking rollback for transaction on x.y.service.FooService.insertFoo

due to throwable [java.lang.UnsupportedOperationException]

<!-- and the transaction is rolled back (by default, RuntimeException instances cause rollback) -->
[DataSourceTransactionManager] - Rolling back JDBC transaction on Connection

[org.apache.commons.dbcp.PoolableConnection@a53de4]
[DataSourceTransactionManager] - Releasing JDBC Connection after transaction
[DataSourceUtils] - Returning JDBC Connection to DataSource

Exception in thread "main" java.lang.UnsupportedOperationException
at x.y.service.DefaultFooService.insertFoo(DefaultFooService.java:14)

<!-- AOP infrastructure stack trace elements removed for clarity -->
at $Proxy0.insertFoo(Unknown Source)

Spring Framework

3.1 Reference Documentation 327

at Boot.main(Boot.java:11)

Rolling back a declarative transaction

The previous section outlined the basics of how to specify transactional settings for classes, typically
service layer classes, declaratively in your application. This section describes how you can control the
rollback of transactions in a simple declarative fashion.

The recommended way to indicate to the Spring Framework's transaction infrastructure that a
transaction's work is to be rolled back is to throw an Exception from code that is currently executing in
the context of a transaction. The Spring Framework's transaction infrastructure code will catch any
unhandled Exception as it bubbles up the call stack, and make a determination whether to mark the
transaction for rollback.

In its default configuration, the Spring Framework's transaction infrastructure code only marks a
transaction for rollback in the case of runtime, unchecked exceptions; that is, when the thrown exception
is an instance or subclass of RuntimeException. (Errors will also - by default - result in a
rollback). Checked exceptions that are thrown from a transactional method do not result in rollback in the
default configuration.

You can configure exactly which Exception types mark a transaction for rollback, including checked
exceptions. The following XML snippet demonstrates how you configure rollback for a checked,
application-specific Exception type.

<tx:advice id="txAdvice" transaction-manager="txManager">
<tx:attributes>
<tx:method name="get*" read-only="true" rollback-for="NoProductInStockException"/>
<tx:method name="*"/>
</tx:attributes>

</tx:advice>

You can also specify 'no rollback rules', if you do not want a transaction rolled back when an exception is
thrown. The following example tells the Spring Framework's transaction infrastructure to commit the
attendant transaction even in the face of an unhandled InstrumentNotFoundException.

<tx:advice id="txAdvice">
<tx:attributes>
<tx:method name="updateStock" no-rollback-for="InstrumentNotFoundException"/>
<tx:method name="*"/>
</tx:attributes>

</tx:advice>

When the Spring Framework's transaction infrastructure catches an exception and is consults configured
rollback rules to determine whether to mark the transaction for rollback, the strongest matching rule wins.
So in the case of the following configuration, any exception other than an
InstrumentNotFoundException results in a rollback of the attendant transaction.

<tx:advice id="txAdvice">
<tx:attributes>
<tx:method name="*" rollback-for="Throwable" no-rollback-for="InstrumentNotFoundException"/>
</tx:attributes>

Spring Framework

3.1 Reference Documentation 328

</tx:advice>

You can also indicate a required rollback programmatically. Although very simple, this process is quite
invasive, and tightly couples your code to the Spring Framework's transaction infrastructure:

public void resolvePosition() {
try {

// some business logic...
} catch (NoProductInStockException ex) {

// trigger rollback programmatically
TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();

}
}

You are strongly encouraged to use the declarative approach to rollback if at all possible. Programmatic
rollback is available should you absolutely need it, but its usage flies in the face of achieving a clean
POJO-based architecture.

Configuring different transactional semantics for different beans

Consider the scenario where you have a number of service layer objects, and you want to apply a totally
different transactional configuration to each of them. You do this by defining distinct
<aop:advisor/> elements with differing pointcut and advice-ref attribute values.

As a point of comparison, first assume that all of your service layer classes are defined in a root
x.y.service package. To make all beans that are instances of classes defined in that package (or in
subpackages) and that have names ending in Service have the default transactional configuration, you
would write the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<aop:config>

<aop:pointcut id="serviceOperation"
expression="execution(* x.y.service..*Service.*(..))"/>

<aop:advisor pointcut-ref="serviceOperation" advice-ref="txAdvice"/>

</aop:config>

<!-- these two beans will be transactional... -->
<bean id="fooService" class="x.y.service.DefaultFooService"/>
<bean id="barService" class="x.y.service.extras.SimpleBarService"/>

<!-- ... and these two beans won't -->
<bean id="anotherService" class="org.xyz.SomeService"/> <!-- (not in the right package) -->

Spring Framework

3.1 Reference Documentation 329

<bean id="barManager" class="x.y.service.SimpleBarManager"/> <!-- (doesn't end in 'Service') -->

<tx:advice id="txAdvice">
<tx:attributes>
<tx:method name="get*" read-only="true"/>
<tx:method name="*"/>

</tx:attributes>
</tx:advice>

<!-- other transaction infrastructure beans such as a PlatformTransactionManager omitted... -->

</beans>

The following example shows how to configure two distinct beans with totally different transactional
settings.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<aop:config>

<aop:pointcut id="defaultServiceOperation"
expression="execution(* x.y.service.*Service.*(..))"/>

<aop:pointcut id="noTxServiceOperation"
expression="execution(* x.y.service.ddl.DefaultDdlManager.*(..))"/>

<aop:advisor pointcut-ref="defaultServiceOperation" advice-ref="defaultTxAdvice"/>

<aop:advisor pointcut-ref="noTxServiceOperation" advice-ref="noTxAdvice"/>

</aop:config>

<!-- this bean will be transactional (see the 'defaultServiceOperation' pointcut) -->
<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- this bean will also be transactional, but with totally different transactional settings -->
<bean id="anotherFooService" class="x.y.service.ddl.DefaultDdlManager"/>

<tx:advice id="defaultTxAdvice">
<tx:attributes>
<tx:method name="get*" read-only="true"/>
<tx:method name="*"/>

</tx:attributes>
</tx:advice>

<tx:advice id="noTxAdvice">
<tx:attributes>
<tx:method name="*" propagation="NEVER"/>

</tx:attributes>
</tx:advice>

<!-- other transaction infrastructure beans such as a PlatformTransactionManager omitted... -->

</beans>

Spring Framework

3.1 Reference Documentation 330

<tx:advice/> settings

This section summarizes the various transactional settings that can be specified using the
<tx:advice/> tag. The default <tx:advice/> settings are:

• Propagation setting is REQUIRED.

• Isolation level is DEFAULT.

• Transaction is read/write.

• Transaction timeout defaults to the default timeout of the underlying transaction system, or none if
timeouts are not supported.

• Any RuntimeException triggers rollback, and any checked Exception does not.

You can change these default settings; the various attributes of the <tx:method/> tags that are nested
within <tx:advice/> and <tx:attributes/> tags are summarized below:

Table 11.1. <tx:method/> settings

Attribute Required?Default Description

name Yes
Method name(s) with which the transaction
attributes are to be associated. The wildcard (*)
character can be used to associate the same
transaction attribute settings with a number of
methods; for example, get*, handle*,
on*Event, and so forth.

propagation No REQUIRED Transaction propagation behavior.

isolation No DEFAULT Transaction isolation level.

timeout No -1 Transaction timeout value (in seconds).

read-only No false Is this transaction read-only?

rollback-for No
Exception(s) that trigger rollback;
comma-delimited. For example,
com.foo.MyBusinessException,ServletException.

no-rollback-for No
Exception(s) that do not trigger rollback;
comma-delimited. For example,
com.foo.MyBusinessException,ServletException.

Spring Framework

3.1 Reference Documentation 331

Using @Transactional

In addition to the XML-based declarative approach to transaction configuration, you can use an
annotation-based approach. Declaring transaction semantics directly in the Java source code puts the
declarations much closer to the affected code. There is not much danger of undue coupling, because code
that is meant to be used transactionally is almost always deployed that way anyway.

The ease-of-use afforded by the use of the @Transactional annotation is best illustrated with an
example, which is explained in the text that follows. Consider the following class definition:

// the service class that we want to make transactional
@Transactional
public class DefaultFooService implements FooService {

Foo getFoo(String fooName);

Foo getFoo(String fooName, String barName);

void insertFoo(Foo foo);

void updateFoo(Foo foo);
}

When the above POJO is defined as a bean in a Spring IoC container, the bean instance can be made
transactional by adding merely one line of XML configuration:

<!-- from the file 'context.xml' -->
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<!-- this is the service object that we want to make transactional -->
<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- enable the configuration of transactional behavior based on annotations -->
<tx:annotation-driven transaction-manager="txManager"/>

<!-- a PlatformTransactionManager is still required -->
<bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<!-- (this dependency is defined somewhere else) -->
<property name="dataSource" ref="dataSource"/>
</bean>

<!-- other <bean/> definitions here -->

</beans>

Tip

Spring Framework

3.1 Reference Documentation 332

You can omit the transaction-manager attribute in the
<tx:annotation-driven/> tag if the bean name of the
PlatformTransactionManager that you want to wire in has the name
transactionManager. If the PlatformTransactionManager bean that you want
to dependency-inject has any other name, then you have to use the
transaction-manager attribute explicitly, as in the preceding example.

Method visibility and @Transactional

When using proxies, you should apply the @Transactional annotation only to methods with
public visibility. If you do annotate protected, private or package-visible methods with the
@Transactional annotation, no error is raised, but the annotated method does not exhibit the
configured transactional settings. Consider the use of AspectJ (see below) if you need to annotate
non-public methods.

You can place the @Transactional annotation before an interface definition, a method on an
interface, a class definition, or a public method on a class. However, the mere presence of the
@Transactional annotation is not enough to activate the transactional behavior. The
@Transactional annotation is simply metadata that can be consumed by some runtime infrastructure
that is @Transactional-aware and that can use the metadata to configure the appropriate beans with
transactional behavior. In the preceding example, the <tx:annotation-driven/> element switches
on the transactional behavior.

Tip

Spring recommends that you only annotate concrete classes (and methods of concrete classes)
with the @Transactional annotation, as opposed to annotating interfaces. You certainly
can place the @Transactional annotation on an interface (or an interface method), but
this works only as you would expect it to if you are using interface-based proxies. The fact
that Java annotations are not inherited from interfaces means that if you are using class-based
proxies (proxy-target-class="true") or the weaving-based aspect
(mode="aspectj"), then the transaction settings are not recognized by the proxying and
weaving infrastructure, and the object will not be wrapped in a transactional proxy, which
would be decidedly bad.

Note

In proxy mode (which is the default), only external method calls coming in through the proxy
are intercepted. This means that self-invocation, in effect, a method within the target object
calling another method of the target object, will not lead to an actual transaction at runtime

Spring Framework

3.1 Reference Documentation 333

even if the invoked method is marked with @Transactional.

Consider the use of AspectJ mode (see mode attribute in table below) if you expect self-invocations to be
wrapped with transactions as well. In this case, there will not be a proxy in the first place; instead, the
target class will be weaved (that is, its byte code will be modified) in order to turn @Transactional
into runtime behavior on any kind of method.

Table 11.2. <tx:annotation-driven/> settings

Attribute Default Description

transaction-manager transactionManager
Name of transaction manager to
use. Only required if the name of
the transaction manager is not
transactionManager, as in
the example above.

mode proxy
The default mode "proxy"
processes annotated beans to be
proxied using Spring's AOP
framework (following proxy
semantics, as discussed above,
applying to method calls coming
in through the proxy only). The
alternative mode "aspectj"
instead weaves the affected
classes with Spring's AspectJ
transaction aspect, modifying the
target class byte code to apply to
any kind of method call. AspectJ
weaving requires
spring-aspects.jar in the classpath
as well as load-time weaving (or
compile-time weaving) enabled.
(See the section called “Spring
configuration” for details on how
to set up load-time weaving.)

proxy-target-class false
Applies to proxy mode only.
Controls what type of
transactional proxies are created
for classes annotated with the

Spring Framework

3.1 Reference Documentation 334

Attribute Default Description

@Transactional annotation.
If the proxy-target-class
attribute is set to true, then
class-based proxies are created.
If proxy-target-class is
false or if the attribute is
omitted, then standard JDK
interface-based proxies are
created. (See Section 8.6,
“Proxying mechanisms” for a
detailed examination of the
different proxy types.)

order Ordered.LOWEST_PRECEDENCE
Defines the order of the
transaction advice that is applied
to beans annotated with
@Transactional. (For more
information about the rules
related to ordering of AOP
advice, see the section called
“Advice ordering”.) No specified
ordering means that the AOP
subsystem determines the order
of the advice.

Note

The proxy-target-class attribute on the <tx:annotation-driven/> element
controls what type of transactional proxies are created for classes annotated with the
@Transactional annotation. If proxy-target-class attribute is set to true,
class-based proxies are created. If proxy-target-class is false or if the attribute is
omitted, standard JDK interface-based proxies are created. (See Section 8.6, “Proxying
mechanisms” for a discussion of the different proxy types.)

Note

<tx:annotation-driven/> only looks for @Transactional on beans in the same
application context it is defined in. This means that, if you put
<tx:annotation-driven/> in a WebApplicationContext for a
DispatcherServlet, it only checks for @Transactional beans in your controllers,
and not your services. See Section 16.2, “The DispatcherServlet” for more information.

Spring Framework

3.1 Reference Documentation 335

The most derived location takes precedence when evaluating the transactional settings for a method. In
the case of the following example, the DefaultFooService class is annotated at the class level with
the settings for a read-only transaction, but the @Transactional annotation on the
updateFoo(Foo) method in the same class takes precedence over the transactional settings defined at
the class level.

@Transactional(readOnly = true)
public class DefaultFooService implements FooService {

public Foo getFoo(String fooName) {
// do something

}

// these settings have precedence for this method
@Transactional(readOnly = false, propagation = Propagation.REQUIRES_NEW)
public void updateFoo(Foo foo) {

// do something
}

}

@Transactional settings

The @Transactional annotation is metadata that specifies that an interface, class, or method must
have transactional semantics; for example, “start a brand new read-only transaction when this method is
invoked, suspending any existing transaction”. The default @Transactional settings are as follows:

• Propagation setting is PROPAGATION_REQUIRED.

• Isolation level is ISOLATION_DEFAULT.

• Transaction is read/write.

• Transaction timeout defaults to the default timeout of the underlying transaction system, or to none if
timeouts are not supported.

• Any RuntimeException triggers rollback, and any checked Exception does not.

These default settings can be changed; the various properties of the @Transactional annotation are
summarized in the following table:

Table 11.3. @Transactional properties

Property Type Description

value String Optional qualifier specifying the
transaction manager to be used.

propagation enum: Propagation Optional propagation setting.

isolation enum: Isolation Optional isolation level.

Spring Framework

3.1 Reference Documentation 336

Property Type Description

readOnly boolean Read/write vs. read-only
transaction

timeout int (in seconds granularity) Transaction timeout.

rollbackFor Array of Class objects, which
must be derived from
Throwable.

Optional array of exception
classes that must cause rollback.

rollbackForClassname Array of class names. Classes
must be derived from
Throwable.

Optional array of names of
exception classes that must
cause rollback.

noRollbackFor Array of Class objects, which
must be derived from
Throwable.

Optional array of exception
classes that must not cause
rollback.

noRollbackForClassname Array of String class names,
which must be derived from
Throwable.

Optional array of names of
exception classes that must not
cause rollback.

Currently you cannot have explicit control over the name of a transaction, where 'name' means the
transaction name that will be shown in a transaction monitor, if applicable (for example, WebLogic's
transaction monitor), and in logging output. For declarative transactions, the transaction name is always
the fully-qualified class name + "." + method name of the transactionally-advised class. For example, if
the handlePayment(..) method of the BusinessService class started a transaction, the name of
the transaction would be: com.foo.BusinessService.handlePayment.

Multiple Transaction Managers with @Transactional

Most Spring applications only need a single transaction manager, but there may be situations where you
want multiple independent transaction managers in a single application. The value attribute of the
@Transactional annotation can be used to optionally specify the identity of the
PlatformTransactionManager to be used. This can either be the bean name or the qualifier value
of the transaction manager bean. For example, using the qualifier notation, the following Java code

public class TransactionalService {

@Transactional("order")
public void setSomething(String name) { ... }

@Transactional("account")
public void doSomething() { ... }

}

could be combined with the following transaction manager bean declarations in the application context.

Spring Framework

3.1 Reference Documentation 337

<tx:annotation-driven/>

<bean id="transactionManager1" class="org.springframework.jdbc.DataSourceTransactionManager">
...
<qualifier value="order"/>

</bean>

<bean id="transactionManager2" class="org.springframework.jdbc.DataSourceTransactionManager">
...
<qualifier value="account"/>

</bean>

In this case, the two methods on TransactionalService will run under separate transaction
managers, differentiated by the "order" and "account" qualifiers. The default
<tx:annotation-driven> target bean name transactionManager will still be used if no
specifically qualified PlatformTransactionManager bean is found.

Custom shortcut annotations

If you find you are repeatedly using the same attributes with @Transactional on many different
methods, then Spring's meta-annotation support allows you to define custom shortcut annotations for your
specific use cases. For example, defining the following annotations

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Transactional("order")
public @interface OrderTx {
}

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Transactional("account")
public @interface AccountTx {
}

allows us to write the example from the previous section as

public class TransactionalService {

@OrderTx
public void setSomething(String name) { ... }

@AccountTx
public void doSomething() { ... }

}

Here we have used the syntax to define the transaction manager qualifier, but could also have included
propagation behavior, rollback rules, timeouts etc.

Transaction propagation

This section describes some semantics of transaction propagation in Spring. Please note that this section
is not an introduction to transaction propagation proper; rather it details some of the semantics regarding

Spring Framework

3.1 Reference Documentation 338

transaction propagation in Spring.

In Spring-managed transactions, be aware of the difference between physical and logical transactions, and
how the propagation setting applies to this difference.

Required

PROPAGATION_REQUIRED

When the propagation setting is PROPAGATION_REQUIRED, a logical transaction scope is created for
each method upon which the setting is applied. Each such logical transaction scope can determine
rollback-only status individually, with an outer transaction scope being logically independent from the
inner transaction scope. Of course, in case of standard PROPAGATION_REQUIRED behavior, all these
scopes will be mapped to the same physical transaction. So a rollback-only marker set in the inner
transaction scope does affect the outer transaction's chance to actually commit (as you would expect it to).

However, in the case where an inner transaction scope sets the rollback-only marker, the outer transaction
has not decided on the rollback itself, and so the rollback (silently triggered by the inner transaction
scope) is unexpected. A corresponding UnexpectedRollbackException is thrown at that point.
This is expected behavior so that the caller of a transaction can never be misled to assume that a commit
was performed when it really was not. So if an inner transaction (of which the outer caller is not aware)
silently marks a transaction as rollback-only, the outer caller still calls commit. The outer caller needs to
receive an UnexpectedRollbackException to indicate clearly that a rollback was performed
instead.

RequiresNew

Spring Framework

3.1 Reference Documentation 339

PROPAGATION_REQUIRES_NEW

PROPAGATION_REQUIRES_NEW, in contrast to PROPAGATION_REQUIRED, uses a completely
independent transaction for each affected transaction scope. In that case, the underlying physical
transactions are different and hence can commit or roll back independently, with an outer transaction not
affected by an inner transaction's rollback status.

Nested

PROPAGATION_NESTED uses a single physical transaction with multiple savepoints that it can roll back
to. Such partial rollbacks allow an inner transaction scope to trigger a rollback for its scope, with the outer
transaction being able to continue the physical transaction despite some operations having been rolled
back. This setting is typically mapped onto JDBC savepoints, so will only work with JDBC resource
transactions. See Spring's DataSourceTransactionManager.

Advising transactional operations

Suppose you want to execute both transactional and some basic profiling advice. How do you effect this
in the context of <tx:annotation-driven/>?

When you invoke the updateFoo(Foo) method, you want to see the following actions:

1. Configured profiling aspect starts up.

2. Transactional advice executes.

3. Method on the advised object executes.

4. Transaction commits.

5. Profiling aspect reports exact duration of the whole transactional method invocation.

Spring Framework

3.1 Reference Documentation 340

Note

This chapter is not concerned with explaining AOP in any great detail (except as it applies to
transactions). See Chapter 8, Aspect Oriented Programming with Spring for detailed coverage
of the following AOP configuration and AOP in general.

Here is the code for a simple profiling aspect discussed above. The ordering of advice is controlled
through the Ordered interface. For full details on advice ordering, see the section called “Advice
ordering”.

package x.y;

import org.aspectj.lang.ProceedingJoinPoint;
import org.springframework.util.StopWatch;
import org.springframework.core.Ordered;

public class SimpleProfiler implements Ordered {

private int order;

// allows us to control the ordering of advice
public int getOrder() {

return this.order;
}

public void setOrder(int order) {
this.order = order;

}

// this method is the around advice
public Object profile(ProceedingJoinPoint call) throws Throwable {

Object returnValue;
StopWatch clock = new StopWatch(getClass().getName());
try {
clock.start(call.toShortString());
returnValue = call.proceed();

} finally {
clock.stop();
System.out.println(clock.prettyPrint());

}
return returnValue;

}
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- this is the aspect -->
<bean id="profiler" class="x.y.SimpleProfiler">

Spring Framework

3.1 Reference Documentation 341

<!-- execute before the transactional advice (hence the lower order number) -->
<property name="order" value="1"/>

</bean>

<tx:annotation-driven transaction-manager="txManager" order="200"/>

<aop:config>
<!-- this advice will execute around the transactional advice -->
<aop:aspect id="profilingAspect" ref="profiler">
<aop:pointcut id="serviceMethodWithReturnValue"

expression="execution(!void x.y..*Service.*(..))"/>
<aop:around method="profile" pointcut-ref="serviceMethodWithReturnValue"/>

</aop:aspect>
</aop:config>

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/>
<property name="username" value="scott"/>
<property name="password" value="tiger"/>

</bean>

<bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>

</bean>

</beans>

The result of the above configuration is a fooService bean that has profiling and transactional aspects
applied to it in the desired order. You configure any number of additional aspects in similar fashion.

The following example effects the same setup as above, but uses the purely XML declarative approach.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<bean id="fooService" class="x.y.service.DefaultFooService"/>

<!-- the profiling advice -->
<bean id="profiler" class="x.y.SimpleProfiler">

<!-- execute before the transactional advice (hence the lower order number) -->
<property name="order" value="1"/>

</bean>

<aop:config>

<aop:pointcut id="entryPointMethod" expression="execution(* x.y..*Service.*(..))"/>

<!-- will execute after the profiling advice (c.f. the order attribute) -->
<aop:advisor

advice-ref="txAdvice"
pointcut-ref="entryPointMethod"
order="2"/> <!-- order value is higher than the profiling aspect -->

<aop:aspect id="profilingAspect" ref="profiler">

Spring Framework

3.1 Reference Documentation 342

<aop:pointcut id="serviceMethodWithReturnValue"
expression="execution(!void x.y..*Service.*(..))"/>

<aop:around method="profile" pointcut-ref="serviceMethodWithReturnValue"/>
</aop:aspect>

</aop:config>

<tx:advice id="txAdvice" transaction-manager="txManager">
<tx:attributes>
<tx:method name="get*" read-only="true"/>
<tx:method name="*"/>

</tx:attributes>
</tx:advice>

<!-- other <bean/> definitions such as a DataSource and a PlatformTransactionManager here -->

</beans>

The result of the above configuration will be a fooService bean that has profiling and transactional
aspects applied to it in that order. If you want the profiling advice to execute after the transactional
advice on the way in, and before the transactional advice on the way out, then you simply swap the value
of the profiling aspect bean's order property so that it is higher than the transactional advice's order
value.

You configure additional aspects in similar fashion.

Using @Transactional with AspectJ

It is also possible to use the Spring Framework's @Transactional support outside of a Spring
container by means of an AspectJ aspect. To do so, you first annotate your classes (and optionally your
classes' methods) with the @Transactional annotation, and then you link (weave) your application
with the
org.springframework.transaction.aspectj.AnnotationTransactionAspect
defined in the spring-aspects.jar file. The aspect must also be configured with a transaction
manager. You can of course use the Spring Framework's IoC container to take care of
dependency-injecting the aspect. The simplest way to configure the transaction management aspect is to
use the <tx:annotation-driven/> element and specify the mode attribute to aspectj as
described in the section called “Using @Transactional”. Because we're focusing here on applications
running outside of a Spring container, we'll show you how to do it programmatically.

Note

Prior to continuing, you may want to read the section called “Using @Transactional” and
Chapter 8, Aspect Oriented Programming with Spring respectively.

// construct an appropriate transaction manager
DataSourceTransactionManager txManager = new DataSourceTransactionManager(getDataSource());

// configure the AnnotationTransactionAspect to use it; this must be done before executing any transactional methods
AnnotationTransactionAspect.aspectOf().setTransactionManager(txManager);

Spring Framework

3.1 Reference Documentation 343

Note

When using this aspect, you must annotate the implementation class (and/or methods within
that class), not the interface (if any) that the class implements. AspectJ follows Java's rule
that annotations on interfaces are not inherited.

The @Transactional annotation on a class specifies the default transaction semantics for the
execution of any method in the class.

The @Transactional annotation on a method within the class overrides the default transaction
semantics given by the class annotation (if present). Any method may be annotated, regardless of
visibility.

To weave your applications with the AnnotationTransactionAspect you must either build your
application with AspectJ (see the AspectJ Development Guide) or use load-time weaving. See the section
called “Load-time weaving with AspectJ in the Spring Framework” for a discussion of load-time weaving
with AspectJ.

11.6 Programmatic transaction management

The Spring Framework provides two means of programmatic transaction management:

• Using the TransactionTemplate.

• Using a PlatformTransactionManager implementation directly.

The Spring team generally recommends the TransactionTemplate for programmatic transaction
management. The second approach is similar to using the JTA UserTransaction API, although
exception handling is less cumbersome.

Using the TransactionTemplate

The TransactionTemplate adopts the same approach as other Spring templates such as the
JdbcTemplate. It uses a callback approach, to free application code from having to do the boilerplate
acquisition and release of transactional resources, and results in code that is intention driven, in that the
code that is written focuses solely on what the developer wants to do.

Note

As you will see in the examples that follow, using the TransactionTemplate absolutely
couples you to Spring's transaction infrastructure and APIs. Whether or not programmatic
transaction management is suitable for your development needs is a decision that you will
have to make yourself.

Spring Framework

3.1 Reference Documentation 344

http://www.eclipse.org/aspectj/doc/released/devguide/index.html

Application code that must execute in a transactional context, and that will use the
TransactionTemplate explicitly, looks like the following. You, as an application developer, write a
TransactionCallback implementation (typically expressed as an anonymous inner class) that
contains the code that you need to execute in the context of a transaction. You then pass an instance of
your custom TransactionCallback to the execute(..) method exposed on the
TransactionTemplate.

public class SimpleService implements Service {

// single TransactionTemplate shared amongst all methods in this instance
private final TransactionTemplate transactionTemplate;

// use constructor-injection to supply the PlatformTransactionManager
public SimpleService(PlatformTransactionManager transactionManager) {

Assert.notNull(transactionManager, "The 'transactionManager' argument must not be null.");
this.transactionTemplate = new TransactionTemplate(transactionManager);

}

public Object someServiceMethod() {
return transactionTemplate.execute(new TransactionCallback() {

// the code in this method executes in a transactional context
public Object doInTransaction(TransactionStatus status) {
updateOperation1();
return resultOfUpdateOperation2();

}
});

}
}

If there is no return value, use the convenient TransactionCallbackWithoutResult class with
an anonymous class as follows:

transactionTemplate.execute(new TransactionCallbackWithoutResult() {

protected void doInTransactionWithoutResult(TransactionStatus status) {
updateOperation1();
updateOperation2();

}
});

Code within the callback can roll the transaction back by calling the setRollbackOnly() method on
the supplied TransactionStatus object:

transactionTemplate.execute(new TransactionCallbackWithoutResult() {

protected void doInTransactionWithoutResult(TransactionStatus status) {
try {
updateOperation1();
updateOperation2();

} catch (SomeBusinessExeption ex) {
status.setRollbackOnly();

}
}

});

Specifying transaction settings

Spring Framework

3.1 Reference Documentation 345

You can specify transaction settings such as the propagation mode, the isolation level, the timeout, and so
forth on the TransactionTemplate either programmatically or in configuration.
TransactionTemplate instances by default have the default transactional settings. The following
example shows the programmatic customization of the transactional settings for a specific
TransactionTemplate:

public class SimpleService implements Service {

private final TransactionTemplate transactionTemplate;

public SimpleService(PlatformTransactionManager transactionManager) {
Assert.notNull(transactionManager, "The 'transactionManager' argument must not be null.");
this.transactionTemplate = new TransactionTemplate(transactionManager);

// the transaction settings can be set here explicitly if so desired
this.transactionTemplate.setIsolationLevel(TransactionDefinition.ISOLATION_READ_UNCOMMITTED);
this.transactionTemplate.setTimeout(30); // 30 seconds
// and so forth...

}
}

The following example defines a TransactionTemplate with some custom transactional settings,
using Spring XML configuration. The sharedTransactionTemplate can then be injected into as
many services as are required.

<bean id="sharedTransactionTemplate"
class="org.springframework.transaction.support.TransactionTemplate">

<property name="isolationLevelName" value="ISOLATION_READ_UNCOMMITTED"/>
<property name="timeout" value="30"/>

</bean>"

Finally, instances of the TransactionTemplate class are threadsafe, in that instances do not
maintain any conversational state. TransactionTemplate instances do however maintain
configuration state, so while a number of classes may share a single instance of a
TransactionTemplate, if a class needs to use a TransactionTemplate with different settings
(for example, a different isolation level), then you need to create two distinct TransactionTemplate
instances.

Using the PlatformTransactionManager

You can also use the
org.springframework.transaction.PlatformTransactionManager directly to manage
your transaction. Simply pass the implementation of the PlatformTransactionManager you are
using to your bean through a bean reference. Then, using the TransactionDefinition and
TransactionStatus objects you can initiate transactions, roll back, and commit.

DefaultTransactionDefinition def = new DefaultTransactionDefinition();
// explicitly setting the transaction name is something that can only be done programmatically
def.setName("SomeTxName");
def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRED);

TransactionStatus status = txManager.getTransaction(def);
try {

Spring Framework

3.1 Reference Documentation 346

// execute your business logic here
}
catch (MyException ex) {
txManager.rollback(status);
throw ex;

}
txManager.commit(status);

11.7 Choosing between programmatic and declarative
transaction management

Programmatic transaction management is usually a good idea only if you have a small number of
transactional operations. For example, if you have a web application that require transactions only for
certain update operations, you may not want to set up transactional proxies using Spring or any other
technology. In this case, using the TransactionTemplate may be a good approach. Being able to set
the transaction name explicitly is also something that can only be done using the programmatic approach
to transaction management.

On the other hand, if your application has numerous transactional operations, declarative transaction
management is usually worthwhile. It keeps transaction management out of business logic, and is not
difficult to configure. When using the Spring Framework, rather than EJB CMT, the configuration cost of
declarative transaction management is greatly reduced.

11.8 Application server-specific integration

Spring's transaction abstraction generally is application server agnostic. Additionally, Spring's
JtaTransactionManager class, which can optionally perform a JNDI lookup for the JTA
UserTransaction and TransactionManager objects, autodetects the location for the latter
object, which varies by application server. Having access to the JTA TransactionManager allows
for enhanced transaction semantics, in particular supporting transaction suspension. See the
JtaTransactionManager Javadocs for details.

Spring's JtaTransactionManager is the standard choice to run on Java EE application servers, and
is known to work on all common servers. Advanced functionality such as transaction suspension works
on many servers as well -- including GlassFish, JBoss, Geronimo, and Oracle OC4J -- without any special
configuration required. However, for fully supported transaction suspension and further advanced
integration, Spring ships special adapters for IBM WebSphere, BEA WebLogic Server, and Oracle OC4J.
These adapters are discussed in the following sections.

For standard scenarios, including WebLogic Server, WebSphere and OC4J, consider using the
convenient <tx:jta-transaction-manager/> configuration element. When configured, this
element automatically detects the underlying server and chooses the best transaction manager available
for the platform. This means that you won't have to configure server-specific adapter classes (as discussed
in the following sections) explicitly; rather, they are chosen automatically, with the standard
JtaTransactionManager as default fallback.

Spring Framework

3.1 Reference Documentation 347

IBM WebSphere

On WebSphere 6.1.0.9 and above, the recommended Spring JTA transaction manager to use is
WebSphereUowTransactionManager. This special adapter leverages IBM's UOWManager API,
which is available in WebSphere Application Server 6.0.2.19 and later and 6.1.0.9 and later. With this
adapter, Spring-driven transaction suspension (suspend/resume as initiated by
PROPAGATION_REQUIRES_NEW) is officially supported by IBM!

BEA WebLogic Server

On WebLogic Server 9.0 or above, you typically would use the
WebLogicJtaTransactionManager instead of the stock JtaTransactionManager class.
This special WebLogic-specific subclass of the normal JtaTransactionManager supports the full
power of Spring's transaction definitions in a WebLogic-managed transaction environment, beyond
standard JTA semantics: Features include transaction names, per-transaction isolation levels, and proper
resuming of transactions in all cases.

Oracle OC4J

Spring ships a special adapter class for OC4J 10.1.3 or later called OC4JJtaTransactionManager.
This class is analogous to the WebLogicJtaTransactionManager class discussed in the previous
section, providing similar value-adds on OC4J: transaction names and per-transaction isolation levels.

The full JTA functionality, including transaction suspension, works fine with Spring's
JtaTransactionManager on OC4J as well. The special OC4JJtaTransactionManager
adapter simply provides value-adds beyond standard JTA.

11.9 Solutions to common problems

Use of the wrong transaction manager for a specific DataSource

Use the correct PlatformTransactionManager implementation based on your choice of
transactional technologies and requirements. Used properly, the Spring Framework merely provides a
straightforward and portable abstraction. If you are using global transactions, you must use the
org.springframework.transaction.jta.JtaTransactionManager class (or an
application server-specific subclass of it) for all your transactional operations. Otherwise the transaction
infrastructure attempts to perform local transactions on resources such as container DataSource
instances. Such local transactions do not make sense, and a good application server treats them as errors.

11.10 Further Resources

Spring Framework

3.1 Reference Documentation 348

For more information about the Spring Framework's transaction support:

• Distributed transactions in Spring, with and without XA is a JavaWorld presentation in which
SpringSource's David Syer guides you through seven patterns for distributed transactions in Spring
applications, three of them with XA and four without.

• Java Transaction Design Strategies is a book available from InfoQ that provides a well-paced
introduction to transactions in Java. It also includes side-by-side examples of how to configure and use
transactions with both the Spring Framework and EJB3.

Spring Framework

3.1 Reference Documentation 349

http://www.javaworld.com/javaworld/jw-01-2009/jw-01-spring-transactions.html
http://www.infoq.com/minibooks/JTDS
http://www.infoq.com/

12. DAO support

12.1 Introduction

The Data Access Object (DAO) support in Spring is aimed at making it easy to work with data access
technologies like JDBC, Hibernate, JPA or JDO in a consistent way. This allows one to switch between
the aforementioned persistence technologies fairly easily and it also allows one to code without worrying
about catching exceptions that are specific to each technology.

12.2 Consistent exception hierarchy

Spring provides a convenient translation from technology-specific exceptions like SQLException to its
own exception class hierarchy with the DataAccessException as the root exception. These
exceptions wrap the original exception so there is never any risk that one might lose any information as to
what might have gone wrong.

In addition to JDBC exceptions, Spring can also wrap Hibernate-specific exceptions, converting them
from proprietary, checked exceptions (in the case of versions of Hibernate prior to Hibernate 3.0), to a set
of focused runtime exceptions (the same is true for JDO and JPA exceptions). This allows one to handle
most persistence exceptions, which are non-recoverable, only in the appropriate layers, without having
annoying boilerplate catch-and-throw blocks and exception declarations in one's DAOs. (One can still
trap and handle exceptions anywhere one needs to though.) As mentioned above, JDBC exceptions
(including database-specific dialects) are also converted to the same hierarchy, meaning that one can
perform some operations with JDBC within a consistent programming model.

The above holds true for the various template classes in Springs support for various ORM frameworks. If
one uses the interceptor-based classes then the application must care about handling
HibernateExceptions and JDOExceptions itself, preferably via delegating to
SessionFactoryUtils' convertHibernateAccessException(..) or
convertJdoAccessException() methods respectively. These methods convert the exceptions to
ones that are compatible with the exceptions in the org.springframework.dao exception
hierarchy. As JDOExceptions are unchecked, they can simply get thrown too, sacrificing generic
DAO abstraction in terms of exceptions though.

The exception hierarchy that Spring provides can be seen below. (Please note that the class hierarchy
detailed in the image shows only a subset of the entire DataAccessException hierarchy.)

Spring Framework

3.1 Reference Documentation 350

12.3 Annotations used for configuring DAO or Repository
classes

The best way to guarantee that your Data Access Objects (DAOs) or repositories provide exception
translation is to use the @Repository annotation. This annotation also allows the component scanning
support to find and configure your DAOs and repositories without having to provide XML configuration
entries for them.

@Repository
public class SomeMovieFinder implements MovieFinder {

// ...

}

Any DAO or repository implementation will need to access to a persistence resource, depending on the
persistence technology used; for example, a JDBC-based repository will need access to a JDBC
DataSource; a JPA-based repository will need access to an EntityManager. The easiest way to
accomplish this is to have this resource dependency injected using one of the @Autowired,,
@Inject, @Resource or @PersistenceContext annotations. Here is an example for a JPA
repository:

@Repository
public class JpaMovieFinder implements MovieFinder {

@PersistenceContext
private EntityManager entityManager;

// ...

}

If you are using the classic Hibernate APIs than you can inject the SessionFactory:

Spring Framework

3.1 Reference Documentation 351

@Repository
public class HibernateMovieFinder implements MovieFinder {

private SessionFactory sessionFactory;

@Autowired
public void setSessionFactory(SessionFactory sessionFactory) {

this.sessionFactory = sessionFactory;
}

// ...

}

Last example we will show here is for typical JDBC support. You would have the DataSource injected
into an initialization method where you would create a JdbcTemplate and other data access support
classes like SimpleJdbcCall etc using this DataSource.

@Repository
public class JdbcMovieFinder implements MovieFinder {

private JdbcTemplate jdbcTemplate;

@Autowired
public void init(DataSource dataSource) {

this.jdbcTemplate = new JdbcTemplate(dataSource);
}

// ...

}

Note

Please see the specific coverage of each persistence technology for details on how to
configure the application context to take advantage of these annotations.

Spring Framework

3.1 Reference Documentation 352

13. Data access with JDBC

13.1 Introduction to Spring Framework JDBC

The value-add provided by the Spring Framework JDBC abstraction is perhaps best shown by the
sequence of actions outlined in the table below. The table shows what actions Spring will take care of and
which actions are the responsibility of you, the application developer.

Table 13.1. Spring JDBC - who does what?

Action Spring You

Define connection parameters. X

Open the connection. X

Specify the SQL statement. X

Declare parameters and provide parameter values X

Prepare and execute the statement. X

Set up the loop to iterate through the results (if any). X

Do the work for each iteration. X

Process any exception. X

Handle transactions. X

Close the connection, statement and resultset. X

The Spring Framework takes care of all the low-level details that can make JDBC such a tedious API to
develop with.

Choosing an approach for JDBC database access

You can choose among several approaches to form the basis for your JDBC database access. In addition
to three flavors of the JdbcTemplate, a new SimpleJdbcInsert and SimplejdbcCall approach optimizes
database metadata, and the RDBMS Object style takes a more object-oriented approach similar to that of
JDO Query design. Once you start using one of these approaches, you can still mix and match to include a
feature from a different approach. All approaches require a JDBC 2.0-compliant driver, and some
advanced features require a JDBC 3.0 driver.

Note

Spring Framework

3.1 Reference Documentation 353

Spring 3.0 updates all of the following approaches with Java 5 support such as generics and
varargs.

• JdbcTemplate is the classic Spring JDBC approach and the most popular. This "lowest level"
approach and all others use a JdbcTemplate under the covers, and all are updated with Java 5 support
such as generics and varargs.

• NamedParameterJdbcTemplate wraps a JdbcTemplate to provide named parameters instead of
the traditional JDBC "?" placeholders. This approach provides better documentation and ease of use
when you have multiple parameters for an SQL statement.

• SimpleJdbcTemplate combines the most frequently used operations of JdbcTemplate and
NamedParameterJdbcTemplate.

• SimpleJdbcInsert and SimpleJdbcCall optimize database metadata to limit the amount of necessary
configuration. This approach simplifies coding so that you only need to provide the name of the table
or procedure and provide a map of parameters matching the column names. This only works if the
database provides adequate metadata. If the database doesn't provide this metadata, you will have to
provide explicit configuration of the parameters.

• RDBMS Objects including MappingSqlQuery, SqlUpdate and StoredProcedure requires you to
create reusable and thread-safe objects during initialization of your data access layer. This approach is
modeled after JDO Query wherein you define your query string, declare parameters, and compile the
query. Once you do that, execute methods can be called multiple times with various parameter values
passed in.

Package hierarchy

The Spring Framework's JDBC abstraction framework consists of four different packages, namely core,
datasource, object, and support.

The org.springframework.jdbc.core package contains the JdbcTemplate class and its
various callback interfaces, plus a variety of related classes. A subpackage named
org.springframework.jdbc.core.simple contains the SimpleJdbcTemplate class and
the related SimpleJdbcInsert and SimpleJdbcCall classes. Another subpackage named
org.springframework.jdbc.core.namedparam contains the
NamedParameterJdbcTemplate class and the related support classes. See Section 13.2, “Using the
JDBC core classes to control basic JDBC processing and error handling”, Section 13.4, “JDBC batch
operations”, and Section 13.5, “Simplifying JDBC operations with the SimpleJdbc classes”

The org.springframework.jdbc.datasource package contains a utility class for easy
DataSource access, and various simple DataSource implementations that can be used for testing
and running unmodified JDBC code outside of a Java EE container. A subpackage named
org.springfamework.jdbc.datasource.embedded provides support for creating in-memory

Spring Framework

3.1 Reference Documentation 354

database instances using Java database engines such as HSQL and H2. See Section 13.3, “Controlling
database connections” and Section 13.8, “Embedded database support”

The org.springframework.jdbc.object package contains classes that represent RDBMS
queries, updates, and stored procedures as thread safe, reusable objects. See Section 13.6, “Modeling
JDBC operations as Java objects”.This approach is modeled by JDO, although of course objects returned
by queries are “disconnected” from the database. This higher level of JDBC abstraction depends on the
lower-level abstraction in the org.springframework.jdbc.core package.

The org.springframework.jdbc.support package provides SQLException translation
functionality and some utility classes. Exceptions thrown during JDBC processing are translated to
exceptions defined in the org.springframework.dao package. This means that code using the
Spring JDBC abstraction layer does not need to implement JDBC or RDBMS-specific error handling. All
translated exceptions are unchecked, which gives you the option of catching the exceptions from which
you can recover while allowing other exceptions to be propagated to the caller. See the section called
“SQLExceptionTranslator”.

13.2 Using the JDBC core classes to control basic JDBC
processing and error handling

JdbcTemplate

The JdbcTemplate class is the central class in the JDBC core package. It handles the creation and
release of resources, which helps you avoid common errors such as forgetting to close the connection. It
performs the basic tasks of the core JDBC workflow such as statement creation and execution, leaving
application code to provide SQL and extract results. The JdbcTemplate class executes SQL queries,
update statements and stored procedure calls, performs iteration over ResultSets and extraction of
returned parameter values. It also catches JDBC exceptions and translates them to the generic, more
informative, exception hierarchy defined in the org.springframework.dao package.

When you use the JdbcTemplate for your code, you only need to implement callback interfaces,
giving them a clearly defined contract. The PreparedStatementCreator callback interface creates
a prepared statement given a Connection provided by this class, providing SQL and any necessary
parameters. The same is true for the CallableStatementCreator interface, which creates callable
statements. The RowCallbackHandler interface extracts values from each row of a ResultSet.

The JdbcTemplate can be used within a DAO implementation through direct instantiation with a
DataSource reference, or be configured in a Spring IoC container and given to DAOs as a bean
reference.

Note

The DataSource should always be configured as a bean in the Spring IoC container. In the
first case the bean is given to the service directly; in the second case it is given to the

Spring Framework

3.1 Reference Documentation 355

prepared template.

All SQL issued by this class is logged at the DEBUG level under the category corresponding to the fully
qualified class name of the template instance (typically JdbcTemplate, but it may be different if you
are using a custom subclass of the JdbcTemplate class).

Examples of JdbcTemplate class usage

This section provides some examples of JdbcTemplate class usage. These examples are not an
exhaustive list of all of the functionality exposed by the JdbcTemplate; see the attendant Javadocs for
that.

Querying (SELECT)

Here is a simple query for getting the number of rows in a relation:

int rowCount = this.jdbcTemplate.queryForInt("select count(*) from t_actor");

A simple query using a bind variable:

int countOfActorsNamedJoe = this.jdbcTemplate.queryForInt(
"select count(*) from t_actor where first_name = ?", "Joe");

Querying for a String:

String lastName = this.jdbcTemplate.queryForObject(
"select last_name from t_actor where id = ?",
new Object[]{1212L}, String.class);

Querying and populating a single domain object:

Actor actor = this.jdbcTemplate.queryForObject(
"select first_name, last_name from t_actor where id = ?",
new Object[]{1212L},
new RowMapper<Actor>() {

public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
Actor actor = new Actor();
actor.setFirstName(rs.getString("first_name"));
actor.setLastName(rs.getString("last_name"));
return actor;

}
});

Querying and populating a number of domain objects:

List<Actor> actors = this.jdbcTemplate.query(
"select first_name, last_name from t_actor",
new RowMapper<Actor>() {

public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
Actor actor = new Actor();
actor.setFirstName(rs.getString("first_name"));
actor.setLastName(rs.getString("last_name"));
return actor;

Spring Framework

3.1 Reference Documentation 356

}
});

If the last two snippets of code actually existed in the same application, it would make sense to remove
the duplication present in the two RowMapper anonymous inner classes, and extract them out into a
single class (typically a static inner class) that can then be referenced by DAO methods as needed. For
example, it may be better to write the last code snippet as follows:

public List<Actor> findAllActors() {
return this.jdbcTemplate.query("select first_name, last_name from t_actor", new ActorMapper());

}

private static final class ActorMapper implements RowMapper<Actor> {

public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
Actor actor = new Actor();
actor.setFirstName(rs.getString("first_name"));
actor.setLastName(rs.getString("last_name"));
return actor;

}
}

Updating (INSERT/UPDATE/DELETE) with jdbcTemplate

You use the update(..) method to perform insert, update and delete operations. Parameter values are
usually provided as var args or alternatively as an object array.

this.jdbcTemplate.update(
"insert into t_actor (first_name, last_name) values (?, ?)",
"Leonor", "Watling");

this.jdbcTemplate.update(
"update t_actor set = ? where id = ?",
"Banjo", 5276L);

this.jdbcTemplate.update(
"delete from actor where id = ?",
Long.valueOf(actorId));

Other jdbcTemplate operations

You can use the execute(..) method to execute any arbitrary SQL, and as such the method is often
used for DDL statements. It is heavily overloaded with variants taking callback interfaces, binding
variable arrays, and so on.

this.jdbcTemplate.execute("create table mytable (id integer, name varchar(100))");

The following example invokes a simple stored procedure. More sophisticated stored procedure support is
covered later.

this.jdbcTemplate.update(
"call SUPPORT.REFRESH_ACTORS_SUMMARY(?)",
Long.valueOf(unionId));

Spring Framework

3.1 Reference Documentation 357

JdbcTemplate best practices

Instances of the JdbcTemplate class are threadsafe once configured. This is important because it
means that you can configure a single instance of a JdbcTemplate and then safely inject this shared
reference into multiple DAOs (or repositories). The JdbcTemplate is stateful, in that it maintains a
reference to a DataSource, but this state is not conversational state.

A common practice when using the JdbcTemplate class (and the associated
SimpleJdbcTemplate and NamedParameterJdbcTemplate classes) is to configure a
DataSource in your Spring configuration file, and then dependency-inject that shared DataSource
bean into your DAO classes; the JdbcTemplate is created in the setter for the DataSource. This
leads to DAOs that look in part like the following:

public class JdbcCorporateEventDao implements CorporateEventDao {

private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

// JDBC-backed implementations of the methods on the CorporateEventDao follow...
}

The corresponding configuration might look like this.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<bean id="corporateEventDao" class="com.example.JdbcCorporateEventDao">
<property name="dataSource" ref="dataSource"/>

</bean>

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>

<context:property-placeholder location="jdbc.properties"/>

</beans>

An alternative to explicit configuration is to use component-scanning and annotation support for
dependency injection. In this case you annotate the class with @Repository (which makes it a
candidate for component-scanning) and annotate the DataSource setter method with @Autowired.

@Repository

Spring Framework

3.1 Reference Documentation 358

public class JdbcCorporateEventDao implements CorporateEventDao {

private JdbcTemplate jdbcTemplate;

@Autowired
public void setDataSource(DataSource dataSource) {

this.jdbcTemplate = new JdbcTemplate(dataSource);
}

// JDBC-backed implementations of the methods on the CorporateEventDao follow...
}

The corresponding XML configuration file would look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<!-- Scans within the base package of the application for @Components to configure as beans -->
<context:component-scan base-package="org.springframework.docs.test" />

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>

<context:property-placeholder location="jdbc.properties"/>

</beans>

If you are using Spring's JdbcDaoSupport class, and your various JDBC-backed DAO classes extend
from it, then your sub-class inherits a setDataSource(..) method from the JdbcDaoSupport
class. You can choose whether to inherit from this class. The JdbcDaoSupport class is provided as a
convenience only.

Regardless of which of the above template initialization styles you choose to use (or not), it is seldom
necessary to create a new instance of a JdbcTemplate class each time you want to execute SQL. Once
configured, a JdbcTemplate instance is threadsafe. You may want multiple JdbcTemplate
instances if your application accesses multiple databases, which requires multiple DataSources, and
subsequently multiple differently configured JdbcTemplates.

NamedParameterJdbcTemplate

The NamedParameterJdbcTemplate class adds support for programming JDBC statements using
named parameters, as opposed to programming JDBC statements using only classic placeholder ('?')
arguments. The NamedParameterJdbcTemplate class wraps a JdbcTemplate, and delegates to

Spring Framework

3.1 Reference Documentation 359

the wrapped JdbcTemplate to do much of its work. This section describes only those areas of the
NamedParameterJdbcTemplate class that differ from the JdbcTemplate itself; namely,
programming JDBC statements using named parameters.

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);

}

public int countOfActorsByFirstName(String firstName) {

String sql = "select count(*) from T_ACTOR where first_name = :first_name";

SqlParameterSource namedParameters = new MapSqlParameterSource("first_name", firstName);

return namedParameterJdbcTemplate.queryForInt(sql, namedParameters);
}

Notice the use of the named parameter notation in the value assigned to the sql variable, and the
corresponding value that is plugged into the namedParameters variable (of type
MapSqlParameterSource).

Alternatively, you can pass along named parameters and their corresponding values to a
NamedParameterJdbcTemplate instance by using the Map-based style.The remaining methods
exposed by the NamedParameterJdbcOperations and implemented by the
NamedParameterJdbcTemplate class follow a similar pattern and are not covered here.

The following example shows the use of the Map-based style.

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);

}

public int countOfActorsByFirstName(String firstName) {

String sql = "select count(*) from T_ACTOR where first_name = :first_name";

Map namedParameters = Collections.singletonMap("first_name", firstName);

return this.namedParameterJdbcTemplate.queryForInt(sql, namedParameters);
}

One nice feature related to the NamedParameterJdbcTemplate (and existing in the same Java
package) is the SqlParameterSource interface. You have already seen an example of an
implementation of this interface in one of the previous code snippet (the MapSqlParameterSource
class). An SqlParameterSource is a source of named parameter values to a
NamedParameterJdbcTemplate. The MapSqlParameterSource class is a very simple
implementation that is simply an adapter around a java.util.Map, where the keys are the parameter
names and the values are the parameter values.

Another SqlParameterSource implementation is the BeanPropertySqlParameterSource

Spring Framework

3.1 Reference Documentation 360

class. This class wraps an arbitrary JavaBean (that is, an instance of a class that adheres to the JavaBean
conventions), and uses the properties of the wrapped JavaBean as the source of named parameter values.

public class Actor {

private Long id;
private String firstName;
private String lastName;

public String getFirstName() {
return this.firstName;

}

public String getLastName() {
return this.lastName;

}

public Long getId() {
return this.id;

}

// setters omitted...

}

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);

}

public int countOfActors(Actor exampleActor) {

// notice how the named parameters match the properties of the above 'Actor' class
String sql =

"select count(*) from T_ACTOR where first_name = :firstName and last_name = :lastName";

SqlParameterSource namedParameters = new BeanPropertySqlParameterSource(exampleActor);

return this.namedParameterJdbcTemplate.queryForInt(sql, namedParameters);
}

Remember that the NamedParameterJdbcTemplate class wraps a classic JdbcTemplate
template; if you need access to the wrapped JdbcTemplate instance to access functionality only
present in the JdbcTemplate class, you can use the getJdbcOperations() method to access the
wrapped JdbcTemplate through the JdbcOperations interface.

See also the section called “JdbcTemplate best practices” for guidelines on using the
NamedParameterJdbcTemplate class in the context of an application.

SimpleJdbcTemplate

The SimpleJdbcTemplate class wraps the classic JdbcTemplate and leverages Java 5 language
features such as varargs and autoboxing.

Note

Spring Framework

3.1 Reference Documentation 361

http://java.sun.com/products/javabeans/docs/spec.html
http://java.sun.com/products/javabeans/docs/spec.html

In Spring 3.0, the original JdbcTemplate also supports Java 5-enhanced syntax with
generics and varargs. However, the SimpleJdbcTemplate provides a simpler API that
works best when you do not need access to all the methods that the JdbcTemplate offers.
Also, because the SimpleJdbcTemplate was designed for Java 5, it has more methods
that take advantage of varargs due to different ordering of the parameters.

The value-add of the SimpleJdbcTemplate class in the area of syntactic-sugar is best illustrated with
a before-and-after example. The next code snippet shows data access code that uses the classic
JdbcTemplate, followed by a code snippet that does the same job with the SimpleJdbcTemplate.

// classic JdbcTemplate-style...
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public Actor findActor(String specialty, int age) {

String sql = "select id, first_name, last_name from T_ACTOR" +
" where specialty = ? and age = ?";

RowMapper<Actor> mapper = new RowMapper<Actor>() {
public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {

Actor actor = new Actor();
actor.setId(rs.getLong("id"));
actor.setFirstName(rs.getString("first_name"));
actor.setLastName(rs.getString("last_name"));
return actor;

}
};

// notice the wrapping up of the argumenta in an array
return (Actor) jdbcTemplate.queryForObject(sql, new Object[] {specialty, age}, mapper);

}

Here is the same method, with the SimpleJdbcTemplate.

// SimpleJdbcTemplate-style...
private SimpleJdbcTemplate simpleJdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);

}

public Actor findActor(String specialty, int age) {

String sql = "select id, first_name, last_name from T_ACTOR" +
" where specialty = ? and age = ?";

RowMapper<Actor> mapper = new RowMapper<Actor>() {
public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {

Actor actor = new Actor();
actor.setId(rs.getLong("id"));
actor.setFirstName(rs.getString("first_name"));
actor.setLastName(rs.getString("last_name"));
return actor;

}
};

Spring Framework

3.1 Reference Documentation 362

// notice the use of varargs since the parameter values now come
// after the RowMapper parameter
return this.simpleJdbcTemplate.queryForObject(sql, mapper, specialty, age);

}

See the section called “JdbcTemplate best practices” for guidelines on how to use the
SimpleJdbcTemplate class in the context of an application.

Note

The SimpleJdbcTemplate class only offers a subset of the methods exposed on the
JdbcTemplate class. If you need to use a method from the JdbcTemplate that is not
defined on the SimpleJdbcTemplate, you can always access the underlying
JdbcTemplate by calling the getJdbcOperations() method on the
SimpleJdbcTemplate, which then allows you to invoke the method that you want. The
only downside is that the methods on the JdbcOperations interface are not generic, so
you are back to casting and so on.

SQLExceptionTranslator

SQLExceptionTranslator is an interface to be implemented by classes that can translate between
SQLExceptions and Spring's own org.springframework.dao.DataAccessException,
which is agnostic in regard to data access strategy. Implementations can be generic (for example, using
SQLState codes for JDBC) or proprietary (for example, using Oracle error codes) for greater precision.

SQLErrorCodeSQLExceptionTranslator is the implementation of
SQLExceptionTranslator that is used by default. This implementation uses specific vendor codes.
It is more precise than the SQLState implementation. The error code translations are based on codes
held in a JavaBean type class called SQLErrorCodes. This class is created and populated by an
SQLErrorCodesFactory which as the name suggests is a factory for creating SQLErrorCodes
based on the contents of a configuration file named sql-error-codes.xml. This file is populated
with vendor codes and based on the DatabaseProductName taken from the DatabaseMetaData.
The codes for the acual database you are using are used.

The SQLErrorCodeSQLExceptionTranslator applies matching rules in the following sequence:

Note

The SQLErrorCodesFactory is used by default to define Error codes and custom
exception translations. They are looked up in a file named sql-error-codes.xml from
the classpath and the matching SQLErrorCodes instance is located based on the database
name from the database metadata of the database in use.

1. Any custom translation implemented by a subclass. Normally the provided concrete
SQLErrorCodeSQLExceptionTranslator is used so this rule does not apply. It only applies if

Spring Framework

3.1 Reference Documentation 363

you have actually provided a subclass implementation.
2. Any custom implementation of the SQLExceptionTranslator interface that is provided as the
customSqlExceptionTranslator property of the SQLErrorCodes class.

3. The list of instances of the CustomSQLErrorCodesTranslation class, provided for the
customTranslations property of the SQLErrorCodes class, are searched for a match.

4. Error code matching is applied.
5. Use the fallback translator. SQLExceptionSubclassTranslator is the default fallback

translator. If this translation is not available then the next fallback translator is the
SQLStateSQLExceptionTranslator.

You can extend SQLErrorCodeSQLExceptionTranslator:

public class CustomSQLErrorCodesTranslator extends SQLErrorCodeSQLExceptionTranslator {

protected DataAccessException customTranslate(String task, String sql, SQLException sqlex) {
if (sqlex.getErrorCode() == -12345) {

return new DeadlockLoserDataAccessException(task, sqlex);
}
return null;

}
}

In this example, the specific error code -12345 is translated and other errors are left to be translated by
the default translator implementation. To use this custom translator, it is necessary to pass it to the
JdbcTemplate through the method setExceptionTranslator and to use this JdbcTemplate
for all of the data access processing where this translator is needed. Here is an example of how this
custom translator can be used:

private JdbcTemplate jdbcTemoplate;

public void setDataSource(DataSource dataSource) {
// create a JdbcTemplate and set data source
this.jdbcTemplate = new JdbcTemplate();
this.jdbcTemplate.setDataSource(dataSource);
// create a custom translator and set the DataSource for the default translation lookup
CustomSQLErrorCodesTranslator tr = new CustomSQLErrorCodesTranslator();
tr.setDataSource(dataSource);
this.jdbcTemplate.setExceptionTranslator(tr);

}

public void updateShippingCharge(long orderId, long pct) {
// use the prepared JdbcTemplate for this update
this.jdbcTemplate.update(

"update orders" +
" set shipping_charge = shipping_charge * ? / 100" +
" where id = ?"

pct, orderId);
}

The custom translator is passed a data source in order to look up the error codes in
sql-error-codes.xml.

Executing statements

Spring Framework

3.1 Reference Documentation 364

Executing an SQL statement requires very little code. You need a DataSource and a
JdbcTemplate, including the convenience methods that are provided with the JdbcTemplate. The
following example shows what you need to include for a minimal but fully functional class that creates a
new table:

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class ExecuteAStatement {

private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public void doExecute() {
this.jdbcTemplate.execute("create table mytable (id integer, name varchar(100))");

}
}

Running queries

Some query methods return a single value. To retrieve a count or a specific value from one row, use
queryForInt(..), queryForLong(..) or queryForObject(..). The latter converts the
returned JDBC Type to the Java class that is passed in as an argument. If the type conversion is invalid,
then an InvalidDataAccessApiUsageException is thrown. Here is an example that contains
two query methods, one for an int and one that queries for a String.

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class RunAQuery {

private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public int getCount() {
return this.jdbcTemplate.queryForInt("select count(*) from mytable");

}

public String getName() {
return (String) this.jdbcTemplate.queryForObject("select name from mytable", String.class);

}

public void setDataSource(DataSource dataSource) {
this.dataSource = dataSource;

}
}

In addition to the single result query methods, several methods return a list with an entry for each row that
the query returned. The most generic method is queryForList(..) which returns a List where
each entry is a Map with each entry in the map representing the column value for that row. If you add a

Spring Framework

3.1 Reference Documentation 365

method to the above example to retrieve a list of all the rows, it would look like this:

private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public List<Map<String, Object>> getList() {
return this.jdbcTemplate.queryForList("select * from mytable");

}

The list returned would look something like this:

[{name=Bob, id=1}, {name=Mary, id=2}]

Updating the database

The following example shows a column updated for a certain primary key. In this example, an SQL
statement has placeholders for row parameters. The parameter values can be passed in as varargs or
alternatively as an array of objects. Thus primitives should be wrapped in the primitive wrapper classes
explicitly or using auto-boxing.

import javax.sql.DataSource;

import org.springframework.jdbc.core.JdbcTemplate;

public class ExecuteAnUpdate {

private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public void setName(int id, String name) {
this.jdbcTemplate.update(

"update mytable set name = ? where id = ?",
name, id);

}
}

Retrieving auto-generated keys

An update() convenience method supports the retrieval of primary keys generated by the database.
This support is part of the JDBC 3.0 standard; see Chapter 13.6 of the specification for details. The
method takes a PreparedStatementCreator as its first argument, and this is the way the required
insert statement is specified. The other argument is a KeyHolder, which contains the generated key on
successful return from the update. There is not a standard single way to create an appropriate
PreparedStatement (which explains why the method signature is the way it is). The following
example works on Oracle but may not work on other platforms:

final String INSERT_SQL = "insert into my_test (name) values(?)";

Spring Framework

3.1 Reference Documentation 366

final String name = "Rob";

KeyHolder keyHolder = new GeneratedKeyHolder();
jdbcTemplate.update(

new PreparedStatementCreator() {
public PreparedStatement createPreparedStatement(Connection connection) throws SQLException {

PreparedStatement ps =
connection.prepareStatement(INSERT_SQL, new String[] {"id"});

ps.setString(1, name);
return ps;

}
},
keyHolder);

// keyHolder.getKey() now contains the generated key

13.3 Controlling database connections

DataSource

Spring obtains a connection to the database through a DataSource. A DataSource is part of the
JDBC specification and is a generalized connection factory. It allows a container or a framework to hide
connection pooling and transaction management issues from the application code. As a developer, you
need not know details about how to connect to the database; that is the responsibility of the administrator
that sets up the datasource. You most likely fill both roles as you develop and test code, but you do not
necessarily have to know how the production data source is configured.

When using Spring's JDBC layer, you obtain a data source from JNDI or you configure your own with a
connection pool implementation provided by a third party. Popular implementations are Apache Jakarta
Commons DBCP and C3P0. Implementations in the Spring distribution are meant only for testing
purposes and do not provide pooling.

This section uses Spring's DriverManagerDataSource implementation, and several additional
implementations are covered later.

Note

Only use the DriverManagerDataSource class should only be used for testing
purposes since it does not provide pooling and will perform poorly when multiple requests
for a connection are made.

You obtain a connection with DriverManagerDataSource as you typically obtain a JDBC
connection. Specify the fully qualified classname of the JDBC driver so that the DriverManager can
load the driver class. Next, provide a URL that varies between JDBC drivers. (Consult the documentation
for your driver for the correct value.) Then provide a username and a password to connect to the database.
Here is an example of how to configure a DriverManagerDataSource in Java code:

DriverManagerDataSource dataSource = new DriverManagerDataSource();
dataSource.setDriverClassName("org.hsqldb.jdbcDriver");

Spring Framework

3.1 Reference Documentation 367

dataSource.setUrl("jdbc:hsqldb:hsql://localhost:");
dataSource.setUsername("sa");
dataSource.setPassword("");

Here is the corresponding XML configuration:

<bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>

<context:property-placeholder location="jdbc.properties"/>

The following examples show the basic connectivity and configuration for DBCP and C3P0. To learn
about more options that help control the pooling features, see the product documentation for the
respective connection pooling implementations.

DBCP configuration:

<bean id="dataSource"
class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">

<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>

<context:property-placeholder location="jdbc.properties"/>

C3P0 configuration:

<bean id="dataSource"
class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close">

<property name="driverClass" value="${jdbc.driverClassName}"/>
<property name="jdbcUrl" value="${jdbc.url}"/>
<property name="user" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>

<context:property-placeholder location="jdbc.properties"/>

DataSourceUtils

The DataSourceUtils class is a convenient and powerful helper class that provides static
methods to obtain connections from JNDI and close connections if necessary. It supports thread-bound
connections with, for example, DataSourceTransactionManager.

SmartDataSource

The SmartDataSource interface should be implemented by classes that can provide a connection to a
relational database. It extends the DataSource interface to allow classes using it to query whether the

Spring Framework

3.1 Reference Documentation 368

connection should be closed after a given operation. This usage is efficient when you know that you will
reuse a connection.

AbstractDataSource

AbstractDataSource is an abstract base class for Spring's DataSource implementations that
implements code that is common to all DataSource implementations. You extend the
AbstractDataSource class if you are writing your own DataSource implementation.

SingleConnectionDataSource

The SingleConnectionDataSource class is an implementation of the SmartDataSource
interface that wraps a single Connection that is not closed after each use. Obviously, this is not
multi-threading capable.

If any client code calls close in the assumption of a pooled connection, as when using persistence tools,
set the suppressClose property to true. This setting returns a close-suppressing proxy wrapping the
physical connection. Be aware that you will not be able to cast this to a native Oracle Connection or
the like anymore.

This is primarily a test class. For example, it enables easy testing of code outside an application server, in
conjunction with a simple JNDI environment. In contrast to DriverManagerDataSource, it reuses
the same connection all the time, avoiding excessive creation of physical connections.

DriverManagerDataSource

The DriverManagerDataSource class is an implementation of the standard DataSource
interface that configures a plain JDBC driver through bean properties, and returns a new Connection
every time.

This implementation is useful for test and stand-alone environments outside of a Java EE container, either
as a DataSource bean in a Spring IoC container, or in conjunction with a simple JNDI environment.
Pool-assuming Connection.close() calls will simply close the connection, so any
DataSource-aware persistence code should work. However, using JavaBean-style connection pools
such as commons-dbcp is so easy, even in a test environment, that it is almost always preferable to use
such a connection pool over DriverManagerDataSource.

TransactionAwareDataSourceProxy

TransactionAwareDataSourceProxy is a proxy for a target DataSource, which wraps that
target DataSource to add awareness of Spring-managed transactions. In this respect, it is similar to a
transactional JNDI DataSource as provided by a Java EE server.

Spring Framework

3.1 Reference Documentation 369

Note

It is rarely desirable to use this class, except when already existing code that must be called
and passed a standard JDBC DataSource interface implementation. In this case, it's
possible to still have this code be usable, and at the same time have this code participating in
Spring managed transactions. It is generally preferable to write your own new code using the
higher level abstractions for resource management, such as JdbcTemplate or
DataSourceUtils.

(See the TransactionAwareDataSourceProxy Javadocs for more details.)

DataSourceTransactionManager

The DataSourceTransactionManager class is a PlatformTransactionManager
implementation for single JDBC datasources. It binds a JDBC connection from the specified data source
to the currently executing thread, potentially allowing for one thread connection per data source.

Application code is required to retrieve the JDBC connection through
DataSourceUtils.getConnection(DataSource) instead of Java EE's standard
DataSource.getConnection. It throws unchecked org.springframework.dao exceptions
instead of checked SQLExceptions. All framework classes like JdbcTemplate use this strategy
implicitly. If not used with this transaction manager, the lookup strategy behaves exactly like the common
one - it can thus be used in any case.

The DataSourceTransactionManager class supports custom isolation levels, and timeouts that
get applied as appropriate JDBC statement query timeouts. To support the latter, application code must
either use JdbcTemplate or call the DataSourceUtils.applyTransactionTimeout(..)
method for each created statement.

This implementation can be used instead of JtaTransactionManager in the single resource case, as
it does not require the container to support JTA. Switching between both is just a matter of configuration,
if you stick to the required connection lookup pattern. JTA does not support custom isolation levels!

NativeJdbcExtractor

Sometimes you need to access vendor specific JDBC methods that differ from the standard JDBC API.
This can be problematic if you are running in an application server or with a DataSource that wraps
the Connection, Statement and ResultSet objects with its own wrapper objects. To gain access
to the native objects you can configure your JdbcTemplate or OracleLobHandler with a
NativeJdbcExtractor.

The NativeJdbcExtractor comes in a variety of flavors to match your execution environment:

• SimpleNativeJdbcExtractor

Spring Framework

3.1 Reference Documentation 370

• C3P0NativeJdbcExtractor

• CommonsDbcpNativeJdbcExtractor

• JBossNativeJdbcExtractor

• WebLogicNativeJdbcExtractor

• WebSphereNativeJdbcExtractor

• XAPoolNativeJdbcExtractor

Usually the SimpleNativeJdbcExtractor is sufficient for unwrapping a Connection object in
most environments. See the Javadocs for more details.

13.4 JDBC batch operations

Most JDBC drivers provide improved performance if you batch multiple calls to the same prepared
statement. By grouping updates into batches you limit the number of round trips to the database. This
section covers batch processing using both the JdbcTemplate and the SimpleJdbcTemplate.

Basic batch operations with the JdbcTemplate

You accomplish JdbcTemplate batch processing by implementing two methods of a special interface,
BatchPreparedStatementSetter, and passing that in as the second parameter in your
batchUpdate method call. Use the getBatchSize method to provide the size of the current batch.
Use the setValues method to set the values for the parameters of the prepared statement. This method
will be called the number of times that you specified in the getBatchSize call. The following example
updates the actor table based on entries in a list. The entire list is used as the batch in this example:

public class JdbcActorDao implements ActorDao {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public int[] batchUpdate(final List<Actor> actors) {
int[] updateCounts = jdbcTemplate.batchUpdate(

"update t_actor set first_name = ?, last_name = ? where id = ?",
new BatchPreparedStatementSetter() {

public void setValues(PreparedStatement ps, int i) throws SQLException {
ps.setString(1, actors.get(i).getFirstName());
ps.setString(2, actors.get(i).getLastName());
ps.setLong(3, actors.get(i).getId().longValue());

}

public int getBatchSize() {
return actors.size();

}
});

Spring Framework

3.1 Reference Documentation 371

return updateCounts;
}

// ... additional methods
}

If you are processing a stream of updates or reading from a file, then you might have a preferred batch
size, but the last batch might not have that number of entries. In this case you can use the
InterruptibleBatchPreparedStatementSetter interface, which allows you to interrupt a
batch once the input source is exhausted. The isBatchExhausted method allows you to signal the
end of the batch.

Batch operations with a List of objects

Both the JdbcTemplate and the NamedParameterJdbcTemplate provides an alternate way of
providing the batch update. Instead of implementing a special batch interface, you provide all parameter
values in the call as a list. The framework loops over these values and uses an internal prepared statement
setter. The API varies depending on whether you use named parameters. For the named parameters you
provide an array of SqlParameterSource, one entry for each member of the batch. You can use the
SqlParameterSource.createBatch method to create this array, passing in either an array of
JavaBeans or an array of Maps containing the parameter values.

This example shows a batch update using named parameters:

public class JdbcActorDao implements ActorDao {
private NamedParameterTemplate namedParameterJdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);

}

public int[] batchUpdate(final List<Actor> actors) {
SqlParameterSource[] batch = SqlParameterSourceUtils.createBatch(actors.toArray());
int[] updateCounts = namedParameterJdbcTemplate.batchUpdate(

"update t_actor set first_name = :firstName, last_name = :lastName where id = :id",
batch);

return updateCounts;
}

// ... additional methods
}

For an SQL statement using the classic "?" placeholders, you pass in a list containing an object array with
the update values. This object array must have one entry for each placeholder in the SQL statement, and
they must be in the same order as they are defined in the SQL statement.

The same example using classic JDBC "?" placeholders:

public class JdbcActorDao implements ActorDao {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

Spring Framework

3.1 Reference Documentation 372

public int[] batchUpdate(final List<Actor> actors) {
List<Object[]> batch = new ArrayList<Object[]>();
for (Actor actor : actors) {

Object[] values = new Object[] {
actor.getFirstName(),
actor.getLastName(),
actor.getId()};

batch.add(values);
}
int[] updateCounts = jdbcTemplate.batchUpdate(

"update t_actor set first_name = ?, last_name = ? where id = ?",
batch);

return updateCounts;
}

// ... additional methods
}

All of the above batch update methods return an int array containing the number of affected rows for each
batch entry. This count is reported by the JDBC driver. If the count is not available, the JDBC driver
returns a -2 value.

Batch operations with multiple batches

The last example of a batch update deals with batches that are so large that you want to break them up
into several smaller batches. You can of course do this with the methods mentioned above by making
multiple calls to the batchUpdate method, but there is now a more convenient method. This method
takes, in addition to the SQL statement, a Collection of objects containing the parameters, the number of
updates to make for each batch and a ParameterizedPreparedStatementSetter to set the
values for the parameters of the prepared statement. The framework loops over the provided values and
breaks the update calls into batches of the size specified.

This example shows a batch update using a batch size of 100:

public class JdbcActorDao implements ActorDao {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public int[][] batchUpdate(final Collection<Actor> actors) {
Collection<Object[]> batch = new ArrayList<Object[]>();
for (Actor actor : actors) {

Object[] values = new Object[] {
actor.getFirstName(),
actor.getLastName(),
actor.getId()};

batch.add(values);
}
int[][] updateCounts = jdbcTemplate.batchUpdate(

"update t_actor set first_name = ?, last_name = ? where id = ?",
actors,
100,
new ParameterizedPreparedStatementSetter<Actor>() {

public void setValues(PreparedStatement ps, Actor argument) throws SQLException {
ps.setString(1, argument.getFirstName());

Spring Framework

3.1 Reference Documentation 373

ps.setString(2, argument.getLastName());
ps.setLong(3, argument.getId().longValue());

}
});

return updateCounts;
}

// ... additional methods
}

The batch update methods for this call returns an array of int arrays containing an array entry for each
batch with an array of the number of affected rows for each update. The top level array's length indicates
the number of batches executed and the second level array's length indicates the number of updates in that
batch. The number of updates in each batch should be the the batch size provided for all batches except
for the last one that might be less, depending on the total number of updat objects provided. The update
count for each update stament is the one reported by the JDBC driver. If the count is not available, the
JDBC driver returns a -2 value.

13.5 Simplifying JDBC operations with the SimpleJdbc
classes

The SimpleJdbcInsert and SimpleJdbcCall classes provide a simplified configuration by
taking advantage of database metadata that can be retrieved through the JDBC driver. This means there is
less to configure up front, although you can override or turn off the metadata processing if you prefer to
provide all the details in your code.

Inserting data using SimpleJdbcInsert

Let's start by looking at the SimpleJdbcInsert class with the minimal amount of configuration
options. You should instantiate the SimpleJdbcInsert in the data access layer's initialization
method. For this example, the initializing method is the setDataSource method. You do not need to
subclass the SimpleJdbcInsert class; simply create a new instance and set the table name using the
withTableName method. Configuration methods for this class follow the "fluid" style that returns the
instance of the SimpleJdbcInsert, which allows you to chain all configuration methods. This
example uses only one configuration method; you will see examples of multiple ones later.

public class JdbcActorDao implements ActorDao {
private SimpleJdbcTemplate simpleJdbcTemplate;
private SimpleJdbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
this.insertActor =

new SimpleJdbcInsert(dataSource).withTableName("t_actor");
}

public void add(Actor actor) {
Map<String, Object> parameters = new HashMap<String, Object>(3);
parameters.put("id", actor.getId());
parameters.put("first_name", actor.getFirstName());

Spring Framework

3.1 Reference Documentation 374

parameters.put("last_name", actor.getLastName());
insertActor.execute(parameters);

}

// ... additional methods
}

The execute method used here takes a plain java.utils.Map as its only parameter. The important
thing to note here is that the keys used for the Map must match the column names of the table as defined
in the database. This is because we read the metadata in order to construct the actual insert statement.

Retrieving auto-generated keys using SimpleJdbcInsert

This example uses the same insert as the preceding, but instead of passing in the id it retrieves the
auto-generated key and sets it on the new Actor object. When you create the SimpleJdbcInsert, in
addition to specifying the table name, you specify the name of the generated key column with the
usingGeneratedKeyColumns method.

public class JdbcActorDao implements ActorDao {
private SimpleJdbcTemplate simpleJdbcTemplate;
private SimpleJdbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
this.insertActor =

new SimpleJdbcInsert(dataSource)
.withTableName("t_actor")
.usingGeneratedKeyColumns("id");

}

public void add(Actor actor) {
Map<String, Object> parameters = new HashMap<String, Object>(2);
parameters.put("first_name", actor.getFirstName());
parameters.put("last_name", actor.getLastName());
Number newId = insertActor.executeAndReturnKey(parameters);
actor.setId(newId.longValue());

}

// ... additional methods
}

The main difference when executing the insert by this second approach is that you do not add the id to the
Map and you call the executeReturningKey method. This returns a java.lang.Number object
with which you can create an instance of the numerical type that is used in our domain class.You cannot
rely on all databases to return a specific Java class here; java.lang.Number is the base class that you
can rely on. If you have multiple auto-generated columns, or the generated values are non-numeric, then
you can use a KeyHolder that is returned from the executeReturningKeyHolder method.

Specifying columns for a SimpleJdbcInsert

You can limit the columns for an insert by specifying a list of column names with the usingColumns
method:

Spring Framework

3.1 Reference Documentation 375

public class JdbcActorDao implements ActorDao {
private SimpleJdbcTemplate simpleJdbcTemplate;
private SimpleJdbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
this.insertActor =

new SimpleJdbcInsert(dataSource)
.withTableName("t_actor")
.usingColumns("first_name", "last_name")
.usingGeneratedKeyColumns("id");

}

public void add(Actor actor) {
Map<String, Object> parameters = new HashMap<String, Object>(2);
parameters.put("first_name", actor.getFirstName());
parameters.put("last_name", actor.getLastName());
Number newId = insertActor.executeAndReturnKey(parameters);
actor.setId(newId.longValue());

}

// ... additional methods
}

The execution of the insert is the same as if you had relied on the metadata to determine which columns
to use.

Using SqlParameterSource to provide parameter values

Using a Map to provide parameter values works fine, but it's not the most convenient class to use. Spring
provides a couple of implementations of the SqlParameterSource interface that can be used
instead.The first one is BeanPropertySqlParameterSource, which is a very convenient class if
you have a JavaBean-compliant class that contains your values. It will use the corresponding getter
method to extract the parameter values. Here is an example:

public class JdbcActorDao implements ActorDao {
private SimpleJdbcTemplate simpleJdbcTemplate;
private SimpleJdbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
this.insertActor =

new SimpleJdbcInsert(dataSource)
.withTableName("t_actor")
.usingGeneratedKeyColumns("id");

}

public void add(Actor actor) {
SqlParameterSource parameters = new BeanPropertySqlParameterSource(actor);
Number newId = insertActor.executeAndReturnKey(parameters);
actor.setId(newId.longValue());

}

// ... additional methods
}

Another option is the MapSqlParameterSource that resembles a Map but provides a more
convenient addValue method that can be chained.

Spring Framework

3.1 Reference Documentation 376

public class JdbcActorDao implements ActorDao {
private SimpleJdbcTemplate simpleJdbcTemplate;
private SimpleJdbcInsert insertActor;

public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
this.insertActor =

new SimpleJdbcInsert(dataSource)
.withTableName("t_actor")
.usingGeneratedKeyColumns("id");

}

public void add(Actor actor) {
SqlParameterSource parameters = new MapSqlParameterSource()

.addValue("first_name", actor.getFirstName())

.addValue("last_name", actor.getLastName());
Number newId = insertActor.executeAndReturnKey(parameters);
actor.setId(newId.longValue());

}

// ... additional methods
}

As you can see, the configuration is the same; only the executing code has to change to use these
alternative input classes.

Calling a stored procedure with SimpleJdbcCall

The SimpleJdbcCall class leverages metadata in the database to look up names of in and out
parameters, so that you do not have to declare them explicitly. You can declare parameters if you prefer to
do that, or if you have parameters such as ARRAY or STRUCT that do not have an automatic mapping to a
Java class. The first example shows a simple procedure that returns only scalar values in VARCHAR and
DATE format from a MySQL database. The example procedure reads a specified actor entry and returns
first_name, last_name, and birth_date columns in the form of out parameters.

CREATE PROCEDURE read_actor (
IN in_id INTEGER,
OUT out_first_name VARCHAR(100),
OUT out_last_name VARCHAR(100),
OUT out_birth_date DATE)

BEGIN
SELECT first_name, last_name, birth_date
INTO out_first_name, out_last_name, out_birth_date
FROM t_actor where id = in_id;

END;

The in_id parameter contains the id of the actor you are looking up. The out parameters return the
data read from the table.

The SimpleJdbcCall is declared in a similar manner to the SimpleJdbcInsert. You should
instantiate and configure the class in the initialization method of your data access layer. Compared to the
StoredProcedure class, you don't have to create a subclass and you don't have to declare parameters that
can be looked up in the database metadata. Following is an example of a SimpleJdbcCall configuration
using the above stored procedure. The only configuration option, in addition to the DataSource, is the

Spring Framework

3.1 Reference Documentation 377

name of the stored procedure.

public class JdbcActorDao implements ActorDao {
private SimpleJdbcTemplate simpleJdbcTemplate;
private SimpleJdbcCall procReadActor;

public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
this.procReadActor =

new SimpleJdbcCall(dataSource)
.withProcedureName("read_actor");

}

public Actor readActor(Long id) {
SqlParameterSource in = new MapSqlParameterSource()

.addValue("in_id", id);
Map out = procReadActor.execute(in);
Actor actor = new Actor();
actor.setId(id);
actor.setFirstName((String) out.get("out_first_name"));
actor.setLastName((String) out.get("out_last_name"));
actor.setBirthDate((Date) out.get("out_birth_date"));
return actor;

}

// ... additional methods
}

The code you write for the execution of the call involves creating an SqlParameterSource
containing the IN parameter. It's important to match the name provided for the input value with that of the
parameter name declared in the stored procedure. The case does not have to match because you use
metadata to determine how database objects should be referred to in a stored procedure. What is specified
in the source for the stored procedure is not necessarily the way it is stored in the database. Some
databases transform names to all upper case while others use lower case or use the case as specified.

The execute method takes the IN parameters and returns a Map containing any out parameters keyed
by the name as specified in the stored procedure. In this case they are out_first_name,
out_last_name and out_birth_date.

The last part of the execute method creates an Actor instance to use to return the data retrieved. Again,
it is important to use the names of the out parameters as they are declared in the stored procedure. Also,
the case in the names of the out parameters stored in the results map matches that of the out parameter
names in the database, which could vary between databases. To make your code more portable you
should do a case-insensitive lookup or instruct Spring to use a CaseInsensitiveMap from the
Jakarta Commons project. To do the latter, you create your own JdbcTemplate and set the
setResultsMapCaseInsensitive property to true. Then you pass this customized
JdbcTemplate instance into the constructor of your SimpleJdbcCall. You must include the
commons-collections.jar in your classpath for this to work. Here is an example of this
configuration:

public class JdbcActorDao implements ActorDao {
private SimpleJdbcCall procReadActor;

public void setDataSource(DataSource dataSource) {
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);

Spring Framework

3.1 Reference Documentation 378

jdbcTemplate.setResultsMapCaseInsensitive(true);
this.procReadActor =

new SimpleJdbcCall(jdbcTemplate)
.withProcedureName("read_actor");

}

// ... additional methods
}

By taking this action, you avoid conflicts in the case used for the names of your returned out parameters.

Explicitly declaring parameters to use for a SimpleJdbcCall

You have seen how the parameters are deduced based on metadata, but you can declare then explicitly if
you wish. You do this by creating and configuring SimpleJdbcCall with the
declareParameters method, which takes a variable number of SqlParameter objects as input.
See the next section for details on how to define an SqlParameter.

Note

Explicit declarations are necessary if the database you use is not a Spring-supported database.
Currently Spring supports metadata lookup of stored procedure calls for the following
databases: Apache Derby, DB2, MySQL, Microsoft SQL Server, Oracle, and Sybase. We
also support metadata lookup of stored functions for: MySQL, Microsoft SQL Server, and
Oracle.

You can opt to declare one, some, or all the parameters explicitly. The parameter metadata is still used
where you do not declare parameters explicitly. To bypass all processing of metadata lookups for
potential parameters and only use the declared parameters, you call the method
withoutProcedureColumnMetaDataAccess as part of the declaration. Suppose that you have
two or more different call signatures declared for a database function. In this case you call the
useInParameterNames to specify the list of IN parameter names to include for a given signature.

The following example shows a fully declared procedure call, using the information from the preceding
example.

public class JdbcActorDao implements ActorDao {
private SimpleJdbcCall procReadActor;

public void setDataSource(DataSource dataSource) {
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
jdbcTemplate.setResultsMapCaseInsensitive(true);
this.procReadActor =

new SimpleJdbcCall(jdbcTemplate)
.withProcedureName("read_actor")
.withoutProcedureColumnMetaDataAccess()
.useInParameterNames("in_id")
.declareParameters(

new SqlParameter("in_id", Types.NUMERIC),
new SqlOutParameter("out_first_name", Types.VARCHAR),

Spring Framework

3.1 Reference Documentation 379

new SqlOutParameter("out_last_name", Types.VARCHAR),
new SqlOutParameter("out_birth_date", Types.DATE)

);
}

// ... additional methods
}

The execution and end results of the two examples are the same; this one specifies all details explicitly
rather than relying on metadata.

How to define SqlParameters

To define a parameter for the SimpleJdbc classes and also for the RDBMS operations classes, covered in
Section 13.6, “Modeling JDBC operations as Java objects”, you use an SqlParameter or one of its
subclasses. You typically specify the parameter name and SQL type in the constructor. The SQL type is
specified using the java.sql.Types constants. We have already seen declarations like:

new SqlParameter("in_id", Types.NUMERIC),
new SqlOutParameter("out_first_name", Types.VARCHAR),

The first line with the SqlParameter declares an IN parameter. IN parameters can be used for both
stored procedure calls and for queries using the SqlQuery and its subclasses covered in the following
section.

The second line with the SqlOutParameter declares an out parameter to be used in a stored
procedure call. There is also an SqlInOutParameter for InOut parameters, parameters that provide
an IN value to the procedure and that also return a value.

Note

Only parameters declared as SqlParameter and SqlInOutParameter will be used to
provide input values. This is different from the StoredProcedure class, which for
backwards compatibility reasons allows input values to be provided for parameters declared
as SqlOutParameter.

For IN parameters, in addition to the name and the SQL type, you can specify a scale for numeric data or
a type name for custom database types. For out parameters, you can provide a RowMapper to handle
mapping of rows returned from a REF cursor. Another option is to specify an SqlReturnType that
provides an opportunity to define customized handling of the return values.

Calling a stored function using SimpleJdbcCall

You call a stored function in almost the same way as you call a stored procedure, except that you provide
a function name rather than a procedure name. You use the withFunctionName method as part of the

Spring Framework

3.1 Reference Documentation 380

configuration to indicate that we want to make a call to a function, and the corresponding string for a
function call is generated. A specialized execute call, executeFunction, is used to execute the
function and it returns the function return value as an object of a specified type, which means you do not
have to retrieve the return value from the results map. A similar convenience method named
executeObject is also available for stored procedures that only have one out parameter. The
following example is based on a stored function named get_actor_name that returns an actor's full
name. Here is the MySQL source for this function:

CREATE FUNCTION get_actor_name (in_id INTEGER)
RETURNS VARCHAR(200) READS SQL DATA
BEGIN
DECLARE out_name VARCHAR(200);
SELECT concat(first_name, ' ', last_name)

INTO out_name
FROM t_actor where id = in_id;

RETURN out_name;
END;

To call this function we again create a SimpleJdbcCall in the initialization method.

public class JdbcActorDao implements ActorDao {
private SimpleJdbcTemplate simpleJdbcTemplate;
private SimpleJdbcCall funcGetActorName;

public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
jdbcTemplate.setResultsMapCaseInsensitive(true);
this.funcGetActorName =

new SimpleJdbcCall(jdbcTemplate)
.withFunctionName("get_actor_name");

}

public String getActorName(Long id) {
SqlParameterSource in = new MapSqlParameterSource()

.addValue("in_id", id);
String name = funcGetActorName.executeFunction(String.class, in);
return name;

}

// ... additional methods
}

The execute method used returns a String containing the return value from the function call.

Returning ResultSet/REF Cursor from a SimpleJdbcCall

Calling a stored procedure or function that returns a result set is a bit tricky. Some databases return result
sets during the JDBC results processing while others require an explicitly registered out parameter of a
specific type. Both approaches need additional processing to loop over the result set and process the
returned rows. With the SimpleJdbcCall you use the returningResultSet method and declare
a RowMapper implementation to be used for a specific parameter. In the case where the result set is
returned during the results processing, there are no names defined, so the returned results will have to
match the order in which you declare the RowMapper implementations. The name specified is still used

Spring Framework

3.1 Reference Documentation 381

to store the processed list of results in the results map that is returned from the execute statement.

The next example uses a stored procedure that takes no IN parameters and returns all rows from the
t_actor table. Here is the MySQL source for this procedure:

CREATE PROCEDURE read_all_actors()
BEGIN
SELECT a.id, a.first_name, a.last_name, a.birth_date FROM t_actor a;

END;

To call this procedure you declare the RowMapper. Because the class you want to map to follows the
JavaBean rules, you can use a ParameterizedBeanPropertyRowMapper that is created by
passing in the required class to map to in the newInstance method.

public class JdbcActorDao implements ActorDao {
private SimpleJdbcTemplate simpleJdbcTemplate;
private SimpleJdbcCall procReadAllActors;

public void setDataSource(DataSource dataSource) {
this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
jdbcTemplate.setResultsMapCaseInsensitive(true);
this.procReadAllActors =

new SimpleJdbcCall(jdbcTemplate)
.withProcedureName("read_all_actors")
.returningResultSet("actors",

ParameterizedBeanPropertyRowMapper.newInstance(Actor.class));
}

public List getActorsList() {
Map m = procReadAllActors.execute(new HashMap<String, Object>(0));
return (List) m.get("actors");

}

// ... additional methods
}

The execute call passes in an empty Map because this call does not take any parameters. The list of
Actors is then retrieved from the results map and returned to the caller.

13.6 Modeling JDBC operations as Java objects

The org.springframework.jdbc.object package contains classes that allow you to access the
database in a more object-oriented manner. As an example, you can execute queries and get the results
back as a list containing business objects with the relational column data mapped to the properties of the
business object. You can also execute stored procedures and run update, delete, and insert statements.

Note

Many Spring developers believe that the various RDBMS operation classes described below
(with the exception of the StoredProcedure class) can often be replaced with straight
JdbcTemplate calls. Often it is simpler to write a DAO method that simply calls a method
on a JdbcTemplate directly (as opposed to encapsulating a query as a full-blown class).

Spring Framework

3.1 Reference Documentation 382

However, if you are getting measurable value from using the RDBMS operation classes,
continue using these classes.

SqlQuery

SqlQuery is a reusable, threadsafe class that encapsulates an SQL query. Subclasses must implement
the newRowMapper(..) method to provide a RowMapper instance that can create one object per row
obtained from iterating over the ResultSet that is created during the execution of the query. The
SqlQuery class is rarely used directly because the MappingSqlQuery subclass provides a much
more convenient implementation for mapping rows to Java classes. Other implementations that extend
SqlQuery are MappingSqlQueryWithParameters and UpdatableSqlQuery.

MappingSqlQuery

MappingSqlQuery is a reusable query in which concrete subclasses must implement the abstract
mapRow(..) method to convert each row of the supplied ResultSet into an object of the type
specified. The following example shows a custom query that maps the data from the t_actor relation to
an instance of the Actor class.

public class ActorMappingQuery extends MappingSqlQuery<Actor> {

public ActorMappingQuery(DataSource ds) {
super(ds, "select id, first_name, last_name from t_actor where id = ?");
super.declareParameter(new SqlParameter("id", Types.INTEGER));
compile();

}

@Override
protected Actor mapRow(ResultSet rs, int rowNumber) throws SQLException {

Actor actor = new Actor();
actor.setId(rs.getLong("id"));
actor.setFirstName(rs.getString("first_name"));
actor.setLastName(rs.getString("last_name"));
return actor;

}

}

The class extends MappingSqlQuery parameterized with the Actor type. The constructor for this
customer query takes the DataSource as the only parameter. In this constructor you call the constructor
on the superclass with the DataSource and the SQL that should be executed to retrieve the rows for
this query. This SQL will be used to create a PreparedStatement so it may contain place holders for
any parameters to be passed in during execution.You must declare each parameter using the
declareParameter method passing in an SqlParameter. The SqlParameter takes a name and
the JDBC type as defined in java.sql.Types. After you define all parameters, you call the
compile() method so the statement can be prepared and later executed. This class is thread-safe after it
is compiled, so as long as these instances are created when the DAO is initialized they can be kept as
instance variables and be reused.

Spring Framework

3.1 Reference Documentation 383

private ActorMappingQuery actorMappingQuery;

@Autowired
public void setDataSource(DataSource dataSource) {

this.actorMappingQuery = new ActorMappingQuery(dataSource);
}

public Customer getCustomer(Long id) {
return actorMappingQuery.findObject(id);

}

The method in this example retrieves the customer with the id that is passed in as the only parameter.
Since we only want one object returned we simply call the convenience method findObject with the
id as parameter. If we had instead a query that returned a list of objects and took additional parameters
then we would use one of the execute methods that takes an array of parameter values passed in as
varargs.

public List<Actor> searchForActors(int age, String namePattern) {
List<Actor> actors = actorSearchMappingQuery.execute(age, namePattern);
return actors;

}

SqlUpdate

The SqlUpdate class encapsulates an SQL update. Like a query, an update object is reusable, and like
all RdbmsOperation classes, an update can have parameters and is defined in SQL. This class
provides a number of update(..) methods analogous to the execute(..) methods of query
objects. The SQLUpdate class is concrete. It can be subclassed, for example, to add a custom update
method, as in the following snippet where it's simply called execute. However, you don't have to
subclass the SqlUpdate class since it can easily be parameterized by setting SQL and declaring
parameters.

import java.sql.Types;

import javax.sql.DataSource;

import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.SqlUpdate;

public class UpdateCreditRating extends SqlUpdate {

public UpdateCreditRating(DataSource ds) {
setDataSource(ds);
setSql("update customer set credit_rating = ? where id = ?");
declareParameter(new SqlParameter("creditRating", Types.NUMERIC));
declareParameter(new SqlParameter("id", Types.NUMERIC));
compile();

}

/**
* @param id for the Customer to be updated
* @param rating the new value for credit rating
* @return number of rows updated
*/
public int execute(int id, int rating) {

return update(rating, id);
}

Spring Framework

3.1 Reference Documentation 384

}

StoredProcedure

The StoredProcedure class is a superclass for object abstractions of RDBMS stored procedures.
This class is abstract, and its various execute(..) methods have protected access, preventing
use other than through a subclass that offers tighter typing.

The inherited sql property will be the name of the stored procedure in the RDBMS.

To define a parameter for the StoredProcedure class, you use an SqlParameter or one of its
subclasses. You must specify the parameter name and SQL type in the constructor like in the following
code snippet. The SQL type is specified using the java.sql.Types constants.

new SqlParameter("in_id", Types.NUMERIC),
new SqlOutParameter("out_first_name", Types.VARCHAR),

The first line with the SqlParameter declares an IN parameter. IN parameters can be used for both
stored procedure calls and for queries using the SqlQuery and its subclasses covered in the following
section.

The second line with the SqlOutParameter declares an out parameter to be used in the stored
procedure call. There is also an SqlInOutParameter for InOut parameters, parameters that provide
an in value to the procedure and that also return a value.

For in parameters, in addition to the name and the SQL type, you can specify a scale for numeric data or
a type name for custom database types. For out parameters you can provide a RowMapper to handle
mapping of rows returned from a REF cursor. Another option is to specify an SqlReturnType that
enables you to define customized handling of the return values.

Here is an example of a simple DAO that uses a StoredProcedure to call a function,
sysdate(),which comes with any Oracle database. To use the stored procedure functionality you have
to create a class that extends StoredProcedure. In this example, the StoredProcedure class is
an inner class, but if you need to reuse the StoredProcedure you declare it as a top-level class. This
example has no input parameters, but an output parameter is declared as a date type using the class
SqlOutParameter. The execute() method executes the procedure and extracts the returned date
from the results Map. The results Map has an entry for each declared output parameter, in this case only
one, using the parameter name as the key.

import java.sql.Types;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;

import javax.sql.DataSource;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.object.StoredProcedure;

Spring Framework

3.1 Reference Documentation 385

public class StoredProcedureDao {

private GetSysdateProcedure getSysdate;

@Autowired
public void init(DataSource dataSource) {

this.getSysdate = new GetSysdateProcedure(dataSource);
}

public Date getSysdate() {
return getSysdate.execute();

}

private class GetSysdateProcedure extends StoredProcedure {

private static final String SQL = "sysdate";

public GetSysdateProcedure(DataSource dataSource) {
setDataSource(dataSource);
setFunction(true);
setSql(SQL);
declareParameter(new SqlOutParameter("date", Types.DATE));
compile();

}

public Date execute() {
// the 'sysdate' sproc has no input parameters, so an empty Map is supplied...
Map<String, Object> results = execute(new HashMap<String, Object>());
Date sysdate = (Date) results.get("date");
return sysdate;

}
}

}

The following example of a StoredProcedure has two output parameters (in this case, Oracle REF
cursors).

import oracle.jdbc.OracleTypes;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.object.StoredProcedure;

import javax.sql.DataSource;
import java.util.HashMap;
import java.util.Map;

public class TitlesAndGenresStoredProcedure extends StoredProcedure {

private static final String SPROC_NAME = "AllTitlesAndGenres";

public TitlesAndGenresStoredProcedure(DataSource dataSource) {
super(dataSource, SPROC_NAME);
declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper()));
declareParameter(new SqlOutParameter("genres", OracleTypes.CURSOR, new GenreMapper()));
compile();

}

public Map<String, Object> execute() {
// again, this sproc has no input parameters, so an empty Map is supplied
return super.execute(new HashMap<String, Object>());

}
}

Spring Framework

3.1 Reference Documentation 386

Notice how the overloaded variants of the declareParameter(..) method that have been used in
the TitlesAndGenresStoredProcedure constructor are passed RowMapper implementation
instances; this is a very convenient and powerful way to reuse existing functionality. The code for the two
RowMapper implementations is provided below.

The TitleMapper class maps a ResultSet to a Title domain object for each row in the supplied
ResultSet:

import org.springframework.jdbc.core.RowMapper;

import java.sql.ResultSet;
import java.sql.SQLException;

import com.foo.domain.Title;

public final class TitleMapper implements RowMapper<Title> {

public Title mapRow(ResultSet rs, int rowNum) throws SQLException {
Title title = new Title();
title.setId(rs.getLong("id"));
title.setName(rs.getString("name"));
return title;

}
}

The GenreMapper class maps a ResultSet to a Genre domain object for each row in the supplied
ResultSet.

import org.springframework.jdbc.core.RowMapper;

import java.sql.ResultSet;
import java.sql.SQLException;

import com.foo.domain.Genre;

public final class GenreMapper implements RowMapper<Genre> {

public Genre mapRow(ResultSet rs, int rowNum) throws SQLException {
return new Genre(rs.getString("name"));

}
}

To pass parameters to a stored procedure that has one or more input parameters in its definition in the
RDBMS, you can code a strongly typed execute(..) method that would delegate to the superclass'
untyped execute(Map parameters) method (which has protected access); for example:

import oracle.jdbc.OracleTypes;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.StoredProcedure;

import javax.sql.DataSource;

import java.sql.Types;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;

public class TitlesAfterDateStoredProcedure extends StoredProcedure {

Spring Framework

3.1 Reference Documentation 387

private static final String SPROC_NAME = "TitlesAfterDate";
private static final String CUTOFF_DATE_PARAM = "cutoffDate";

public TitlesAfterDateStoredProcedure(DataSource dataSource) {
super(dataSource, SPROC_NAME);
declareParameter(new SqlParameter(CUTOFF_DATE_PARAM, Types.DATE);
declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper()));
compile();

}

public Map<String, Object> execute(Date cutoffDate) {
Map<String, Object> inputs = new HashMap<String, Object>();
inputs.put(CUTOFF_DATE_PARAM, cutoffDate);
return super.execute(inputs);

}
}

13.7 Common problems with parameter and data value
handling

Common problems with parameters and data values exist in the different approaches provided by the
Spring Framework JDBC.

Providing SQL type information for parameters

Usually Spring determines the SQL type of the parameters based on the type of parameter passed in. It is
possible to explicitly provide the SQL type to be used when setting parameter values. This is sometimes
necessary to correctly set NULL values.

You can provide SQL type information in several ways:

• Many update and query methods of the JdbcTemplate take an additional parameter in the form of
an int array. This array is used to indicate the SQL type of the coresponding parameter using
constant values from the java.sql.Types class. Provide one entry for each parameter.

• You can use the SqlParameterValue class to wrap the parameter value that needs this additional
information. Create a new instance for each value and pass in the SQL type and parameter value in the
constructor. You can also provide an optional scale parameter for numeric values.

• For methods working with named parameters, use the SqlParameterSource classes
BeanPropertySqlParameterSource or MapSqlParameterSource. They both have
methods for registering the SQL type for any of the named parameter values.

Handling BLOB and CLOB objects

You can store images, other binary objects, and large chunks of text. These large object are called BLOB
for binary data and CLOB for character data. In Spring you can handle these large objects by using the

Spring Framework

3.1 Reference Documentation 388

JdbcTemplate directly and also when using the higher abstractions provided by RDBMS Objects and the
SimpleJdbc classes. All of these approaches use an implementation of the LobHandler interface for
the actual management of the LOB data. The LobHandler provides access to a LobCreator class,
through the getLobCreator method, used for creating new LOB objects to be inserted.

The LobCreator/LobHandler provides the following support for LOB input and output:

• BLOB

• byte[] – getBlobAsBytes and setBlobAsBytes

• InputStream – getBlobAsBinaryStream and setBlobAsBinaryStream

• CLOB

• String – getClobAsString and setClobAsString

• InputStream – getClobAsAsciiStream and setClobAsAsciiStream

• Reader – getClobAsCharacterStream and setClobAsCharacterStream

The next example shows how to create and insert a BLOB. Later you will see how to read it back from
the database.

This example uses a JdbcTemplate and an implementation of the
AbstractLobCreatingPreparedStatementCallback. It implements one method,
setValues. This method provides a LobCreator that you use to set the values for the LOB columns
in your SQL insert statement.

For this example we assume that there is a variable, lobHandler, that already is set to an instance of a
DefaultLobHandler. You typically set this value through dependency injection.

final File blobIn = new File("spring2004.jpg");
final InputStream blobIs = new FileInputStream(blobIn);
final File clobIn = new File("large.txt");
final InputStream clobIs = new FileInputStream(clobIn);
final InputStreamReader clobReader = new InputStreamReader(clobIs);
jdbcTemplate.execute(
"INSERT INTO lob_table (id, a_clob, a_blob) VALUES (?, ?, ?)",
new AbstractLobCreatingPreparedStatementCallback(lobHandler) { ❶

protected void setValues(PreparedStatement ps, LobCreator lobCreator)
throws SQLException {

ps.setLong(1, 1L);
lobCreator.setClobAsCharacterStream(ps, 2, clobReader, (int)clobIn.length()); ❷
lobCreator.setBlobAsBinaryStream(ps, 3, blobIs, (int)blobIn.length()); ❸

}
}

);
blobIs.close();
clobReader.close();

❶ Pass in the lobHandler that in this example is a plain DefaultLobHandler

Spring Framework

3.1 Reference Documentation 389

❷ Using the method setClobAsCharacterStream, pass in the contents of the CLOB.
❸ Using the method setBlobAsBinaryStream, pass in the contents of the BLOB.

Now it's time to read the LOB data from the database. Again, you use a JdbcTemplate with the same
instance variable lobHandler and a reference to a DefaultLobHandler.

List<Map<String, Object>> l = jdbcTemplate.query("select id, a_clob, a_blob from lob_table",
new RowMapper<Map<String, Object>>() {

public Map<String, Object> mapRow(ResultSet rs, int i) throws SQLException {
Map<String, Object> results = new HashMap<String, Object>();
String clobText = lobHandler.getClobAsString(rs, "a_clob"); ❶
results.put("CLOB", clobText);
byte[] blobBytes = lobHandler.getBlobAsBytes(rs, "a_blob"); ❷
results.put("BLOB", blobBytes);
return results;

}
});

❷ Using the method getClobAsString, retrieve the contents of the CLOB.
❸ Using the method getBlobAsBytes, retrieve the contents of the BLOB.

Passing in lists of values for IN clause

The SQL standard allows for selecting rows based on an expression that includes a variable list of values.
A typical example would be select * from T_ACTOR where id in (1, 2, 3). This
variable list is not directly supported for prepared statements by the JDBC standard; you cannot declare a
variable number of placeholders. You need a number of variations with the desired number of
placeholders prepared, or you need to generate the SQL string dynamically once you know how many
placeholders are required. The named parameter support provided in the
NamedParameterJdbcTemplate and SimpleJdbcTemplate takes the latter approach. Pass in
the values as a java.util.List of primitive objects. This list will be used to insert the required
placeholders and pass in the values during the statement execution.

Note

Be careful when passing in many values. The JDBC standard does not guarantee that you can
use more than 100 values for an in expression list. Various databases exceed this number,
but they usually have a hard limit for how many values are allowed. Oracle's limit is 1000.

In addition to the primitive values in the value list, you can create a java.util.List of object arrays.
This list would support multiple expressions defined for the in clause such as select * from
T_ACTOR where (id, last_name) in ((1, 'Johnson'), (2, 'Harrop')). This of
course requires that your database supports this syntax.

Handling complex types for stored procedure calls

When you call stored procedures you can sometimes use complex types specific to the database. To

Spring Framework

3.1 Reference Documentation 390

accommodate these types, Spring provides a SqlReturnType for handling them when they are
returned from the stored procedure call and SqlTypeValue when they are passed in as a parameter to
the stored procedure.

Here is an example of returning the value of an Oracle STRUCT object of the user declared type
ITEM_TYPE. The SqlReturnType interface has a single method named getTypeValue that must
be implemented. This interface is used as part of the declaration of an SqlOutParameter.

final TestItem - new TestItem(123L, "A test item",
new SimpleDateFormat("yyyy-M-d").parse("2010-12-31"););

declareParameter(new SqlOutParameter("item", OracleTypes.STRUCT, "ITEM_TYPE",
new SqlReturnType() {
public Object getTypeValue(CallableStatement cs, int colIndx, int sqlType, String typeName)

throws SQLException {
STRUCT struct = (STRUCT)cs.getObject(colIndx);
Object[] attr = struct.getAttributes();
TestItem item = new TestItem();
item.setId(((Number) attr[0]).longValue());
item.setDescription((String)attr[1]);
item.setExpirationDate((java.util.Date)attr[2]);
return item;

}
}));

You use the SqlTypeValue to pass in the value of a Java object like TestItem into a stored
procedure. The SqlTypeValue interface has a single method named createTypeValue that you
must implement. The active connection is passed in, and you can use it to create database-specific objects
such as StructDescriptors, as shown in the following example, or ArrayDescriptors.

final TestItem - new TestItem(123L, "A test item",
new SimpleDateFormat("yyyy-M-d").parse("2010-12-31"););

SqlTypeValue value = new AbstractSqlTypeValue() {
protected Object createTypeValue(Connection conn, int sqlType, String typeName) throws SQLException {

StructDescriptor itemDescriptor = new StructDescriptor(typeName, conn);
Struct item = new STRUCT(itemDescriptor, conn,

new Object[] {
testItem.getId(),
testItem.getDescription(),
new java.sql.Date(testItem.getExpirationDate().getTime())

});
return item;

}
};

This SqlTypeValue can now be added to the Map containing the input parameters for the execute call
of the stored procedure.

Another use for the SqlTypeValue is passing in an array of values to an Oracle stored procedure.
Oracle has its own internal ARRAY class that must be used in this case, and you can use the
SqlTypeValue to create an instance of the Oracle ARRAY and populate it with values from the Java
ARRAY.

final Long[] ids = new Long[] {1L, 2L};

SqlTypeValue value = new AbstractSqlTypeValue() {

Spring Framework

3.1 Reference Documentation 391

protected Object createTypeValue(Connection conn, int sqlType, String typeName) throws SQLException {
ArrayDescriptor arrayDescriptor = new ArrayDescriptor(typeName, conn);
ARRAY idArray = new ARRAY(arrayDescriptor, conn, ids);
return idArray;

}
};

13.8 Embedded database support

The org.springframework.jdbc.datasource.embedded package provides support for
embedded Java database engines. Support for HSQL, H2, and Derby is provided natively. You can also
use an extensible API to plug in new embedded database types and DataSource implementations.

Why use an embedded database?

An embedded database is useful during the development phase of a project because of its lightweight
nature. Benefits include ease of configuration, quick startup time, testability, and the ability to rapidly
evolve SQL during development.

Creating an embedded database instance using Spring XML

If you want to expose an embedded database instance as a bean in a Spring ApplicationContext, use the
embedded-database tag in the spring-jdbc namespace:

<jdbc:embedded-database id="dataSource">
<jdbc:script location="classpath:schema.sql"/>
<jdbc:script location="classpath:test-data.sql"/>

</jdbc:embedded-database>

The preceding configuration creates an embedded HSQL database populated with SQL from schema.sql
and testdata.sql resources in the classpath. The database instance is made available to the Spring container
as a bean of type javax.sql.DataSource. This bean can then be injected into data access objects as
needed.

Creating an embedded database instance programmatically

The EmbeddedDatabaseBuilder class provides a fluent API for constructing an embedded database
programmatically. Use this when you need to create an embedded database instance in a standalone
environment, such as a data access object unit test:

EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
EmbeddedDatabase db = builder.setType(H2).addScript("my-schema.sql").addScript("my-test-data.sql").build();
// do stuff against the db (EmbeddedDatabase extends javax.sql.DataSource)
db.shutdown()

Extending the embedded database support

Spring Framework

3.1 Reference Documentation 392

http://www.hsqldb.org
http://www.h2database.com
http://db.apache.org/derby

Spring JDBC embedded database support can be extended in two ways:

1. Implement EmbeddedDatabaseConfigurer to support a new embedded database type, such as
Apache Derby.

2. Implement DataSourceFactory to support a new DataSource implementation, such as a
connection pool, to manage embedded database connections.

You are encouraged to contribute back extensions to the Spring community at jira.springframework.org.

Using HSQL

Spring supports HSQL 1.8.0 and above. HSQL is the default embedded database if no type is specified
explicitly. To specify HSQL explicitly, set the type attribute of the embedded-database tag to
HSQL. If you are using the builder API, call the setType(EmbeddedDatabaseType) method with
EmbeddedDatabaseType.HSQL.

Using H2

Spring supports the H2 database as well. To enable H2, set the type attribute of the
embedded-database tag to H2. If you are using the builder API, call the
setType(EmbeddedDatabaseType) method with EmbeddedDatabaseType.H2.

Using Derby

Spring also supports Apache Derby 10.5 and above. To enable Derby, set the type attribute of the
embedded-database tag to Derby. If using the builder API, call the
setType(EmbeddedDatabaseType) method with EmbeddedDatabaseType.Derby.

Testing data access logic with an embedded database

Embedded databases provide a lightweight way to test data access code. The following is a data access
unit test template that uses an embedded database:

public class DataAccessUnitTestTemplate {
private EmbeddedDatabase db;

@Before
public void setUp() {

// creates a HSQL in-memory db populated from default scripts classpath:schema.sql and classpath:test-data.sql
db = new EmbeddedDatabaseBuilder().addDefaultScripts().build();

}

@Test
public void testDataAccess() {

JdbcTemplate template = new JdbcTemplate(db);
template.query(...);

Spring Framework

3.1 Reference Documentation 393

jira.springframework.org

}

@After
public void tearDown() {

db.shutdown();
}

}

13.9 Initializing a DataSource

The org.springframework.jdbc.datasource.init package provides support for initializing
an existing DataSource. The embedded database support provides one option for creating and
initializing a DataSource for an application, but sometimes you need to initialize an instance running
on a server somewhere.

Initializing a database instance using Spring XML

If you want to initialize a database and you can provide a reference to a DataSource bean, use the
initialize-database tag in the spring-jdbc namespace:

<jdbc:initialize-database data-source="dataSource">
<jdbc:script location="classpath:com/foo/sql/db-schema.sql"/>
<jdbc:script location="classpath:com/foo/sql/db-test-data.sql"/>

</jdbc:initialize-database>

The example above runs the two scripts specified against the database: the first script is a schema
creation, and the second is a test data set insert. The script locations can also be patterns with wildcards in
the usual ant style used for resources in Spring (e.g.
classpath*:/com/foo/**/sql/*-data.sql). If a pattern is used the scripts are executed in
lexical order of their URL or filename.

The default behaviour of the database initializer is to unconditionally execute the scripts provided. This
will not always be what you want, for instance if running against an existing database that already has test
data in it. The likelihood of accidentally deleting data is reduced by the commonest pattern (as shown
above) that creates the tables first and then inserts the data - the first step will fail if the tables already
exist.

However, to get more control over the creation and deletion of existing data, the XML namespace
provides a couple more options. The first is flag to switch the initialization on and off. This can be set
according to the environment (e.g. to pull a boolean value from system properties or an environment
bean), e.g.

<jdbc:initialize-database data-source="dataSource"
enabled="#{systemProperties.INITIALIZE_DATABASE}">

<jdbc:script location="..."/>
</jdbc:initialize-database>

The second option to control what happens with existing data is to be more tolerant of failures. To this

Spring Framework

3.1 Reference Documentation 394

end you can control the ability of the initializer to ignore certain errors in the SQL it executes from the
scripts, e.g.

<jdbc:initialize-database data-source="dataSource" ignore-failures="DROPS">
<jdbc:script location="..."/>

</jdbc:initialize-database>

In this example we are saying we expect that sometimes the scripts will be run against an empty dtabase
and there are some DROP statements in the scripts which would therefore fail. So failed SQL DROP
statements will be ignored, but other failures will cause an exception. This is useful if your SQL dialect
doesn't support DROP ... IF EXISTS (or similar) but you want to unconditionally remove all test
data before re-creating it. In that case the first script is usually a set of drops, followed by a set of
CREATE statements.

The ignore-failures option can be set to NONE (the default), DROPS (ignore failed drops) or ALL
(ignore all failures).

If you need more control than you get from the XML namespace, you can simply use the
DataSourceInitializer directly, and define it as a component in your application.

Initialization of Other Components that Depend on the Database

A large class of applications can just use the database initializer with no further complications: those that
do not use the database until after the Spring context has started. If your application is not one of those
then you might need to read the rest of this section.

The database initializer depends on a data source instance and runs the scripts provided in its initialization
callback (c.f. init-method in an XML bean definition or InitializingBean). If other beans
depend on the same data source and also use the data source in an initialization callback then there might
be a problem because the data has not yet been initialized. A common example of this is a cache that
initializes eagerly and loads up data from the database on application startup.

To get round this issue you two options: change your cache initialization strategy to a later phase, or
ensure that the database initializer is initialized first.

The first option might be easy if the application is in your control, and not otherwise. Some suggestions
for how to implement this are

• Make the cache initialize lazily on first usage, which improves application startup time

• Have your cache or a separate component that initializes the cache implement Lifecycle or
SmartLifecycle. When the application context starts up a SmartLifecycle can be
automatically started if its autoStartup flag is set, and a Lifecycle can be started manually by
calling ConfigurableApplicationContext.start() on the enclosing context.

• Use a Spring ApplicationEvent or similar custom observer mechanism to trigger the cache
initialization. ContextRefreshedEvent is always published by the context when it is ready for

Spring Framework

3.1 Reference Documentation 395

use (after all beans have been initialized), so that is often a useful hook (this is how the
SmartLifecycle works by default).

The second option can also be easy. Some suggestions on how to implement this are

• Rely on Spring BeanFactory default behaviour, which is that beans are initialized in registration order.
You can easily arrange that by adopting the common practice of a set of <import/> elements that order
your application modules, and ensure that the database and database initialization are listed first

• Separate the datasource and the business components that use it and control their startup order by
putting them in separate ApplicationContext instances (e.g. parent has the datasource and child has the
business components). This structure is common in Spring web applications, but can be more generally
applied.

• Use a modular runtime like SpringSource dm Server and separate the data source and the components
that depend on it. E.g. specify the bundle start up order as datasource -> initializer -> business
components.

Spring Framework

3.1 Reference Documentation 396

14. Object Relational Mapping (ORM) Data
Access

14.1 Introduction to ORM with Spring

The Spring Framework supports integration with Hibernate, Java Persistence API (JPA), Java Data
Objects (JDO) and iBATIS SQL Maps for resource management, data access object (DAO)
implementations, and transaction strategies. For example, for Hibernate there is first-class support with
several convenient IoC features that address many typical Hibernate integration issues. You can configure
all of the supported features for O/R (object relational) mapping tools through Dependency Injection.
They can participate in Spring's resource and transaction management, and they comply with Spring's
generic transaction and DAO exception hierarchies. The recommended integration style is to code DAOs
against plain Hibernate, JPA, and JDO APIs. The older style of using Spring's DAO templates is no
longer recommended; however, coverage of this style can be found in the Section A.1, “Classic ORM
usage” in the appendices.

Spring adds significant enhancements to the ORM layer of your choice when you create data access
applications. You can leverage as much of the integration support as you wish, and you should compare
this integration effort with the cost and risk of building a similar infrastructure in-house. You can use
much of the ORM support as you would a library, regardless of technology, because everything is
designed as a set of reusable JavaBeans. ORM in a Spring IoC container facilitates configuration and
deployment. Thus most examples in this section show configuration inside a Spring container.

Benefits of using the Spring Framework to create your ORM DAOs include:

• Easier testing. Spring's IoC approach makes it easy to swap the implementations and configuration
locations of Hibernate SessionFactory instances, JDBC DataSource instances, transaction
managers, and mapped object implementations (if needed). This in turn makes it much easier to test
each piece of persistence-related code in isolation.

• Common data access exceptions. Spring can wrap exceptions from your ORM tool, converting them
from proprietary (potentially checked) exceptions to a common runtime DataAccessException
hierarchy. This feature allows you to handle most persistence exceptions, which are non-recoverable,
only in the appropriate layers, without annoying boilerplate catches, throws, and exception
declarations. You can still trap and handle exceptions as necessary. Remember that JDBC exceptions
(including DB-specific dialects) are also converted to the same hierarchy, meaning that you can
perform some operations with JDBC within a consistent programming model.

• General resource management. Spring application contexts can handle the location and configuration
of Hibernate SessionFactory instances, JPA EntityManagerFactory instances, JDBC
DataSource instances, iBATIS SQL Maps configuration objects, and other related resources. This
makes these values easy to manage and change. Spring offers efficient, easy, and safe handling of

Spring Framework

3.1 Reference Documentation 397

persistence resources. For example, related code that uses Hibernate generally needs to use the same
Hibernate Session to ensure efficiency and proper transaction handling. Spring makes it easy to
create and bind a Session to the current thread transparently, by exposing a current Session
through the Hibernate SessionFactory. Thus Spring solves many chronic problems of typical
Hibernate usage, for any local or JTA transaction environment.

• Integrated transaction management. You can wrap your ORM code with a declarative, aspect-oriented
programming (AOP) style method interceptor either through the @Transactional annotation or by
explicitly configuring the transaction AOP advice in an XML configuration file. In both cases,
transaction semantics and exception handling (rollback, and so on) are handled for you. As discussed
below, in Resource and transaction management, you can also swap various transaction managers,
without affecting your ORM-related code. For example, you can swap between local transactions and
JTA, with the same full services (such as declarative transactions) available in both scenarios.
Additionally, JDBC-related code can fully integrate transactionally with the code you use to do ORM.
This is useful for data access that is not suitable for ORM, such as batch processing and BLOB
streaming, which still need to share common transactions with ORM operations.

TODO: provide links to current samples

14.2 General ORM integration considerations

This section highlights considerations that apply to all ORM technologies. The Section 14.3, “Hibernate”
section provides more details and also show these features and configurations in a concrete context.

The major goal of Spring's ORM integration is clear application layering, with any data access and
transaction technology, and for loose coupling of application objects. No more business service
dependencies on the data access or transaction strategy, no more hard-coded resource lookups, no more
hard-to-replace singletons, no more custom service registries. One simple and consistent approach to
wiring up application objects, keeping them as reusable and free from container dependencies as possible.
All the individual data access features are usable on their own but integrate nicely with Spring's
application context concept, providing XML-based configuration and cross-referencing of plain JavaBean
instances that need not be Spring-aware. In a typical Spring application, many important objects are
JavaBeans: data access templates, data access objects, transaction managers, business services that use the
data access objects and transaction managers, web view resolvers, web controllers that use the business
services,and so on.

Resource and transaction management

Typical business applications are cluttered with repetitive resource management code. Many projects try
to invent their own solutions, sometimes sacrificing proper handling of failures for programming
convenience. Spring advocates simple solutions for proper resource handling, namely IoC through
templating in the case of JDBC and applying AOP interceptors for the ORM technologies.

Spring Framework

3.1 Reference Documentation 398

The infrastructure provides proper resource handling and appropriate conversion of specific API
exceptions to an unchecked infrastructure exception hierarchy. Spring introduces a DAO exception
hierarchy, applicable to any data access strategy. For direct JDBC, the JdbcTemplate class mentioned
in a previous section provides connection handling and proper conversion of SQLException to the
DataAccessException hierarchy, including translation of database-specific SQL error codes to
meaningful exception classes. For ORM technologies, see the next section for how to get the same
exception translation benefits.

When it comes to transaction management, the JdbcTemplate class hooks in to the Spring transaction
support and supports both JTA and JDBC transactions, through respective Spring transaction managers.
For the supported ORM technologies Spring offers Hibernate, JPA and JDO support through the
Hibernate, JPA, and JDO transaction managers as well as JTA support. For details on transaction support,
see the Chapter 11, Transaction Management chapter.

Exception translation

When you use Hibernate, JPA, or JDO in a DAO, you must decide how to handle the persistence
technology's native exception classes. The DAO throws a subclass of a HibernateException,
PersistenceException or JDOException depending on the technology. These exceptions are all
run-time exceptions and do not have to be declared or caught. You may also have to deal with
IllegalArgumentException and IllegalStateException. This means that callers can only
treat exceptions as generally fatal, unless they want to depend on the persistence technology's own
exception structure. Catching specific causes such as an optimistic locking failure is not possible without
tying the caller to the implementation strategy. This trade off might be acceptable to applications that are
strongly ORM-based and/or do not need any special exception treatment. However, Spring enables
exception translation to be applied transparently through the @Repository annotation:

@Repository
public class ProductDaoImpl implements ProductDao {

// class body here...

}

<beans>

<!-- Exception translation bean post processor -->
<bean class="org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor"/>

<bean id="myProductDao" class="product.ProductDaoImpl"/>

</beans>

The postprocessor automatically looks for all exception translators (implementations of the
PersistenceExceptionTranslator interface) and advises all beans marked with the
@Repository annotation so that the discovered translators can intercept and apply the appropriate
translation on the thrown exceptions.

In summary: you can implement DAOs based on the plain persistence technology's API and annotations,

Spring Framework

3.1 Reference Documentation 399

while still benefiting from Spring-managed transactions, dependency injection, and transparent exception
conversion (if desired) to Spring's custom exception hierarchies.

14.3 Hibernate

We will start with a coverage of Hibernate 3 in a Spring environment, using it to demonstrate the
approach that Spring takes towards integrating O/R mappers. This section will cover many issues in detail
and show different variations of DAO implementations and transaction demarcation. Most of these
patterns can be directly translated to all other supported ORM tools. The following sections in this chapter
will then cover the other ORM technologies, showing briefer examples there.

Note

As of Spring 3.0, Spring requires Hibernate 3.2 or later.

SessionFactory setup in a Spring container

To avoid tying application objects to hard-coded resource lookups, you can define resources such as a
JDBC DataSource or a Hibernate SessionFactory as beans in the Spring container. Application
objects that need to access resources receive references to such predefined instances through bean
references, as illustrated in the DAO definition in the next section.

The following excerpt from an XML application context definition shows how to set up a JDBC
DataSource and a Hibernate SessionFactory on top of it:

<beans>

<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
<property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>
<property name="username" value="sa"/>
<property name="password" value=""/>

</bean>

<bean id="mySessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<property name="dataSource" ref="myDataSource"/>
<property name="mappingResources">
<list>
<value>product.hbm.xml</value>

</list>
</property>
<property name="hibernateProperties">
<value>
hibernate.dialect=org.hibernate.dialect.HSQLDialect

</value>
</property>

</bean>

</beans>

Spring Framework

3.1 Reference Documentation 400

http://www.hibernate.org/

Switching from a local Jakarta Commons DBCP BasicDataSource to a JNDI-located DataSource
(usually managed by an application server) is just a matter of configuration:

<beans>

<jee:jndi-lookup id="myDataSource" jndi-name="java:comp/env/jdbc/myds"/>

</beans>

You can also access a JNDI-located SessionFactory, using Spring's JndiObjectFactoryBean /
<jee:jndi-lookup> to retrieve and expose it. However, that is typically not common outside of an
EJB context.

Implementing DAOs based on plain Hibernate 3 API

Hibernate 3 has a feature called contextual sessions, wherein Hibernate itself manages one current
Session per transaction. This is roughly equivalent to Spring's synchronization of one Hibernate
Session per transaction. A corresponding DAO implementation resembles the following example,
based on the plain Hibernate API:

public class ProductDaoImpl implements ProductDao {

private SessionFactory sessionFactory;

public void setSessionFactory(SessionFactory sessionFactory) {
this.sessionFactory = sessionFactory;

}

public Collection loadProductsByCategory(String category) {
return this.sessionFactory.getCurrentSession()

.createQuery("from test.Product product where product.category=?")

.setParameter(0, category)

.list();
}

}

This style is similar to that of the Hibernate reference documentation and examples, except for holding
the SessionFactory in an instance variable. We strongly recommend such an instance-based setup
over the old-school static HibernateUtil class from Hibernate's CaveatEmptor sample
application. (In general, do not keep any resources in static variables unless absolutely necessary.)

The above DAO follows the dependency injection pattern: it fits nicely into a Spring IoC container, just
as it would if coded against Spring's HibernateTemplate. Of course, such a DAO can also be set up
in plain Java (for example, in unit tests). Simply instantiate it and call setSessionFactory(..)
with the desired factory reference. As a Spring bean definition, the DAO would resemble the following:

<beans>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="sessionFactory" ref="mySessionFactory"/>

</bean>

</beans>

Spring Framework

3.1 Reference Documentation 401

The main advantage of this DAO style is that it depends on Hibernate API only; no import of any Spring
class is required. This is of course appealing from a non-invasiveness perspective, and will no doubt feel
more natural to Hibernate developers.

However, the DAO throws plain HibernateException (which is unchecked, so does not have to be
declared or caught), which means that callers can only treat exceptions as generally fatal - unless they
want to depend on Hibernate's own exception hierarchy. Catching specific causes such as an optimistic
locking failure is not possible without tying the caller to the implementation strategy. This trade off might
be acceptable to applications that are strongly Hibernate-based and/or do not need any special exception
treatment.

Fortunately, Spring's LocalSessionFactoryBean supports Hibernate's
SessionFactory.getCurrentSession() method for any Spring transaction strategy, returning
the current Spring-managed transactional Session even with HibernateTransactionManager.
Of course, the standard behavior of that method remains the return of the current Session associated
with the ongoing JTA transaction, if any. This behavior applies regardless of whether you are using
Spring's JtaTransactionManager, EJB container managed transactions (CMTs), or JTA.

In summary: you can implement DAOs based on the plain Hibernate 3 API, while still being able to
participate in Spring-managed transactions.

Declarative transaction demarcation

We recommend that you use Spring's declarative transaction support, which enables you to replace
explicit transaction demarcation API calls in your Java code with an AOP transaction interceptor. This
transaction interceptor can be configured in a Spring container using either Java annotations or XML.This
declarative transaction capability allows you to keep business services free of repetitive transaction
demarcation code and to focus on adding business logic, which is the real value of your application.

Note

Prior to continuing, you are strongly encouraged to read Section 11.5, “Declarative
transaction management” if you have not done so.

Furthermore, transaction semantics like propagation behavior and isolation level can be changed in a
configuration file and do not affect the business service implementations.

The following example shows how you can configure an AOP transaction interceptor, using XML, for a
simple service class:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

Spring Framework

3.1 Reference Documentation 402

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<!-- SessionFactory, DataSource, etc. omitted -->

<bean id="transactionManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

<aop:config>
<aop:pointcut id="productServiceMethods"

expression="execution(* product.ProductService.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>

</aop:config>

<tx:advice id="txAdvice" transaction-manager="myTxManager">
<tx:attributes>
<tx:method name="increasePrice*" propagation="REQUIRED"/>
<tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
<tx:method name="*" propagation="SUPPORTS" read-only="true"/>

</tx:attributes>
</tx:advice>

<bean id="myProductService" class="product.SimpleProductService">
<property name="productDao" ref="myProductDao"/>

</bean>

</beans>

This is the service class that is advised:

public class ProductServiceImpl implements ProductService {

private ProductDao productDao;

public void setProductDao(ProductDao productDao) {
this.productDao = productDao;

}

// notice the absence of transaction demarcation code in this method
// Spring's declarative transaction infrastructure will be demarcating
// transactions on your behalf
public void increasePriceOfAllProductsInCategory(final String category) {

List productsToChange = this.productDao.loadProductsByCategory(category);
// ...

}
}

We also show an attribute-support based configuration, in the following example. You annotate the
service layer with @Transactional annotations and instruct the Spring container to find these annotations
and provide transactional semantics for these annotated methods.

public class ProductServiceImpl implements ProductService {

private ProductDao productDao;

public void setProductDao(ProductDao productDao) {
this.productDao = productDao;

}

Spring Framework

3.1 Reference Documentation 403

@Transactional
public void increasePriceOfAllProductsInCategory(final String category) {

List productsToChange = this.productDao.loadProductsByCategory(category);
// ...

}

@Transactional(readOnly = true)
public List<Product> findAllProducts() {

return this.productDao.findAllProducts();
}

}

As you can see from the following configuration example, the configuration is much simplified,
compared to the XML example above, while still providing the same functionality driven by the
annotations in the service layer code. All you need to provide is the TransactionManager implementation
and a "<tx:annotation-driven/>" entry.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<!-- SessionFactory, DataSource, etc. omitted -->

<bean id="transactionManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

<tx:annotation-driven/>

<bean id="myProductService" class="product.SimpleProductService">
<property name="productDao" ref="myProductDao"/>

</bean>

</beans>

Programmatic transaction demarcation

You can demarcate transactions in a higher level of the application, on top of such lower-level data access
services spanning any number of operations. Nor do restrictions exist on the implementation of the
surrounding business service; it just needs a Spring PlatformTransactionManager. Again, the
latter can come from anywhere, but preferably as a bean reference through a
setTransactionManager(..) method, just as the productDAO should be set by a
setProductDao(..) method. The following snippets show a transaction manager and a business
service definition in a Spring application context, and an example for a business method implementation:

<beans>

Spring Framework

3.1 Reference Documentation 404

<bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">
<property name="sessionFactory" ref="mySessionFactory"/>

</bean>

<bean id="myProductService" class="product.ProductServiceImpl">
<property name="transactionManager" ref="myTxManager"/>
<property name="productDao" ref="myProductDao"/>

</bean>

</beans>

public class ProductServiceImpl implements ProductService {

private TransactionTemplate transactionTemplate;
private ProductDao productDao;

public void setTransactionManager(PlatformTransactionManager transactionManager) {
this.transactionTemplate = new TransactionTemplate(transactionManager);

}

public void setProductDao(ProductDao productDao) {
this.productDao = productDao;

}

public void increasePriceOfAllProductsInCategory(final String category) {
this.transactionTemplate.execute(new TransactionCallbackWithoutResult() {

public void doInTransactionWithoutResult(TransactionStatus status) {
List productsToChange = this.productDao.loadProductsByCategory(category);
// do the price increase...

}
}

);
}

}

Spring's TransactionInterceptor allows any checked application exception to be thrown with the
callback code, while TransactionTemplate is restricted to unchecked exceptions within the
callback. TransactionTemplate triggers a rollback in case of an unchecked application exception,
or if the transaction is marked rollback-only by the application (via TransactionStatus).
TransactionInterceptor behaves the same way by default but allows configurable rollback
policies per method.

Transaction management strategies

Both TransactionTemplate and TransactionInterceptor delegate the actual transaction
handling to a PlatformTransactionManager instance, which can be a
HibernateTransactionManager (for a single Hibernate SessionFactory, using a
ThreadLocal Session under the hood) or a JtaTransactionManager (delegating to the JTA
subsystem of the container) for Hibernate applications. You can even use a custom
PlatformTransactionManager implementation. Switching from native Hibernate transaction
management to JTA, such as when facing distributed transaction requirements for certain deployments of
your application, is just a matter of configuration. Simply replace the Hibernate transaction manager with
Spring's JTA transaction implementation. Both transaction demarcation and data access code will work
without changes, because they just use the generic transaction management APIs.

Spring Framework

3.1 Reference Documentation 405

For distributed transactions across multiple Hibernate session factories, simply combine
JtaTransactionManager as a transaction strategy with multiple LocalSessionFactoryBean
definitions. Each DAO then gets one specific SessionFactory reference passed into its
corresponding bean property. If all underlying JDBC data sources are transactional container ones, a
business service can demarcate transactions across any number of DAOs and any number of session
factories without special regard, as long as it is using JtaTransactionManager as the strategy.

<beans>

<jee:jndi-lookup id="dataSource1" jndi-name="java:comp/env/jdbc/myds1"/>

<jee:jndi-lookup id="dataSource2" jndi-name="java:comp/env/jdbc/myds2"/>

<bean id="mySessionFactory1"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

<property name="dataSource" ref="myDataSource1"/>
<property name="mappingResources">
<list>
<value>product.hbm.xml</value>

</list>
</property>
<property name="hibernateProperties">
<value>
hibernate.dialect=org.hibernate.dialect.MySQLDialect
hibernate.show_sql=true

</value>
</property>

</bean>

<bean id="mySessionFactory2"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

<property name="dataSource" ref="myDataSource2"/>
<property name="mappingResources">
<list>
<value>inventory.hbm.xml</value>

</list>
</property>
<property name="hibernateProperties">
<value>
hibernate.dialect=org.hibernate.dialect.OracleDialect

</value>
</property>

</bean>

<bean id="myTxManager" class="org.springframework.transaction.jta.JtaTransactionManager"/>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="sessionFactory" ref="mySessionFactory1"/>

</bean>

<bean id="myInventoryDao" class="product.InventoryDaoImpl">
<property name="sessionFactory" ref="mySessionFactory2"/>

</bean>

<bean id="myProductService" class="product.ProductServiceImpl">
<property name="productDao" ref="myProductDao"/>
<property name="inventoryDao" ref="myInventoryDao"/>

</bean>

<aop:config>
<aop:pointcut id="productServiceMethods"

expression="execution(* product.ProductService.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>

</aop:config>

Spring Framework

3.1 Reference Documentation 406

<tx:advice id="txAdvice" transaction-manager="myTxManager">
<tx:attributes>
<tx:method name="increasePrice*" propagation="REQUIRED"/>
<tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
<tx:method name="*" propagation="SUPPORTS" read-only="true"/>

</tx:attributes>
</tx:advice>

</beans>

Both HibernateTransactionManager and JtaTransactionManager allow for proper
JVM-level cache handling with Hibernate, without container-specific transaction manager lookup or a
JCA connector (if you are not using EJB to initiate transactions).

HibernateTransactionManager can export the Hibernate JDBC Connection to plain JDBC
access code, for a specific DataSource. This capability allows for high-level transaction demarcation
with mixed Hibernate and JDBC data access completely without JTA, if you are accessing only one
database. HibernateTransactionManager automatically exposes the Hibernate transaction as a
JDBC transaction if you have set up the passed-in SessionFactory with a DataSource through the
dataSource property of the LocalSessionFactoryBean class. Alternatively, you can specify
explicitly the DataSource for which the transactions are supposed to be exposed through the
dataSource property of the HibernateTransactionManager class.

Comparing container-managed and locally defined resources

You can switch between a container-managed JNDI SessionFactory and a locally defined one,
without having to change a single line of application code. Whether to keep resource definitions in the
container or locally within the application is mainly a matter of the transaction strategy that you use.
Compared to a Spring-defined local SessionFactory, a manually registered JNDI
SessionFactory does not provide any benefits. Deploying a SessionFactory through
Hibernate's JCA connector provides the added value of participating in the Java EE server's management
infrastructure, but does not add actual value beyond that.

Spring's transaction support is not bound to a container. Configured with any strategy other than JTA,
transaction support also works in a stand-alone or test environment. Especially in the typical case of
single-database transactions, Spring's single-resource local transaction support is a lightweight and
powerful alternative to JTA. When you use local EJB stateless session beans to drive transactions, you
depend both on an EJB container and JTA, even if you access only a single database, and only use
stateless session beans to provide declarative transactions through container-managed transactions. Also,
direct use of JTA programmatically requires a Java EE environment as well. JTA does not involve only
container dependencies in terms of JTA itself and of JNDI DataSource instances. For non-Spring,
JTA-driven Hibernate transactions, you have to use the Hibernate JCA connector, or extra Hibernate
transaction code with the TransactionManagerLookup configured for proper JVM-level caching.

Spring-driven transactions can work as well with a locally defined Hibernate SessionFactory as they
do with a local JDBC DataSource if they are accessing a single database. Thus you only have to use
Spring's JTA transaction strategy when you have distributed transaction requirements. A JCA connector

Spring Framework

3.1 Reference Documentation 407

requires container-specific deployment steps, and obviously JCA support in the first place. This
configuration requires more work than deploying a simple web application with local resource definitions
and Spring-driven transactions. Also, you often need the Enterprise Edition of your container if you are
using, for example, WebLogic Express, which does not provide JCA. A Spring application with local
resources and transactions spanning one single database works in any Java EE web container (without
JTA, JCA, or EJB) such as Tomcat, Resin, or even plain Jetty. Additionally, you can easily reuse such a
middle tier in desktop applications or test suites.

All things considered, if you do not use EJBs, stick with local SessionFactory setup and Spring's
HibernateTransactionManager or JtaTransactionManager. You get all of the benefits,
including proper transactional JVM-level caching and distributed transactions, without the inconvenience
of container deployment. JNDI registration of a Hibernate SessionFactory through the JCA
connector only adds value when used in conjunction with EJBs.

Spurious application server warnings with Hibernate

In some JTA environments with very strict XADataSource implementations -- currently only some
WebLogic Server and WebSphere versions -- when Hibernate is configured without regard to the JTA
PlatformTransactionManager object for that environment, it is possible for spurious warning or
exceptions to show up in the application server log. These warnings or exceptions indicate that the
connection being accessed is no longer valid, or JDBC access is no longer valid, possibly because the
transaction is no longer active. As an example, here is an actual exception from WebLogic:

java.sql.SQLException: The transaction is no longer active - status: 'Committed'.
No further JDBC access is allowed within this transaction.

You resolve this warning by simply making Hibernate aware of the JTA
PlatformTransactionManager instance, to which it will synchronize (along with Spring). You
have two options for doing this:

• If in your application context you are already directly obtaining the JTA
PlatformTransactionManager object (presumably from JNDI through
JndiObjectFactoryBean/<jee:jndi-lookup>) and feeding it, for example, to Spring's
JtaTransactionManager, then the easiest way is to specify a reference to the bean defining this
JTA PlatformTransactionManager instance as the value of the jtaTransactionManager
property for LocalSessionFactoryBean. Spring then makes the object available to Hibernate.

• More likely you do not already have the JTA PlatformTransactionManager instance, because
Spring's JtaTransactionManager can find it itself. Thus you need to configure Hibernate to look
up JTA PlatformTransactionManager directly. You do this by configuring an application
server- specific TransactionManagerLookup class in the Hibernate configuration, as described
in the Hibernate manual.

The remainder of this section describes the sequence of events that occur with and without Hibernate's
awareness of the JTA PlatformTransactionManager.

Spring Framework

3.1 Reference Documentation 408

When Hibernate is not configured with any awareness of the JTA PlatformTransactionManager,
the following events occur when a JTA transaction commits:

1. The JTA transaction commits.

2. Spring's JtaTransactionManager is synchronized to the JTA transaction, so it is called back
through an afterCompletion callback by the JTA transaction manager.

3. Among other activities, this synchronization can trigger a callback by Spring to Hibernate, through
Hibernate's afterTransactionCompletion callback (used to clear the Hibernate cache),
followed by an explicit close() call on the Hibernate Session, which causes Hibernate to attempt to
close() the JDBC Connection.

4. In some environments, this Connection.close() call then triggers the warning or error, as the
application server no longer considers the Connection usable at all, because the transaction has
already been committed.

When Hibernate is configured with awareness of the JTA PlatformTransactionManager, the
following events occur when a JTA transaction commits:

1. the JTA transaction is ready to commit.

2. Spring's JtaTransactionManager is synchronized to the JTA transaction, so the transaction is
called back through a beforeCompletion callback by the JTA transaction manager.

3. Spring is aware that Hibernate itself is synchronized to the JTA transaction, and behaves differently
than in the previous scenario. Assuming the Hibernate Session needs to be closed at all, Spring will
close it now.

4. The JTA transaction commits.

5. Hibernate is synchronized to the JTA transaction, so the transaction is called back through an
afterCompletion callback by the JTA transaction manager, and can properly clear its cache.

14.4 JDO

Spring supports the standard JDO 2.0 and 2.1 APIs as data access strategy, following the same style as the
Hibernate support. The corresponding integration classes reside in the
org.springframework.orm.jdo package.

PersistenceManagerFactory setup

Spring provides a LocalPersistenceManagerFactoryBean class that allows you to define a
local JDO PersistenceManagerFactory within a Spring application context:

Spring Framework

3.1 Reference Documentation 409

<beans>

<bean id="myPmf" class="org.springframework.orm.jdo.LocalPersistenceManagerFactoryBean">
<property name="configLocation" value="classpath:kodo.properties"/>

</bean>

</beans>

Alternatively, you can set up a PersistenceManagerFactory through direct instantiation of a
PersistenceManagerFactory implementation class. A JDO PersistenceManagerFactory
implementation class follows the JavaBeans pattern, just like a JDBC DataSource implementation
class, which is a natural fit for a configuration that uses Spring. This setup style usually supports a
Spring-defined JDBC DataSource, passed into the connectionFactory property. For example,
for the open source JDO implementation DataNucleus (formerly JPOX) (http://www.datanucleus.org/),
this is the XML configuration of the PersistenceManagerFactory implementation:

<beans>

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>

<bean id="myPmf" class="org.datanucleus.jdo.JDOPersistenceManagerFactory" destroy-method="close">
<property name="connectionFactory" ref="dataSource"/>
<property name="nontransactionalRead" value="true"/>

</bean>

</beans>

You can also set up JDO PersistenceManagerFactory in the JNDI environment of a Java EE
application server, usually through the JCA connector provided by the particular JDO implementation.
Spring's standard JndiObjectFactoryBean / <jee:jndi-lookup> can be used to retrieve
and expose such a PersistenceManagerFactory. However, outside an EJB context, no real
benefit exists in holding the PersistenceManagerFactory in JNDI: only choose such a setup for a
good reason. See the section called “Comparing container-managed and locally defined resources” for a
discussion; the arguments there apply to JDO as well.

Implementing DAOs based on the plain JDO API

DAOs can also be written directly against plain JDO API, without any Spring dependencies, by using an
injected PersistenceManagerFactory. The following is an example of a corresponding DAO
implementation:

public class ProductDaoImpl implements ProductDao {

private PersistenceManagerFactory persistenceManagerFactory;

public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) {
this.persistenceManagerFactory = pmf;

}

Spring Framework

3.1 Reference Documentation 410

http://www.datanucleus.org/

public Collection loadProductsByCategory(String category) {
PersistenceManager pm = this.persistenceManagerFactory.getPersistenceManager();
try {

Query query = pm.newQuery(Product.class, "category = pCategory");
query.declareParameters("String pCategory");
return query.execute(category);

}
finally {

pm.close();
}

}
}

Because the above DAO follows the dependency injection pattern, it fits nicely into a Spring container,
just as it would if coded against Spring's JdoTemplate:

<beans>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="persistenceManagerFactory" ref="myPmf"/>

</bean>

</beans>

The main problem with such DAOs is that they always get a new PersistenceManager from the
factory. To access a Spring-managed transactional PersistenceManager, define a
TransactionAwarePersistenceManagerFactoryProxy (as included in Spring) in front of
your target PersistenceManagerFactory, then passing a reference to that proxy into your DAOs
as in the following example:

<beans>

<bean id="myPmfProxy"
class="org.springframework.orm.jdo.TransactionAwarePersistenceManagerFactoryProxy">

<property name="targetPersistenceManagerFactory" ref="myPmf"/>
</bean>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="persistenceManagerFactory" ref="myPmfProxy"/>

</bean>

</beans>

Your data access code will receive a transactional PersistenceManager (if any) from the
PersistenceManagerFactory.getPersistenceManager() method that it calls. The latter
method call goes through the proxy, which first checks for a current transactional
PersistenceManager before getting a new one from the factory. Any close() calls on the
PersistenceManager are ignored in case of a transactional PersistenceManager.

If your data access code always runs within an active transaction (or at least within active transaction
synchronization), it is safe to omit the PersistenceManager.close() call and thus the entire
finally block, which you might do to keep your DAO implementations concise:

public class ProductDaoImpl implements ProductDao {

private PersistenceManagerFactory persistenceManagerFactory;

Spring Framework

3.1 Reference Documentation 411

public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) {
this.persistenceManagerFactory = pmf;

}

public Collection loadProductsByCategory(String category) {
PersistenceManager pm = this.persistenceManagerFactory.getPersistenceManager();
Query query = pm.newQuery(Product.class, "category = pCategory");
query.declareParameters("String pCategory");
return query.execute(category);

}
}

With such DAOs that rely on active transactions, it is recommended that you enforce active transactions
through turning off TransactionAwarePersistenceManagerFactoryProxy's
allowCreate flag:

<beans>

<bean id="myPmfProxy"
class="org.springframework.orm.jdo.TransactionAwarePersistenceManagerFactoryProxy">

<property name="targetPersistenceManagerFactory" ref="myPmf"/>
<property name="allowCreate" value="false"/>

</bean>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="persistenceManagerFactory" ref="myPmfProxy"/>

</bean>

</beans>

The main advantage of this DAO style is that it depends on JDO API only; no import of any Spring class
is required. This is of course appealing from a non-invasiveness perspective, and might feel more natural
to JDO developers.

However, the DAO throws plain JDOException (which is unchecked, so does not have to be declared
or caught), which means that callers can only treat exceptions as fatal, unless you want to depend on
JDO's own exception structure. Catching specific causes such as an optimistic locking failure is not
possible without tying the caller to the implementation strategy. This trade off might be acceptable to
applications that are strongly JDO-based and/or do not need any special exception treatment.

In summary, you can DAOs based on the plain JDO API, and they can still participate in Spring-managed
transactions. This strategy might appeal to you if you are already familiar with JDO. However, such
DAOs throw plain JDOException, and you would have to convert explicitly to Spring's
DataAccessException (if desired).

Transaction management

Note

You are strongly encouraged to read Section 11.5, “Declarative transaction management” if
you have not done so, to get a more detailed coverage of Spring's declarative transaction
support.

Spring Framework

3.1 Reference Documentation 412

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example:

<?xml version="1.0" encoding="UTF-8"?>
<beans

xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<bean id="myTxManager" class="org.springframework.orm.jdo.JdoTransactionManager">
<property name="persistenceManagerFactory" ref="myPmf"/>

</bean>

<bean id="myProductService" class="product.ProductServiceImpl">
<property name="productDao" ref="myProductDao"/>

</bean>

<tx:advice id="txAdvice" transaction-manager="txManager">
<tx:attributes>
<tx:method name="increasePrice*" propagation="REQUIRED"/>
<tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
<tx:method name="*" propagation="SUPPORTS" read-only="true"/>

</tx:attributes>
</tx:advice>

<aop:config>
<aop:pointcut id="productServiceMethods"

expression="execution(* product.ProductService.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>

</aop:config>

</beans>

JDO requires an active transaction to modify a persistent object. The non-transactional flush concept does
not exist in JDO, in contrast to Hibernate. For this reason, you need to set up the chosen JDO
implementation for a specific environment. Specifically, you need to set it up explicitly for JTA
synchronization, to detect an active JTA transaction itself. This is not necessary for local transactions as
performed by Spring's JdoTransactionManager, but it is necessary to participate in JTA
transactions, whether driven by Spring's JtaTransactionManager or by EJB CMT and plain JTA.

JdoTransactionManager is capable of exposing a JDO transaction to JDBC access code that
accesses the same JDBC DataSource, provided that the registered JdoDialect supports retrieval of
the underlying JDBC Connection. This is the case for JDBC-based JDO 2.0 implementations by
default.

JdoDialect

As an advanced feature, both JdoTemplate and JdoTransactionManager support a custom

Spring Framework

3.1 Reference Documentation 413

JdoDialect that can be passed into the jdoDialect bean property. In this scenario, the DAOs will
not receive a PersistenceManagerFactory reference but rather a full JdoTemplate instance
(for example, passed into the jdoTemplate property of JdoDaoSupport). Using a JdoDialect
implementation, you can enable advanced features supported by Spring, usually in a vendor-specific
manner:

• Applying specific transaction semantics such as custom isolation level or transaction timeout

• Retrieving the transactional JDBC Connection for exposure to JDBC-based DAOs

• Applying query timeouts, which are automatically calculated from Spring-managed transaction
timeouts

• Eagerly flushing a PersistenceManager, to make transactional changes visible to JDBC-based
data access code

• Advanced translation of JDOExceptions to Spring DataAccessExceptions

See the JdoDialect Javadoc for more details on its operations and how to use them within Spring's
JDO support.

14.5 JPA

The Spring JPA, available under the org.springframework.orm.jpa package, offers
comprehensive support for the Java Persistence API in a similar manner to the integration with Hibernate
or JDO, while being aware of the underlying implementation in order to provide additional features.

Three options for JPA setup in a Spring environment

The Spring JPA support offers three ways of setting up the JPA EntityManagerFactory that will be
used by the application to obtain an entity manager.

LocalEntityManagerFactoryBean

Note

Only use this option in simple deployment environments such as stand-alone applications and
integration tests.

The LocalEntityManagerFactoryBean creates an EntityManagerFactory suitable for
simple deployment environments where the application uses only JPA for data access. The factory bean
uses the JPA PersistenceProvider autodetection mechanism (according to JPA's Java SE
bootstrapping) and, in most cases, requires you to specify only the persistence unit name:

<beans>

Spring Framework

3.1 Reference Documentation 414

http://java.sun.com/developer/technicalArticles/J2EE/jpa/index.html

<bean id="myEmf" class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
<property name="persistenceUnitName" value="myPersistenceUnit"/>

</bean>

</beans>

This form of JPA deployment is the simplest and the most limited. You cannot refer to an existing JDBC
DataSource bean definition and no support for global transactions exists. Furthermore, weaving
(byte-code transformation) of persistent classes is provider-specific, often requiring a specific JVM agent
to specified on startup. This option is sufficient only for stand-alone applications and test environments,
for which the JPA specification is designed.

Obtaining an EntityManagerFactory from JNDI

Note

Use this option when deploying to a Java EE 5 server. Check your server's documentation on
how to deploy a custom JPA provider into your server, allowing for a different provider than
the server's default.

Obtaining an EntityManagerFactory from JNDI (for example in a Java EE 5 environment), is
simply a matter of changing the XML configuration:

<beans>

<jee:jndi-lookup id="myEmf" jndi-name="persistence/myPersistenceUnit"/>

</beans>

This action assumes standard Java EE 5 bootstrapping: the Java EE server autodetects persistence units
(in effect, META-INF/persistence.xml files in application jars) and persistence-unit-ref
entries in the Java EE deployment descriptor (for example, web.xml) and defines environment naming
context locations for those persistence units.

In such a scenario, the entire persistence unit deployment, including the weaving (byte-code
transformation) of persistent classes, is up to the Java EE server. The JDBC DataSource is defined
through a JNDI location in the META-INF/persistence.xml file; EntityManager transactions are
integrated with the server's JTA subsystem. Spring merely uses the obtained
EntityManagerFactory, passing it on to application objects through dependency injection, and
managing transactions for the persistence unit, typically through JtaTransactionManager.

If multiple persistence units are used in the same application, the bean names of such JNDI-retrieved
persistence units should match the persistence unit names that the application uses to refer to them, for
example, in @PersistenceUnit and @PersistenceContext annotations.

LocalContainerEntityManagerFactoryBean

Spring Framework

3.1 Reference Documentation 415

Note

Use this option for full JPA capabilities in a Spring-based application environment. This
includes web containers such as Tomcat as well as stand-alone applications and integration
tests with sophisticated persistence requirements.

The LocalContainerEntityManagerFactoryBean gives full control over
EntityManagerFactory configuration and is appropriate for environments where fine-grained
customization is required. The LocalContainerEntityManagerFactoryBean creates a
PersistenceUnitInfo instance based on the persistence.xml file, the supplied
dataSourceLookup strategy, and the specified loadTimeWeaver. It is thus possible to work with
custom data sources outside of JNDI and to control the weaving process. The following example shows a
typical bean definition for a LocalContainerEntityManagerFactoryBean:

<beans>

<bean id="myEmf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
<property name="dataSource" ref="someDataSource"/>
<property name="loadTimeWeaver">

<bean class="org.springframework.instrument.classloading.InstrumentationLoadTimeWeaver"/>
</property>
</bean>

</beans>

The following example shows a typical persistence.xml file:

<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="myUnit" transaction-type="RESOURCE_LOCAL">
<mapping-file>META-INF/orm.xml</mapping-file>
<exclude-unlisted-classes/>

</persistence-unit>

</persistence>

Note

The exclude-unlisted-classes element always indicates that no scanning for
annotated entity classes is supposed to occur, in order to support the
<exclude-unlisted-classes/> shortcut. This is in line with the JPA specification,
which suggests that shortcut, but unfortunately is in conflict with the JPA XSD, which
implies false for that shortcut. Consequently, <exclude-unlisted-classes>
false </exclude-unlisted-classes/> is not supported. Simply omit the
exclude-unlisted-classes element if you want entity class scanning to occur.

Using the LocalContainerEntityManagerFactoryBean is the most powerful JPA setup
option, allowing for flexible local configuration within the application. It supports links to an existing
JDBC DataSource, supports both local and global transactions, and so on. However, it also imposes

Spring Framework

3.1 Reference Documentation 416

requirements on the runtime environment, such as the availability of a weaving-capable class loader if the
persistence provider demands byte-code transformation.

This option may conflict with the built-in JPA capabilities of a Java EE 5 server. In a full Java EE 5
environment, consider obtaining your EntityManagerFactory from JNDI. Alternatively, specify a
custom persistenceXmlLocation on your
LocalContainerEntityManagerFactoryBean definition, for example,
META-INF/my-persistence.xml, and only include a descriptor with that name in your application jar
files. Because the Java EE 5 server only looks for default META-INF/persistence.xml files, it
ignores such custom persistence units and hence avoid conflicts with a Spring-driven JPA setup upfront.
(This applies to Resin 3.1, for example.)

When is load-time weaving required?

Not all JPA providers require a JVM agent ; Hibernate is an example of one that does not. If your
provider does not require an agent or you have other alternatives, such as applying enhancements at
build time through a custom compiler or an ant task, the load-time weaver should not be used.

The LoadTimeWeaver interface is a Spring-provided class that allows JPA ClassTransformer
instances to be plugged in a specific manner, depending whether the environment is a web container or
application server. Hooking ClassTransformers through a Java 5 agent typically is not efficient.
The agents work against the entire virtual machine and inspect every class that is loaded, which is usually
undesirable in a production server environment.

Spring provides a number of LoadTimeWeaver implementations for various environments, allowing
ClassTransformer instances to be applied only per class loader and not per VM.

Refer to the section called “Spring configuration” in the AOP chapter for more insight regarding the
LoadTimeWeaver implementations and their setup, either generic or customized to various platforms
(such as Tomcat, WebLogic, OC4J, GlassFish, Resin and JBoss).

As described in the aforementioned section, you can configure a context-wide LoadTimeWeaver using
the context:load-time-weaver configuration element. (This has been available since Spring 2.5.)
Such a global weaver is picked up by all JPA LocalContainerEntityManagerFactoryBeans
automatically. This is the preferred way of setting up a load-time weaver, delivering autodetection of the
platform (WebLogic, OC4J, GlassFish, Tomcat, Resin, JBoss or VM agent) and automatic propagation of
the weaver to all weaver-aware beans:

<context:load-time-weaver/>
<bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

...
</bean>

However, if needed, one can manually specify a dedicated weaver through the loadTimeWeaver
property:

<bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

Spring Framework

3.1 Reference Documentation 417

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html

<property name="loadTimeWeaver">
<bean class="org.springframework.instrument.classloading.ReflectiveLoadTimeWeaver"/>

</property>
</bean>

No matter how the LTW is configured, using this technique, JPA applications relying on instrumentation
can run in the target platform (ex: Tomcat) without needing an agent. This is important especially when
the hosting applications rely on different JPA implementations because the JPA transformers are applied
only at class loader level and thus are isolated from each other.

Dealing with multiple persistence units

For applications that rely on multiple persistence units locations, stored in various JARS in the classpath,
for example, Spring offers the PersistenceUnitManager to act as a central repository and to avoid
the persistence units discovery process, which can be expensive. The default implementation allows
multiple locations to be specified that are parsed and later retrieved through the persistence unit name.
(By default, the classpath is searched for META-INF/persistence.xml files.)

<bean id="pum" class="org.springframework.orm.jpa.persistenceunit.DefaultPersistenceUnitManager">
<property name="persistenceXmlLocations">

<list>
<value>org/springframework/orm/jpa/domain/persistence-multi.xml</value>
<value>classpath:/my/package/**/custom-persistence.xml</value>
<value>classpath*:META-INF/persistence.xml</value>
</list>

</property>
<property name="dataSources">
<map>
<entry key="localDataSource" value-ref="local-db"/>
<entry key="remoteDataSource" value-ref="remote-db"/>

</map>
</property>
<!-- if no datasource is specified, use this one -->
<property name="defaultDataSource" ref="remoteDataSource"/>

</bean>

<bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitManager" ref="pum"/>
<property name="persistenceUnitName" value="myCustomUnit"/>

</bean>

The default implementation allows customization of the PersistenceUnitInfo instances, before
they are fed to the JPA provider, declaratively through its properties, which affect all hosted units, or
programmatically, through the PersistenceUnitPostProcessor, which allows persistence unit
selection. If no PersistenceUnitManager is specified, one is created and used internally by
LocalContainerEntityManagerFactoryBean.

Implementing DAOs based on plain JPA

Note

Although EntityManagerFactory instances are thread-safe, EntityManager
instances are not. The injected JPA EntityManager behaves like an EntityManager

Spring Framework

3.1 Reference Documentation 418

fetched from an application server's JNDI environment, as defined by the JPA specification.
It delegates all calls to the current transactional EntityManager, if any; otherwise, it falls
back to a newly created EntityManager per operation, in effect making its usage
thread-safe.

It is possible to write code against the plain JPA without any Spring dependencies, by using an injected
EntityManagerFactory or EntityManager. Spring can understand @PersistenceUnit and
@PersistenceContext annotations both at field and method level if a
PersistenceAnnotationBeanPostProcessor is enabled. A plain JPA DAO implementation
using the @PersistenceUnit annotation might look like this:

public class ProductDaoImpl implements ProductDao {

private EntityManagerFactory emf;

@PersistenceUnit
public void setEntityManagerFactory(EntityManagerFactory emf) {

this.emf = emf;
}

public Collection loadProductsByCategory(String category) {
EntityManager em = this.emf.createEntityManager();
try {

Query query = em.createQuery("from Product as p where p.category = ?1");
query.setParameter(1, category);
return query.getResultList();

}
finally {

if (em != null) {
em.close();

}
}

}
}

The DAO above has no dependency on Spring and still fits nicely into a Spring application context.
Moreover, the DAO takes advantage of annotations to require the injection of the default
EntityManagerFactory:

<beans>

<!-- bean post-processor for JPA annotations -->
<bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/>

<bean id="myProductDao" class="product.ProductDaoImpl"/>

</beans>

As an alternative to defining a PersistenceAnnotationBeanPostProcessor explicitly,
consider using the Spring context:annotation-config XML element in your application context
configuration. Doing so automatically registers all Spring standard post-processors for annotation-based
configuration, including CommonAnnotationBeanPostProcessor and so on.

<beans>

<!-- post-processors for all standard config annotations -->

Spring Framework

3.1 Reference Documentation 419

<context:annotation-config/>

<bean id="myProductDao" class="product.ProductDaoImpl"/>

</beans>

The main problem with such a DAO is that it always creates a new EntityManager through the
factory. You can avoid this by requesting a transactional EntityManager (also called "shared
EntityManager" because it is a shared, thread-safe proxy for the actual transactional EntityManager) to be
injected instead of the factory:

public class ProductDaoImpl implements ProductDao {

@PersistenceContext
private EntityManager em;

public Collection loadProductsByCategory(String category) {
Query query = em.createQuery("from Product as p where p.category = :category");
query.setParameter("category", category);
return query.getResultList();

}
}

The @PersistenceContext annotation has an optional attribute type, which defaults to
PersistenceContextType.TRANSACTION. This default is what you need to receive a shared
EntityManager proxy. The alternative, PersistenceContextType.EXTENDED, is a completely
different affair: This results in a so-called extended EntityManager, which is not thread-safe and hence
must not be used in a concurrently accessed component such as a Spring-managed singleton bean.
Extended EntityManagers are only supposed to be used in stateful components that, for example, reside in
a session, with the lifecycle of the EntityManager not tied to a current transaction but rather being
completely up to the application.

Method- and field-level Injection

Annotations that indicate dependency injections (such as @PersistenceUnit and
@PersistenceContext) can be applied on field or methods inside a class, hence the
expressions method-level injection and field-level injection. Field-level annotations are concise and
easier to use while method-level allows for further processing of the injected dependency. In both
cases the member visibility (public, protected, private) does not matter.

What about class-level annotations?

On the Java EE 5 platform, they are used for dependency declaration and not for resource injection.

The injected EntityManager is Spring-managed (aware of the ongoing transaction). It is important to
note that even though the new DAO implementation uses method level injection of an EntityManager
instead of an EntityManagerFactory, no change is required in the application context XML due to
annotation usage.

The main advantage of this DAO style is that it only depends on Java Persistence API; no import of any

Spring Framework

3.1 Reference Documentation 420

Spring class is required. Moreover, as the JPA annotations are understood, the injections are applied
automatically by the Spring container. This is appealing from a non-invasiveness perspective, and might
feel more natural to JPA developers.

Transaction Management

Note

You are strongly encouraged to read Section 11.5, “Declarative transaction management” if
you have not done so, to get a more detailed coverage of Spring's declarative transaction
support.

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<bean id="myTxManager" class="org.springframework.orm.jpa.JpaTransactionManager">
<property name="entityManagerFactory" ref="myEmf"/>

</bean>

<bean id="myProductService" class="product.ProductServiceImpl">
<property name="productDao" ref="myProductDao"/>

</bean>

<aop:config>
<aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>

</aop:config>

<tx:advice id="txAdvice" transaction-manager="myTxManager">
<tx:attributes>
<tx:method name="increasePrice*" propagation="REQUIRED"/>
<tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
<tx:method name="*" propagation="SUPPORTS" read-only="true"/>

</tx:attributes>
</tx:advice>

</beans>

Spring JPA allows a configured JpaTransactionManager to expose a JPA transaction to JDBC
access code that accesses the same JDBC DataSource, provided that the registered JpaDialect
supports retrieval of the underlying JDBC Connection. Out of the box, Spring provides dialects for the
Toplink, Hibernate and OpenJPA JPA implementations. See the next section for details on the

Spring Framework

3.1 Reference Documentation 421

JpaDialect mechanism.

JpaDialect

As an advanced feature JpaTemplate, JpaTransactionManager and subclasses of
AbstractEntityManagerFactoryBean support a custom JpaDialect, to be passed into the
jpaDialect bean property. In such a scenario, the DAOs do not receive an EntityManagerFactory
reference but rather a full JpaTemplate instance (for example, passed into the jpaTemplate property
of JpaDaoSupport). A JpaDialect implementation can enable some advanced features supported
by Spring, usually in a vendor-specific manner:

• Applying specific transaction semantics such as custom isolation level or transaction timeout)

• Retrieving the transactional JDBC Connection for exposure to JDBC-based DAOs)

• Advanced translation of PersistenceExceptions to Spring DataAccessExceptions

This is particularly valuable for special transaction semantics and for advanced translation of exception.
The default implementation used (DefaultJpaDialect) does not provide any special capabilities and
if the above features are required, you have to specify the appropriate dialect.

See the JpaDialect Javadoc for more details of its operations and how they are used within Spring's
JPA support.

14.6 iBATIS SQL Maps

The iBATIS support in the Spring Framework much resembles the JDBC support in that it supports the
same template style programming, and as with JDBC and other ORM technologies, the iBATIS support
works with Spring's exception hierarchy and lets you enjoy Spring's IoC features.

Transaction management can be handled through Spring's standard facilities. No special transaction
strategies are necessary for iBATIS, because no special transactional resource involved other than a
JDBC Connection. Hence, Spring's standard JDBC DataSourceTransactionManager or
JtaTransactionManager are perfectly sufficient.

Note

Spring supports iBATIS 2.x. The iBATIS 1.x support classes are no longer provided.

Setting up the SqlMapClient

Using iBATIS SQL Maps involves creating SqlMap configuration files containing statements and result
maps. Spring takes care of loading those using the SqlMapClientFactoryBean. For the examples

Spring Framework

3.1 Reference Documentation 422

we will be using the following Account class:

public class Account {

private String name;
private String email;

public String getName() {
return this.name;

}

public void setName(String name) {
this.name = name;

}

public String getEmail() {
return this.email;

}

public void setEmail(String email) {
this.email = email;

}
}

To map this Account class with iBATIS 2.x we need to create the following SQL map Account.xml:

<sqlMap namespace="Account">

<resultMap id="result" class="examples.Account">
<result property="name" column="NAME" columnIndex="1"/>
<result property="email" column="EMAIL" columnIndex="2"/>

</resultMap>

<select id="getAccountByEmail" resultMap="result">
select ACCOUNT.NAME, ACCOUNT.EMAIL
from ACCOUNT
where ACCOUNT.EMAIL = #value#

</select>

<insert id="insertAccount">
insert into ACCOUNT (NAME, EMAIL) values (#name#, #email#)

</insert>

</sqlMap>

The configuration file for iBATIS 2 looks like this:

<sqlMapConfig>

<sqlMap resource="example/Account.xml"/>

</sqlMapConfig>

Remember that iBATIS loads resources from the class path, so be sure to add theAccount.xml file to
the class path.

We can use the SqlMapClientFactoryBean in the Spring container. Note that with iBATIS SQL
Maps 2.x, the JDBC DataSource is usually specified on the SqlMapClientFactoryBean, which
enables lazy loading. This is the configuration needed for these bean definitions:

<beans>

Spring Framework

3.1 Reference Documentation 423

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>

</bean>

<bean id="sqlMapClient" class="org.springframework.orm.ibatis.SqlMapClientFactoryBean">
<property name="configLocation" value="WEB-INF/sqlmap-config.xml"/>
<property name="dataSource" ref="dataSource"/>

</bean>

</beans>

Using SqlMapClientTemplate and SqlMapClientDaoSupport

The SqlMapClientDaoSupport class offers a supporting class similar to the
SqlMapDaoSupport. We extend it to implement our DAO:

public class SqlMapAccountDao extends SqlMapClientDaoSupport implements AccountDao {

public Account getAccount(String email) throws DataAccessException {
return (Account) getSqlMapClientTemplate().queryForObject("getAccountByEmail", email);

}

public void insertAccount(Account account) throws DataAccessException {
getSqlMapClientTemplate().update("insertAccount", account);

}
}

In the DAO, we use the pre-configured SqlMapClientTemplate to execute the queries, after setting
up the SqlMapAccountDao in the application context and wiring it with our SqlMapClient
instance:

<beans>

<bean id="accountDao" class="example.SqlMapAccountDao">
<property name="sqlMapClient" ref="sqlMapClient"/>

</bean>

</beans>

An SqlMapTemplate instance can also be created manually, passing in the SqlMapClient as
constructor argument. The SqlMapClientDaoSupport base class simply preinitializes a
SqlMapClientTemplate instance for us.

The SqlMapClientTemplate offers a generic execute method, taking a custom
SqlMapClientCallback implementation as argument. This can, for example, be used for batching:

public class SqlMapAccountDao extends SqlMapClientDaoSupport implements AccountDao {

public void insertAccount(Account account) throws DataAccessException {
getSqlMapClientTemplate().execute(new SqlMapClientCallback() {

public Object doInSqlMapClient(SqlMapExecutor executor) throws SQLException {
executor.startBatch();
executor.update("insertAccount", account);
executor.update("insertAddress", account.getAddress());

Spring Framework

3.1 Reference Documentation 424

executor.executeBatch();
}

});
}

}

In general, any combination of operations offered by the native SqlMapExecutor API can be used in
such a callback. Any thrown SQLException is converted automatically to Spring's generic
DataAccessException hierarchy.

Implementing DAOs based on plain iBATIS API

DAOs can also be written against plain iBATIS API, without any Spring dependencies, directly using an
injected SqlMapClient. The following example shows a corresponding DAO implementation:

public class SqlMapAccountDao implements AccountDao {

private SqlMapClient sqlMapClient;

public void setSqlMapClient(SqlMapClient sqlMapClient) {
this.sqlMapClient = sqlMapClient;

}

public Account getAccount(String email) {
try {

return (Account) this.sqlMapClient.queryForObject("getAccountByEmail", email);
}
catch (SQLException ex) {

throw new MyDaoException(ex);
}

}

public void insertAccount(Account account) throws DataAccessException {
try {

this.sqlMapClient.update("insertAccount", account);
}
catch (SQLException ex) {

throw new MyDaoException(ex);
}

}
}

In this scenario, you need to handle the SQLException thrown by the iBATIS API in a custom fashion,
usually by wrapping it in your own application-specific DAO exception. Wiring in the application context
would still look like it does in the example for the SqlMapClientDaoSupport, due to the fact that
the plain iBATIS-based DAO still follows the dependency injection pattern:

<beans>

<bean id="accountDao" class="example.SqlMapAccountDao">
<property name="sqlMapClient" ref="sqlMapClient"/>

</bean>

</beans>

Spring Framework

3.1 Reference Documentation 425

15. Marshalling XML using O/X Mappers

15.1 Introduction

In this chapter, we will describe Spring's Object/XML Mapping support. Object/XML Mapping, or O/X
mapping for short, is the act of converting an XML document to and from an object. This conversion
process is also known as XML Marshalling, or XML Serialization. This chapter uses these terms
interchangeably.

Within the field of O/X mapping, a marshaller is responsible for serializing an object (graph) to XML. In
similar fashion, an unmarshaller deserializes the XML to an object graph. This XML can take the form of
a DOM document, an input or output stream, or a SAX handler.

Some of the benefits of using Spring for your O/X mapping needs are:

Ease of configuration. Spring's bean factory makes it easy to configure marshallers, without needing to
construct JAXB context, JiBX binding factories, etc. The marshallers can be configured as any other bean
in your application context. Additionally, XML Schema-based configuration is available for a number of
marshallers, making the configuration even simpler.

Consistent Interfaces. Spring's O/X mapping operates through two global interfaces: the Marshaller
and Unmarshaller interface. These abstractions allow you to switch O/X mapping frameworks with
relative ease, with little or no changes required on the classes that do the marshalling. This approach has
the additional benefit of making it possible to do XML marshalling with a mix-and-match approach (e.g.
some marshalling performed using JAXB, other using XMLBeans) in a non-intrusive fashion, leveraging
the strength of each technology.

Consistent Exception Hierarchy. Spring provides a conversion from exceptions from the underlying
O/X mapping tool to its own exception hierarchy with the XmlMappingException as the root
exception. As can be expected, these runtime exceptions wrap the original exception so no information is
lost.

15.2 Marshaller and Unmarshaller

As stated in the introduction, a marshaller serializes an object to XML, and an unmarshaller deserializes
XML stream to an object. In this section, we will describe the two Spring interfaces used for this purpose.

Marshaller

Spring abstracts all marshalling operations behind the org.springframework.oxm.Marshaller
interface, the main methods of which is listed below.

Spring Framework

3.1 Reference Documentation 426

public interface Marshaller {

/**
* Marshals the object graph with the given root into the provided Result.
*/
void marshal(Object graph, Result result)

throws XmlMappingException, IOException;
}

The Marshaller interface has one main method, which marshals the given object to a given
javax.xml.transform.Result. Result is a tagging interface that basically represents an XML
output abstraction: concrete implementations wrap various XML representations, as indicated in the table
below.

Result implementation Wraps XML representation

DOMResult org.w3c.dom.Node

SAXResult org.xml.sax.ContentHandler

StreamResult java.io.File, java.io.OutputStream,
or java.io.Writer

Note

Although the marshal() method accepts a plain object as its first parameter, most
Marshaller implementations cannot handle arbitrary objects. Instead, an object class must
be mapped in a mapping file, marked with an annotation, registered with the marshaller, or
have a common base class. Refer to the further sections in this chapter to determine how your
O/X technology of choice manages this.

Unmarshaller

Similar to the Marshaller, there is the org.springframework.oxm.Unmarshaller interface.

public interface Unmarshaller {

/**
* Unmarshals the given provided Source into an object graph.
*/
Object unmarshal(Source source)

throws XmlMappingException, IOException;
}

This interface also has one method, which reads from the given javax.xml.transform.Source
(an XML input abstraction), and returns the object read. As with Result, Source is a tagging interface that
has three concrete implementations. Each wraps a different XML representation, as indicated in the table
below.

Spring Framework

3.1 Reference Documentation 427

Source implementation Wraps XML representation

DOMSource org.w3c.dom.Node

SAXSource org.xml.sax.InputSource, and
org.xml.sax.XMLReader

StreamSource java.io.File, java.io.InputStream, or
java.io.Reader

Even though there are two separate marshalling interfaces (Marshaller and Unmarshaller), all
implementations found in Spring-WS implement both in one class. This means that you can wire up one
marshaller class and refer to it both as a marshaller and an unmarshaller in your
applicationContext.xml.

XmlMappingException

Spring converts exceptions from the underlying O/X mapping tool to its own exception hierarchy with the
XmlMappingException as the root exception. As can be expected, these runtime exceptions wrap the
original exception so no information will be lost.

Additionally, the MarshallingFailureException and
UnmarshallingFailureException provide a distinction between marshalling and unmarshalling
operations, even though the underlying O/X mapping tool does not do so.

The O/X Mapping exception hierarchy is shown in the following figure:

O/X Mapping exception hierarchy

15.3 Using Marshaller and Unmarshaller

Spring's OXM can be used for a wide variety of situations. In the following example, we will use it to
marshal the settings of a Spring-managed application as an XML file. We will use a simple JavaBean to

Spring Framework

3.1 Reference Documentation 428

represent the settings:

public class Settings {
private boolean fooEnabled;

public boolean isFooEnabled() {
return fooEnabled;

}

public void setFooEnabled(boolean fooEnabled) {
this.fooEnabled = fooEnabled;

}
}

The application class uses this bean to store its settings. Besides a main method, the class has two
methods: saveSettings() saves the settings bean to a file named settings.xml, and
loadSettings() loads these settings again. A main() method constructs a Spring application
context, and calls these two methods.

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.oxm.Marshaller;
import org.springframework.oxm.Unmarshaller;

public class Application {
private static final String FILE_NAME = "settings.xml";
private Settings settings = new Settings();
private Marshaller marshaller;
private Unmarshaller unmarshaller;

public void setMarshaller(Marshaller marshaller) {
this.marshaller = marshaller;

}

public void setUnmarshaller(Unmarshaller unmarshaller) {
this.unmarshaller = unmarshaller;

}

public void saveSettings() throws IOException {
FileOutputStream os = null;
try {

os = new FileOutputStream(FILE_NAME);
this.marshaller.marshal(settings, new StreamResult(os));

} finally {
if (os != null) {

os.close();
}

}
}

public void loadSettings() throws IOException {
FileInputStream is = null;
try {

is = new FileInputStream(FILE_NAME);
this.settings = (Settings) this.unmarshaller.unmarshal(new StreamSource(is));

Spring Framework

3.1 Reference Documentation 429

} finally {
if (is != null) {

is.close();
}

}
}

public static void main(String[] args) throws IOException {
ApplicationContext appContext =

new ClassPathXmlApplicationContext("applicationContext.xml");
Application application = (Application) appContext.getBean("application");
application.saveSettings();
application.loadSettings();

}
}

The Application requires both a marshaller and unmarshaller property to be set. We can do so using
the following applicationContext.xml:

<beans>
<bean id="application" class="Application">

<property name="marshaller" ref="castorMarshaller" />
<property name="unmarshaller" ref="castorMarshaller" />

</bean>
<bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller"/>

</beans>

This application context uses Castor, but we could have used any of the other marshaller instances
described later in this chapter. Note that Castor does not require any further configuration by default, so
the bean definition is rather simple. Also note that the CastorMarshaller implements both
Marshaller and Unmarshaller, so we can refer to the castorMarshaller bean in both the
marshaller and unmarshaller property of the application.

This sample application produces the following settings.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<settings foo-enabled="false"/>

15.4 XML Schema-based Configuration

Marshallers could be configured more concisely using tags from the OXM namespace. To make these
tags available, the appropriate schema has to be referenced first in the preamble of the XML configuration
file. Note the 'oxm' related text below:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm-3.0.xsd">

Currently, the following tags are available:

Spring Framework

3.1 Reference Documentation 430

• jaxb2-marshaller

• xmlbeans-marshaller

• jibx-marshaller

Each tag will be explained in its respective marshaller's section. As an example though, here is how the
configuration of a JAXB2 marshaller might look like:

<oxm:jaxb2-marshaller id="marshaller" contextPath="org.springframework.ws.samples.airline.schema"/>

15.5 JAXB

The JAXB binding compiler translates a W3C XML Schema into one or more Java classes, a
jaxb.properties file, and possibly some resource files. JAXB also offers a way to generate a
schema from annotated Java classes.

Spring supports the JAXB 2.0 API as XML marshalling strategies, following the Marshaller and
Unmarshaller interfaces described in Section 15.2, “Marshaller and Unmarshaller”. The
corresponding integration classes reside in the org.springframework.oxm.jaxb package.

Jaxb2Marshaller

The Jaxb2Marshaller class implements both the Spring Marshaller and
Unmarshallerinterface. It requires a context path to operate, which you can set using the contextPath
property. The context path is a list of colon (:) separated Java package names that contain schema derived
classes. It also offers a classesToBeBound property, which allows you to set an array of classes to be
supported by the marshaller. Schema validation is performed by specifying one or more schema resource
to the bean, like so:

<beans>

<bean id="jaxb2Marshaller" class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
<property name="classesToBeBound">

<list>
<value>org.springframework.oxm.jaxb.Flight</value>
<value>org.springframework.oxm.jaxb.Flights</value>

</list>
</property>
<property name="schema" value="classpath:org/springframework/oxm/schema.xsd"/>

</bean>
...

</beans>

XML Schema-based Configuration

Spring Framework

3.1 Reference Documentation 431

The jaxb2-marshaller tag configures a
org.springframework.oxm.jaxb.Jaxb2Marshaller. Here is an example:

<oxm:jaxb2-marshaller id="marshaller" contextPath="org.springframework.ws.samples.airline.schema"/>

Alternatively, the list of classes to bind can be provided to the marshaller via the
class-to-be-bound child tag:

<oxm:jaxb2-marshaller id="marshaller">
<oxm:class-to-be-bound name="org.springframework.ws.samples.airline.schema.Airport"/>
<oxm:class-to-be-bound name="org.springframework.ws.samples.airline.schema.Flight"/>
...

</oxm:jaxb2-marshaller>

Available attributes are:

Attribute Description Required

id the id of the marshaller no

contextPath the JAXB Context path no

15.6 Castor

Castor XML mapping is an open source XML binding framework. It allows you to transform the data
contained in a java object model into/from an XML document. By default, it does not require any further
configuration, though a mapping file can be used to have more control over the behavior of Castor.

For more information on Castor, refer to the Castor web site. The Spring integration classes reside in the
org.springframework.oxm.castor package.

CastorMarshaller

As with JAXB, the CastorMarshaller implements both the Marshaller and Unmarshaller
interface. It can be wired up as follows:

<beans>

<bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller" />
...

</beans>

Mapping

Spring Framework

3.1 Reference Documentation 432

http://castor.org/xml-framework.html

Although it is possible to rely on Castor's default marshalling behavior, it might be necessary to have
more control over it. This can be accomplished using a Castor mapping file. For more information, refer
to Castor XML Mapping.

The mapping can be set using the mappingLocation resource property, indicated below with a classpath
resource.

<beans>
<bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller" >

<property name="mappingLocation" value="classpath:mapping.xml" />
</bean>

</beans>

15.7 XMLBeans

XMLBeans is an XML binding tool that has full XML Schema support, and offers full XML Infoset
fidelity. It takes a different approach to that of most other O/X mapping frameworks, in that all classes
that are generated from an XML Schema are all derived from XmlObject, and contain XML binding
information in them.

For more information on XMLBeans, refer to the XMLBeans web site . The Spring-WS integration
classes reside in the org.springframework.oxm.xmlbeans package.

XmlBeansMarshaller

The XmlBeansMarshaller implements both the Marshaller and Unmarshaller interfaces. It
can be configured as follows:

<beans>

<bean id="xmlBeansMarshaller" class="org.springframework.oxm.xmlbeans.XmlBeansMarshaller" />
...

</beans>

Note

Note that the XmlBeansMarshaller can only marshal objects of type XmlObject, and
not every java.lang.Object.

XML Schema-based Configuration

The xmlbeans-marshaller tag configures a
org.springframework.oxm.xmlbeans.XmlBeansMarshaller. Here is an example:

Spring Framework

3.1 Reference Documentation 433

http://castor.org/xml-mapping.html
http://xmlbeans.apache.org/

<oxm:xmlbeans-marshaller id="marshaller"/>

Available attributes are:

Attribute Description Required

id the id of the marshaller no

options the bean name of the XmlOptions that is to be used for this
marshaller. Typically a XmlOptionsFactoryBean
definition

no

15.8 JiBX

The JiBX framework offers a solution similar to that which JDO provides for ORM: a binding definition
defines the rules for how your Java objects are converted to or from XML. After preparing the binding
and compiling the classes, a JiBX binding compiler enhances the class files, and adds code to handle
converting instances of the classes from or to XML.

For more information on JiBX, refer to the JiBX web site. The Spring integration classes reside in the
org.springframework.oxm.jibx package.

JibxMarshaller

The JibxMarshaller class implements both the Marshaller and Unmarshaller interface. To
operate, it requires the name of the class to marshal in, which you can set using the targetClass property.
Optionally, you can set the binding name using the bindingName property. In the next sample, we bind
the Flights class:

<beans>

<bean id="jibxFlightsMarshaller" class="org.springframework.oxm.jibx.JibxMarshaller">
<property name="targetClass">org.springframework.oxm.jibx.Flights</property>

</bean>

...

A JibxMarshaller is configured for a single class. If you want to marshal multiple classes, you have
to configure multiple JibxMarshallers with different targetClass property values.

XML Schema-based Configuration

The jibx-marshaller tag configures a
org.springframework.oxm.jibx.JibxMarshaller. Here is an example:

Spring Framework

3.1 Reference Documentation 434

http://jibx.sourceforge.net/

<oxm:jibx-marshaller id="marshaller" target-class="org.springframework.ws.samples.airline.schema.Flight"/>

Available attributes are:

Attribute Description Required

id the id of the marshaller no

target-class the target class for this marshaller yes

bindingName the binding name used by this marshaller no

15.9 XStream

XStream is a simple library to serialize objects to XML and back again. It does not require any mapping,
and generates clean XML.

For more information on XStream, refer to the XStream web site. The Spring integration classes reside in
the org.springframework.oxm.xstream package.

XStreamMarshaller

The XStreamMarshaller does not require any configuration, and can be configured in an application
context directly. To further customize the XML, you can set an alias map, which consists of string aliases
mapped to classes:

<beans>

<bean id="xstreamMarshaller" class="org.springframework.oxm.xstream.XStreamMarshaller">
<property name="aliases">

<props>
<prop key="Flight">org.springframework.oxm.xstream.Flight</prop>

</props>
</property>

</bean>
...

</beans>

Warning

By default, XStream allows for arbitrary classes to be unmarshalled, which can result in
security vulnerabilities. As such, it is recommended to set the supportedClasses property on
the XStreamMarshaller, like so:

<bean id="xstreamMarshaller" class="org.springframework.oxm.xstream.XStreamMarshaller">
<property name="supportedClasses" value="org.springframework.oxm.xstream.Flight"/>
...

Spring Framework

3.1 Reference Documentation 435

http://xstream.codehaus.org/

</bean>

This will make sure that only the registered classes are eligible for unmarshalling.

Additionally, you can register custom converters to make sure that only your supported
classes can be unmarshalled.

Note

Note that XStream is an XML serialization library, not a data binding library. Therefore, it
has limited namespace support. As such, it is rather unsuitable for usage within Web services.

Spring Framework

3.1 Reference Documentation 436

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/oxm/xstream/XStreamMarshaller.html#setConverters(com.thoughtworks.xstream.converters.ConverterMatcher[])

Part V. The Web
This part of the reference documentation covers the Spring Framework's support for the presentation tier
(and specifically web-based presentation tiers).

The Spring Framework's own web framework, Spring Web MVC, is covered in the first couple of
chapters. A number of the remaining chapters in this part of the reference documentation are concerned
with the Spring Framework's integration with other web technologies, such as Struts and JSF (to name but
two).

This section concludes with coverage of Spring's MVC portlet framework.

• Chapter 16, Web MVC framework

• Chapter 17, View technologies

• Chapter 18, Integrating with other web frameworks

• Chapter 19, Portlet MVC Framework

16. Web MVC framework

16.1 Introduction to Spring Web MVC framework

The Spring Web model-view-controller (MVC) framework is designed around a
DispatcherServlet that dispatches requests to handlers, with configurable handler mappings, view
resolution, locale and theme resolution as well as support for uploading files. The default handler is based
on the @Controller and @RequestMapping annotations, offering a wide range of flexible handling
methods. With the introduction of Spring 3.0, the @Controller mechanism also allows you to create
RESTful Web sites and applications, through the @PathVariable annotation and other features.

“Open for extension...”

A key design principle in Spring Web MVC and in Spring in general is the “Open for extension,
closed for modification” principle.

Some methods in the core classes of Spring Web MVC are marked final. As a developer you
cannot override these methods to supply your own behavior. This has not been done arbitrarily, but
specifically with this principle in mind.

For an explanation of this principle, refer to Expert Spring Web MVC and Web Flow by Seth Ladd
and others; specifically see the section "A Look At Design," on page 117 of the first edition.
Alternatively, see

1. Bob Martin, The Open-Closed Principle (PDF)

You cannot add advice to final methods when you use Spring MVC. For example, you cannot add
advice to the AbstractController.setSynchronizeOnSession() method. Refer to
the section called “Understanding AOP proxies” for more information on AOP proxies and why
you cannot add advice to final methods.

In Spring Web MVC you can use any object as a command or form-backing object; you do not need to
implement a framework-specific interface or base class. Spring's data binding is highly flexible: for
example, it treats type mismatches as validation errors that can be evaluated by the application, not as
system errors. Thus you need not duplicate your business objects' properties as simple, untyped strings in
your form objects simply to handle invalid submissions, or to convert the Strings properly. Instead, it is
often preferable to bind directly to your business objects.

Spring's view resolution is extremely flexible. A Controller is typically responsible for preparing a
model Map with data and selecting a view name but it can also write directly to the response stream and
complete the request. View name resolution is highly configurable through file extension or Accept
header content type negotiation, through bean names, a properties file, or even a custom

Spring Framework

3.1 Reference Documentation 438

ViewResolver implementation. The model (the M in MVC) is a Map interface, which allows for the
complete abstraction of the view technology. You can integrate directly with template based rendering
technologies such as JSP, Velocity and Freemarker, or directly generate XML, JSON, Atom, and many
other types of content. The model Map is simply transformed into an appropriate format, such as JSP
request attributes, a Velocity template model.

Features of Spring Web MVC

Spring Web Flow

Spring Web Flow (SWF) aims to be the best solution for the management of web application page
flow.

SWF integrates with existing frameworks like Spring MVC, Struts, and JSF, in both servlet and
portlet environments. If you have a business process (or processes) that would benefit from a
conversational model as opposed to a purely request model, then SWF may be the solution.

SWF allows you to capture logical page flows as self-contained modules that are reusable in
different situations, and as such is ideal for building web application modules that guide the user
through controlled navigations that drive business processes.

For more information about SWF, consult the Spring Web Flow website.

Spring's web module includes many unique web support features:

• Clear separation of roles. Each role — controller, validator, command object, form object, model
object, DispatcherServlet, handler mapping, view resolver, and so on — can be fulfilled by a
specialized object.

• Powerful and straightforward configuration of both framework and application classes as JavaBeans.
This configuration capability includes easy referencing across contexts, such as from web controllers to
business objects and validators.

• Adaptability, non-intrusiveness, and flexibility. Define any controller method signature you need,
possibly using one of the parameter annotations (such as @RequestParam, @RequestHeader,
@PathVariable, and more) for a given scenario.

• Reusable business code, no need for duplication. Use existing business objects as command or form
objects instead of mirroring them to extend a particular framework base class.

• Customizable binding and validation. Type mismatches as application-level validation errors that keep
the offending value, localized date and number binding, and so on instead of String-only form objects
with manual parsing and conversion to business objects.

• Customizable handler mapping and view resolution. Handler mapping and view resolution strategies

Spring Framework

3.1 Reference Documentation 439

http://www.springframework.org/webflow

range from simple URL-based configuration, to sophisticated, purpose-built resolution strategies.
Spring is more flexible than web MVC frameworks that mandate a particular technique.

• Flexible model transfer. Model transfer with a name/value Map supports easy integration with any
view technology.

• Customizable locale and theme resolution, support for JSPs with or without Spring tag library, support
for JSTL, support for Velocity without the need for extra bridges, and so on.

• A simple yet powerful JSP tag library known as the Spring tag library that provides support for
features such as data binding and themes. The custom tags allow for maximum flexibility in terms of
markup code. For information on the tag library descriptor, see the appendix entitled Appendix F,
spring.tld

• A JSP form tag library, introduced in Spring 2.0, that makes writing forms in JSP pages much easier.
For information on the tag library descriptor, see the appendix entitled Appendix G, spring-form.tld

• Beans whose lifecycle is scoped to the current HTTP request or HTTP Session. This is not a specific
feature of Spring MVC itself, but rather of the WebApplicationContext container(s) that Spring
MVC uses. These bean scopes are described in the section called “Request, session, and global session
scopes”

Pluggability of other MVC implementations

Non-Spring MVC implementations are preferable for some projects. Many teams expect to leverage their
existing investment in skills and tools. A large body of knowledge and experience exist for the Struts
framework. If you can abide Struts' architectural flaws, it can be a viable choice for the web layer; the
same applies to WebWork and other web MVC frameworks.

If you do not want to use Spring's web MVC, but intend to leverage other solutions that Spring offers, you
can integrate the web MVC framework of your choice with Spring easily. Simply start up a Spring root
application context through its ContextLoaderListener, and access it through its
ServletContext attribute (or Spring's respective helper method) from within a Struts or WebWork
action. No "plug-ins" are involved, so no dedicated integration is necessary. From the web layer's point of
view, you simply use Spring as a library, with the root application context instance as the entry point.

Your registered beans and Spring's services can be at your fingertips even without Spring's Web MVC.
Spring does not compete with Struts or WebWork in this scenario. It simply addresses the many areas that
the pure web MVC frameworks do not, from bean configuration to data access and transaction handling.
So you can enrich your application with a Spring middle tier and/or data access tier, even if you just want
to use, for example, the transaction abstraction with JDBC or Hibernate.

16.2 The DispatcherServlet

Spring Framework

3.1 Reference Documentation 440

Spring's web MVC framework is, like many other web MVC frameworks, request-driven, designed
around a central Servlet that dispatches requests to controllers and offers other functionality that
facilitates the development of web applications. Spring's DispatcherServlet however, does more
than just that. It is completely integrated with the Spring IoC container and as such allows you to use
every other feature that Spring has.

The request processing workflow of the Spring Web MVC DispatcherServlet is illustrated in the
following diagram. The pattern-savvy reader will recognize that the DispatcherServlet is an
expression of the “Front Controller” design pattern (this is a pattern that Spring Web MVC shares with
many other leading web frameworks).

The request processing workflow in Spring Web MVC (high level)

The DispatcherServlet is an actual Servlet (it inherits from the HttpServlet base class),
and as such is declared in the web.xml of your web application. You need to map requests that you want
the DispatcherServlet to handle, by using a URL mapping in the same web.xml file. This is
standard Java EE Servlet configuration; the following example shows such a DispatcherServlet
declaration and mapping:

<web-app>

<servlet>
<servlet-name>example</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

Spring Framework

3.1 Reference Documentation 441

<servlet-mapping>
<servlet-name>example</servlet-name>
<url-pattern>/example/*</url-pattern>

</servlet-mapping>

</web-app>

In the preceding example, all requests startig with /example will be handled by the
DispatcherServlet instance named example. This is only the first step in setting up Spring Web
MVC. You now need to configure the various beans used by the Spring Web MVC framework (over and
above the DispatcherServlet itself).

As detailed in Section 4.14, “Additional Capabilities of the ApplicationContext”,
ApplicationContext instances in Spring can be scoped. In the Web MVC framework, each
DispatcherServlet has its own WebApplicationContext, which inherits all the beans already
defined in the root WebApplicationContext. These inherited beans can be overridden in the
servlet-specific scope, and you can define new scope-specific beans local to a given Servlet instance.

Context hierarchy in Spring Web MVC

Upon initialization of a DispatcherServlet, Spring MVC looks for a file named
[servlet-name]-servlet.xml in the WEB-INF directory of your web application and creates the
beans defined there, overriding the definitions of any beans defined with the same name in the global

Spring Framework

3.1 Reference Documentation 442

scope.

Consider the following DispatcherServlet Servlet configuration (in the web.xml file):

<web-app>

<servlet>
<servlet-name>golfing</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>golfing</servlet-name>
<url-pattern>/golfing/*</url-pattern>

</servlet-mapping>

</web-app>

With the above Servlet configuration in place, you will need to have a file called
/WEB-INF/golfing-servlet.xml in your application; this file will contain all of your Spring Web
MVC-specific components (beans). You can change the exact location of this configuration file through a
Servlet initialization parameter (see below for details).

The WebApplicationContext is an extension of the plain ApplicationContext that has some
extra features necessary for web applications. It differs from a normal ApplicationContext in that it
is capable of resolving themes (see Section 16.9, “Using themes”), and that it knows which Servlet it is
associated with (by having a link to the ServletContext). The WebApplicationContext is
bound in the ServletContext, and by using static methods on the RequestContextUtils class
you can always look up the WebApplicationContext if you need access to it.

Special Bean Types In the WebApplicationContext

The Spring DispatcherServlet uses special beans to process requests and render the appropriate
views. These beans are part of Spring MVC. You can choose which special beans to use by simply
configuring one or more of them in the WebApplicationContext. However, you don't need to do
that initially since Spring MVC maintains a list of default beans to use if you don't configure any. More
on that in the next section. First see the table below listing the special bean types the
DispatcherServlet relies on.

Table 16.1. Special bean types in the WebApplicationContext

Bean type Explanation

HandlerMapping Maps incoming requests to handlers and a list of pre- and post-processors (handler
interceptors) based on some criteria the details of which vary by
HandlerMapping implementation. The most popular implementation supports
annotated controllers but other implementations exists as well.

HandlerAdapter Helps the DispatcherServlet to invoke a handler mapped to a request
regardless of the handler is actually invoked. For example, invoking an annotated

Spring Framework

3.1 Reference Documentation 443

Bean type Explanation

controller requires resolving various annotations. Thus the main purpose of a
HandlerAdapter is to shield the DispatcherServlet from such details.

HandlerExceptionResolverMaps exceptions to views also allowing for more complex exception handling
code.

ViewResolver Resolves logical String-based view names to actual View types.

LocaleResolver Resolves the locale a client is using, in order to be able to offer internationalized
views

ThemeResolver Resolves themes your web application can use, for example, to offer personalized
layouts

MultipartResolver Parses multi-part requests for example to support processing file uploads from
HTML forms.

FlashMapManager Stores and retrieves the "input" and the "output" FlashMap that can be used to
pass attributes from one request to another, usually across a redirect.

Default DispatcherServlet Configuration

As mentioned in the previous section for each special bean the DispatcherServlet maintains a list
of implementations to use by default. This information is kept in the file
DispatcherServlet.properties in the package org.springframework.web.servlet.

All special beans have some reasonable defaults of their own. Sooner or later though you'll need to
customize one or more of the properties these beans provide. For example it's quite common to configure
an InternalResourceViewResolver settings its prefix property to the parent location of view
files.

Regardless of the details, the important concept to understand here is that once you configure a special
bean such as an InternalResourceViewResolver in your WebApplicationContext, you
effectively override the list of default implementations that would have been used otherwise for that
special bean type. For example if you configure an InternalResourceViewResolver, the default
list of ViewResolver implementations is ignored.

In Section 16.14, “Configuring Spring MVC” you'll learn about other options for configuring Spring
MVC including MVC Java config and the MVC XML namespace both of which provide a simple starting
point and assume little knowledge of how Spring MVC works. Regardless of how you choose to
configure your application, the concepts explained in this section are fundamental should be of help to
you.

DispatcherServlet Processing Sequence

Spring Framework

3.1 Reference Documentation 444

After you set up a DispatcherServlet, and a request comes in for that specific
DispatcherServlet, the DispatcherServlet starts processing the request as follows:

1. The WebApplicationContext is searched for and bound in the request as an attribute that the
controller and other elements in the process can use. It is bound by default under the key
DispatcherServlet.WEB_APPLICATION_CONTEXT_ATTRIBUTE.

2. The locale resolver is bound to the request to enable elements in the process to resolve the locale to use
when processing the request (rendering the view, preparing data, and so on). If you do not need locale
resolving, you do not need it.

3. The theme resolver is bound to the request to let elements such as views determine which theme to
use. If you do not use themes, you can ignore it.

4. If you specify a multipart file resolver, the request is inspected for multiparts; if multiparts are found,
the request is wrapped in a MultipartHttpServletRequest for further processing by other
elements in the process. See Section 16.10, “Spring's multipart (file upload) support” for further
information about multipart handling.

5. An appropriate handler is searched for. If a handler is found, the execution chain associated with the
handler (preprocessors, postprocessors, and controllers) is executed in order to prepare a model or
rendering.

6. If a model is returned, the view is rendered. If no model is returned, (may be due to a preprocessor or
postprocessor intercepting the request, perhaps for security reasons), no view is rendered, because the
request could already have been fulfilled.

Handler exception resolvers that are declared in the WebApplicationContext pick up exceptions
that are thrown during processing of the request. Using these exception resolvers allows you to define
custom behaviors to address exceptions.

The Spring DispatcherServlet also supports the return of the last-modification-date, as specified
by the Servlet API. The process of determining the last modification date for a specific request is
straightforward: the DispatcherServlet looks up an appropriate handler mapping and tests whether
the handler that is found implements the LastModified interface. If so, the value of the long
getLastModified(request) method of the LastModified interface is returned to the client.

You can customize individual DispatcherServlet instances by adding Servlet initialization
parameters (init-param elements) to the Servlet declaration in the web.xml file. See the following
table for the list of supported parameters.

Table 16.2. DispatcherServlet initialization parameters

Parameter Explanation

contextClass Class that implements WebApplicationContext, which instantiates the
context used by this Servlet. By default, the XmlWebApplicationContext is

Spring Framework

3.1 Reference Documentation 445

Parameter Explanation

used.

contextConfigLocationString that is passed to the context instance (specified by contextClass) to
indicate where context(s) can be found. The string consists potentially of multiple
strings (using a comma as a delimiter) to support multiple contexts. In case of
multiple context locations with beans that are defined twice, the latest location
takes precedence.

namespace Namespace of the WebApplicationContext. Defaults to
[servlet-name]-servlet.

16.3 Implementing Controllers

Controllers provide access to the application behavior that you typically define through a service
interface. Controllers interpret user input and transform it into a model that is represented to the user by
the view. Spring implements a controller in a very abstract way, which enables you to create a wide
variety of controllers.

Spring 2.5 introduced an annotation-based programming model for MVC controllers that uses annotations
such as @RequestMapping, @RequestParam, @ModelAttribute, and so on. This annotation
support is available for both Servlet MVC and Portlet MVC. Controllers implemented in this style do not
have to extend specific base classes or implement specific interfaces. Furthermore, they do not usually
have direct dependencies on Servlet or Portlet APIs, although you can easily configure access to Servlet
or Portlet facilities.

Tip

Available in the samples repository, a number of web applications leverage the annotation
support described in this section including MvcShowcase, MvcAjax, MvcBasic, PetClinic,
PetCare, and others.

@Controller
public class HelloWorldController {

@RequestMapping("/helloWorld")
public String helloWorld(Model model) {

model.addAttribute("message", "Hello World!");
return "helloWorld";

}
}

As you can see, the @Controller and @RequestMapping annotations allow flexible method names
and signatures. In this particular example the method accepts a Model and returns a view name as a
String, but various other method parameters and return values can be used as explained later in this
section. @Controller and @RequestMapping and a number of other annotations form the basis for

Spring Framework

3.1 Reference Documentation 446

the Spring MVC implementation. This section documents these annotations and how they are most
commonly used in a Servlet environment.

Defining a controller with @Controller

The @Controller annotation indicates that a particular class serves the role of a controller. Spring
does not require you to extend any controller base class or reference the Servlet API. However, you can
still reference Servlet-specific features if you need to.

The @Controller annotation acts as a stereotype for the annotated class, indicating its role. The
dispatcher scans such annotated classes for mapped methods and detects @RequestMapping
annotations (see the next section).

You can define annotated controller beans explicitly, using a standard Spring bean definition in the
dispatcher's context. However, the @Controller stereotype also allows for autodetection, aligned with
Spring general support for detecting component classes in the classpath and auto-registering bean
definitions for them.

To enable autodetection of such annotated controllers, you add component scanning to your
configuration. Use the spring-context schema as shown in the following XML snippet:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:component-scan base-package="org.springframework.samples.petclinic.web"/>

<!-- ... -->

</beans>

Mapping Requests With @RequestMapping

You use the @RequestMapping annotation to map URLs such as /appointments onto an entire
class or a particular handler method. Typically the class-level annotation maps a specific request path (or
path pattern) onto a form controller, with additional method-level annotations narrowing the primary
mapping for a specific HTTP method request method ("GET", "POST", etc.) or an HTTP request
parameter condition.

The following example from the Petcare sample shows a controller in a Spring MVC application that
uses this annotation:

@Controller
@RequestMapping("/appointments")

Spring Framework

3.1 Reference Documentation 447

public class AppointmentsController {

private final AppointmentBook appointmentBook;

@Autowired
public AppointmentsController(AppointmentBook appointmentBook) {

this.appointmentBook = appointmentBook;
}

@RequestMapping(method = RequestMethod.GET)
public Map<String, Appointment> get() {

return appointmentBook.getAppointmentsForToday();
}

@RequestMapping(value="/{day}", method = RequestMethod.GET)
public Map<String, Appointment> getForDay(@PathVariable @DateTimeFormat(iso=ISO.DATE) Date day, Model model) {

return appointmentBook.getAppointmentsForDay(day);
}

@RequestMapping(value="/new", method = RequestMethod.GET)
public AppointmentForm getNewForm() {

return new AppointmentForm();
}

@RequestMapping(method = RequestMethod.POST)
public String add(@Valid AppointmentForm appointment, BindingResult result) {

if (result.hasErrors()) {
return "appointments/new";

}
appointmentBook.addAppointment(appointment);
return "redirect:/appointments";

}
}

In the example, the @RequestMapping is used in a number of places. The first usage is on the type
(class) level, which indicates that all handling methods on this controller are relative to the
/appointments path. The get() method has a further @RequestMapping refinement: it only
accepts GET requests, meaning that an HTTP GET for /appointments invokes this method. The
post() has a similar refinement, and the getNewForm() combines the definition of HTTP method
and path into one, so that GET requests for appointments/new are handled by that method.

The getForDay() method shows another usage of @RequestMapping: URI templates. (See the
next section).

A @RequestMapping on the class level is not required. Without it, all paths are simply absolute, and
not relative. The following example from the PetClinic sample application shows a multi-action
controller using @RequestMapping:

@Controller
public class ClinicController {

private final Clinic clinic;

@Autowired
public ClinicController(Clinic clinic) {

this.clinic = clinic;
}

@RequestMapping("/")
public void welcomeHandler() {
}

Spring Framework

3.1 Reference Documentation 448

@RequestMapping("/vets")
public ModelMap vetsHandler() {

return new ModelMap(this.clinic.getVets());
}

}

Using @RequestMapping On Interface Methods

A common pitfall when working with annotated controller classes happens when applying
functionality that requires creating a proxy for the controller object (e.g. @Transactional
methods). Usually you will introduce an interface for the controller in order to use JDK
dynamic proxies. To make this work you must move the @RequestMapping annotations
to the interface as well as the mapping mechanism can only "see" the interface exposed by
the proxy. Alternatively, you could activate proxy-target-class="true" in the
configuration for the functionality applied to the controller (in our transaction scenario in
<tx:annotation-driven />). Doing so indicates that CGLIB-based subclass proxies
should be used instead of interface-based JDK proxies. For more information on various
proxying mechanisms see Section 8.6, “Proxying mechanisms”.

URI Template Patterns

URI templates can be used for convenient access to selected parts of a URL in a @RequestMapping
method.

A URI Template is a URI-like string, containing one or more variable names. When you substitute values
for these variables, the template becomes a URI. The proposed RFC for URI Templates defines how a
URI is parameterized. For example, the URI Template
http://www.example.com/users/{userId} contains the variable userId. Assigning the value
fred to the variable yields http://www.example.com/users/fred.

In Spring MVC you can use the @PathVariable annotation on a method argument to bind it to the
value of a URI template variable:

@RequestMapping(value="/owners/{ownerId}", method=RequestMethod.GET)
public String findOwner(@PathVariable String ownerId, Model model) {
Owner owner = ownerService.findOwner(ownerId);
model.addAttribute("owner", owner);
return "displayOwner";

}

The URI Template "/owners/{ownerId}" specifies the variable name ownerId. When the
controller handles this request, the value of ownerId is set to the value found in the appropriate part of
the URI. For example, when a request comes in for /owners/fred, the value of ownerId is fred.

Tip

To process the @PathVariable annotation, Spring MVC needs to find the matching URI

Spring Framework

3.1 Reference Documentation 449

http://bitworking.org/projects/URI-Templates/

template variable by name. You can specify it in the annotation:

@RequestMapping(value="/owners/{ownerId}", method=RequestMethod.GET)
public String findOwner(@PathVariable("ownerId") String theOwner, Model model) {
// implementation omitted

}

Or if the URI template variable name matches the method argument name you can omit that
detail. As long as your code is not compiled without debugging information, Spring MVC
will match the method argument name to the URI template variable name:

@RequestMapping(value="/owners/{ownerId}", method=RequestMethod.GET)
public String findOwner(@PathVariable String ownerId, Model model) {
// implementation omitted

}

A method can have any number of @PathVariable annotations:

@RequestMapping(value="/owners/{ownerId}/pets/{petId}", method=RequestMethod.GET)
public String findPet(@PathVariable String ownerId, @PathVariable String petId, Model model) {
Owner owner = ownerService.findOwner(ownerId);
Pet pet = owner.getPet(petId);
model.addAttribute("pet", pet);
return "displayPet";

}

A URI template can be assembled from type and path level @RequestMapping annotations. As a result
the findPet() method can be invoked with a URL such as /owners/42/pets/21.

@Controller
@RequestMapping("/owners/{ownerId}")
public class RelativePathUriTemplateController {

@RequestMapping("/pets/{petId}")
public void findPet(@PathVariable String ownerId, @PathVariable String petId, Model model) {

// implementation omitted
}

}

A @PathVariable argument can be of any simple type such as int, long, Date, etc. Spring
automatically converts to the appropriate type or throws a TypeMismatchException if it fails to do
so. You can also register support for parsing additional data types. See the section called “Method
Parameters And Type Conversion” and the section called “Customizing WebDataBinder initialization”.

URI Template Patterns with Regular Expressions

Sometimes you need more precision in defining URI template variables. Consider the URL
"/spring-web/spring-web-3.0.5.jar". How do you break it down into multiple parts?

The @RequestMapping annotation supports the use of regular expressions in URI template variables.
The syntax is {varName:regex} where the first part defines the variable name and the second - the

Spring Framework

3.1 Reference Documentation 450

regular expression.For example:

@RequestMapping("/spring-web/{symbolicName:[a-z-]+}-{version:\d\.\d\.\d}.{extension:\.[a-z]}")
public void handle(@PathVariable String version, @PathVariable String extension) {

// ...
}

}

Path Patterns

In addition to URI templates, the @RequestMapping annotation also supports Ant-style path patterns
(for example, /myPath/*.do). A combination of URI templates and Ant-style globs is also supported
(for example, /owners/*/pets/{petId}).

Consumable Media Types

You can narrow the primary mapping by specifying a list of consumable media types. The request will be
matched only if the Content-Type request header matches the specified media type. For example:

@Controller
@RequestMapping(value = "/pets", method = RequestMethod.POST, consumes="application/json")
public void addPet(@RequestBody Pet pet, Model model) {

// implementation omitted
}

Consumable media type expressions can also be negated as in !text/plain to match to all requests other
than those with Content-Type of text/plain.

Tip

The consumes condition is supported on the type and on the method level. Unlike most other
conditions, when used at the type level, method-level consumable types override rather than
extend type-level consumeable types.

Producible Media Types

You can narrow the primary mapping by specifying a list of producible media types. The request will be
matched only if the Accept request header matches one of these values. Furthermore, use of the produces
condition ensures the actual content type used to generate the response respects the media types specified
in the produces condition. For example:

@Controller
@RequestMapping(value = "/pets/{petId}", method = RequestMethod.GET, produces="application/json")
@ResponseBody
public Pet getPet(@PathVariable String petId, Model model) {

// implementation omitted
}

Just like with consumes, producible media type expressions can be negated as in !text/plain to match to all

Spring Framework

3.1 Reference Documentation 451

requests other than those with an Accept header value of text/plain.

Tip

The produces condition is supported on the type and on the method level. Unlike most other
conditions, when used at the type level, method-level producible types override rather than
extend type-level producible types.

Request Parameters and Header Values

You can narrow request matching through request parameter conditions such as "myParam",
"!myParam", or "myParam=myValue". The first two test for request parameter presense/absence
and the third for a specific parameter value. Here is an example with a request parameter value condition:

@Controller
@RequestMapping("/owners/{ownerId}")
public class RelativePathUriTemplateController {

@RequestMapping(value = "/pets/{petId}", method = RequestMethod.GET, params="myParam=myValue")
public void findPet(@PathVariable String ownerId, @PathVariable String petId, Model model) {

// implementation omitted
}

}

The same can be done to test for request header presence/absence or to match based on a specific request
header value:

@Controller
@RequestMapping("/owners/{ownerId}")
public class RelativePathUriTemplateController {

@RequestMapping(value = "/pets", method = RequestMethod.GET, headers="myHeader=myValue")
public void findPet(@PathVariable String ownerId, @PathVariable String petId, Model model) {

// implementation omitted
}

}

Tip

Although you can match to Content-Type and Accept header values using media type wild
cards (for example "content-type=text/*" will match to "text/plain" and "text/html"), it is
recommended to use the consumes and produces conditions respectively instead. They are
intended specifically for that purpose.

Defining @RequestMapping handler methods

An @RequestMapping handler method can have a very flexible signatures. The supported method
arguments and return values are described in the following section. Most arguments can be used in
arbitrary order with the only exception of BindingResult arguments. This is described in the next

Spring Framework

3.1 Reference Documentation 452

section.

Supported method argument types

The following are the supported method arguments:

• Request or response objects (Servlet API). Choose any specific request or response type, for example
ServletRequest or HttpServletRequest.

• Session object (Servlet API): of type HttpSession. An argument of this type enforces the presence
of a corresponding session. As a consequence, such an argument is never null.

Note

Session access may not be thread-safe, in particular in a Servlet environment. Consider
setting the RequestMappingHandlerAdapter's "synchronizeOnSession" flag to
"true" if multiple requests are allowed to access a session concurrently.

• org.springframework.web.context.request.WebRequest or
org.springframework.web.context.request.NativeWebRequest. Allows for
generic request parameter access as well as request/session attribute access, without ties to the native
Servlet/Portlet API.

• java.util.Locale for the current request locale, determined by the most specific locale resolver
available, in effect, the configured LocaleResolver in a Servlet environment.

• java.io.InputStream / java.io.Reader for access to the request's content. This value is the
raw InputStream/Reader as exposed by the Servlet API.

• java.io.OutputStream / java.io.Writer for generating the response's content. This value
is the raw OutputStream/Writer as exposed by the Servlet API.

• java.security.Principal containing the currently authenticated user.

• @PathVariable annotated parameters for access to URI template variables. See the section called
“URI Template Patterns”.

• @RequestParam annotated parameters for access to specific Servlet request parameters. Parameter
values are converted to the declared method argument type. See the section called “Binding request
parameters to method parameters with @RequestParam”.

• @RequestHeader annotated parameters for access to specific Servlet request HTTP headers.
Parameter values are converted to the declared method argument type.

• @RequestBody annotated parameters for access to the HTTP request body. Parameter values are
converted to the declared method argument type using HttpMessageConverters. See the section
called “Mapping the request body with the @RequestBody annotation”.

Spring Framework

3.1 Reference Documentation 453

• @RequestPart annotated parameters for access to the content of a "multipart/form-data" request
part. See the section called “Handling a file upload request from programmatic clients” and
Section 16.10, “Spring's multipart (file upload) support”.

• HttpEntity<?> parameters for access to the Servlet request HTTP headers and contents. The
request stream will be converted to the entity body using HttpMessageConverters. See the
section called “Using HttpEntity<?>”.

• java.util.Map / org.springframework.ui.Model /
org.springframework.ui.ModelMap for enriching the implicit model that is exposed to the
web view.

• org.springframework.web.servlet.mvc.support.RedirectAttributes to specify
the exact set of attributes to use in case of a redirect and also to add flash attributes (attributes stored
temporarily on the server-side to make them available to the request after the redirect).
RedirectAttributes is used instead of the implicit model if the method returns a "redirect:"
prefixed view name or RedirectView.

• Command or form objects to bind request parameters to bean properties (via setters) or directly to
fields, with customizable type conversion, depending on @InitBinder methods and/or the
HandlerAdapter configuration. See the webBindingInitializer property on
RequestMappingHandlerAdapter. Such command objects along with their validation results
will be exposed as model attributes by default, using the command class class name - e.g. model
attribute "orderAddress" for a command object of type "some.package.OrderAddress". The
ModelAttribute annotation can be used on a method argument to customize the model attribute
name used.

• org.springframework.validation.Errors /
org.springframework.validation.BindingResult validation results for a preceding
command or form object (the immediately preceding method argument).

• org.springframework.web.bind.support.SessionStatus status handle for marking
form processing as complete, which triggers the cleanup of session attributes that have been indicated
by the @SessionAttributes annotation at the handler type level.

• org.springframework.web.util.UriComponentsBuilder a builder for preparing a
URL relative to the current request's host, port, scheme, context path, and the literal part of the servlet
mapping.

The Errors or BindingResult parameters have to follow the model object that is being bound
immediately as the method signature might have more that one model object and Spring will create a
separate BindingResult instance for each of them so the following sample won't work:

@RequestMapping(method = RequestMethod.POST)
public String processSubmit(@ModelAttribute("pet") Pet pet,

Model model, BindingResult result) { … }

Spring Framework

3.1 Reference Documentation 454

Note, that there is a Model parameter in between Pet and BindingResult. To get this working you
have to reorder the parameters as follows:

@RequestMapping(method = RequestMethod.POST)
public String processSubmit(@ModelAttribute("pet") Pet pet,

BindingResult result, Model model) { … }

Example 16.1 Invalid ordering of BindingResult and @ModelAttribute

Supported method return types

The following are the supported return types:

• A ModelAndView object, with the model implicitly enriched with command objects and the results
of @ModelAttribute annotated reference data accessor methods.

• A Model object, with the view name implicitly determined through a
RequestToViewNameTranslator and the model implicitly enriched with command objects and
the results of @ModelAttribute annotated reference data accessor methods.

• A Map object for exposing a model, with the view name implicitly determined through a
RequestToViewNameTranslator and the model implicitly enriched with command objects and
the results of @ModelAttribute annotated reference data accessor methods.

• A View object, with the model implicitly determined through command objects and
@ModelAttribute annotated reference data accessor methods. The handler method may also
programmatically enrich the model by declaring a Model argument (see above).

• A String value that is interpreted as the logical view name, with the model implicitly determined
through command objects and @ModelAttribute annotated reference data accessor methods. The
handler method may also programmatically enrich the model by declaring a Model argument (see
above).

• void if the method handles the response itself (by writing the response content directly, declaring an
argument of type ServletResponse / HttpServletResponse for that purpose) or if the view
name is supposed to be implicitly determined through a RequestToViewNameTranslator (not
declaring a response argument in the handler method signature).

• If the method is annotated with @ResponseBody, the return type is written to the response HTTP
body. The return value will be converted to the declared method argument type using
HttpMessageConverters. See the section called “Mapping the response body with the
@ResponseBody annotation”.

• A HttpEntity<?> or ResponseEntity<?> object to provide access to the Servlet response
HTTP headers and contents. The entity body will be converted to the response stream using
HttpMessageConverters. See the section called “Using HttpEntity<?>”.

Spring Framework

3.1 Reference Documentation 455

• Any other return type is considered to be a single model attribute to be exposed to the view, using the
attribute name specified through @ModelAttribute at the method level (or the default attribute
name based on the return type class name). The model is implicitly enriched with command objects and
the results of @ModelAttribute annotated reference data accessor methods.

Binding request parameters to method parameters with @RequestParam

Use the @RequestParam annotation to bind request parameters to a method parameter in your
controller.

The following code snippet shows the usage:

@Controller
@RequestMapping("/pets")
@SessionAttributes("pet")
public class EditPetForm {

// ...

@RequestMapping(method = RequestMethod.GET)
public String setupForm(@RequestParam("petId") int petId, ModelMap model) {

Pet pet = this.clinic.loadPet(petId);
model.addAttribute("pet", pet);
return "petForm";

}

// ...

Parameters using this annotation are required by default, but you can specify that a parameter is optional
by setting @RequestParam's required attribute to false (e.g.,
@RequestParam(value="id", required=false)).

Type conversion is applied automatically if the target method parameter type is not String. See the
section called “Method Parameters And Type Conversion”.

Mapping the request body with the @RequestBody annotation

The @RequestBody method parameter annotation indicates that a method parameter should be bound
to the value of the HTTP request body. For example:

@RequestMapping(value = "/something", method = RequestMethod.PUT)
public void handle(@RequestBody String body, Writer writer) throws IOException {
writer.write(body);

}

You convert the request body to the method argument by using an HttpMessageConverter.
HttpMessageConverter is responsible for converting from the HTTP request message to an object
and converting from an object to the HTTP response body. The RequestMappingHandlerAdapter
supports the @RequestBody annotation with the following default HttpMessageConverters:

• ByteArrayHttpMessageConverter converts byte arrays.

Spring Framework

3.1 Reference Documentation 456

• StringHttpMessageConverter converts strings.

• FormHttpMessageConverter converts form data to/from a MultiValueMap<String, String>.

• SourceHttpMessageConverter converts to/from a javax.xml.transform.Source.

For more information on these converters, see Message Converters. Also note that if using the MVC
namespace, a wider range of message converters are registered by default. See ??? for more information.

If you intend to read and write XML, you will need to configure the
MarshallingHttpMessageConverter with a specific Marshaller and an Unmarshaller
implementation from the org.springframework.oxm package. For example:

<bean class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">
<property name="messageConverters">
<util:list id="beanList">
<ref bean="stringHttpMessageConverter"/>
<ref bean="marshallingHttpMessageConverter"/>

</util:list>
</property

</bean>

<bean id="stringHttpMessageConverter"
class="org.springframework.http.converter.StringHttpMessageConverter"/>

<bean id="marshallingHttpMessageConverter"
class="org.springframework.http.converter.xml.MarshallingHttpMessageConverter">

<property name="marshaller" ref="castorMarshaller" />
<property name="unmarshaller" ref="castorMarshaller" />

</bean>

<bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller"/>

An @RequestBody method parameter can be annotated with @Valid, in which case it will validated
using the configured Validator instance. When using the MVC namespace a JSR-303 validator is
configured automatically assuming a JSR-303 implementation is available on the classpath. If validation
fails a RequestBodyNotValidException is raised. The exception is handled by the
DefaultHandlerExceptionResolver and results in a 400 error sent back to the client along
with a message containing the validation errors.

Note

Also see ??? for information on configuring message converters and a validator through the
MVC namespace.

Mapping the response body with the @ResponseBody annotation

The @ResponseBody annotation is similar to @RequestBody. This annotation can be put on a
method and indicates that the return type should be written straight to the HTTP response body (and not
placed in a Model, or interpreted as a view name). For example:

@RequestMapping(value = "/something", method = RequestMethod.PUT)

Spring Framework

3.1 Reference Documentation 457

@ResponseBody
public String helloWorld() {
return "Hello World";

}

The above example will result in the text Hello World being written to the HTTP response stream.

As with @RequestBody, Spring converts the returned object to a response body by using an
HttpMessageConverter. For more information on these converters, see the previous section and
Message Converters.

Using HttpEntity<?>

The HttpEntity is similar to @RequestBody and @ResponseBody. Besides getting access to the
request and response body, HttpEntity (and the response-specific subclass ResponseEntity) also
allows access to the request and response headers, like so:

@RequestMapping("/something")
public ResponseEntity<String> handle(HttpEntity<byte[]> requestEntity) throws UnsupportedEncodingException {
String requestHeader = requestEntity.getHeaders().getFirst("MyRequestHeader"));
byte[] requestBody = requestEntity.getBody();
// do something with request header and body

HttpHeaders responseHeaders = new HttpHeaders();
responseHeaders.set("MyResponseHeader", "MyValue");
return new ResponseEntity<String>("Hello World", responseHeaders, HttpStatus.CREATED);

}

The above example gets the value of the MyRequestHeader request header, and reads the body as a
byte array. It adds the MyResponseHeader to the response, writes Hello World to the response
stream, and sets the response status code to 201 (Created).

As with @RequestBody and @ResponseBody, Spring uses HttpMessageConverter to convert
from and to the request and response streams. For more information on these converters, see the previous
section and Message Converters.

Using @ModelAttribute on a method

The @ModelAttribute annotation can be used on methods or on method arguments. This section
explains its usage on methods while the next section explains its usage on method arguments.

An @ModelAttribute on a method indicates the purpose of that method is to add one or more model
attributes. Such methods support the same argument types as @RequestMapping methods but cannot
be mapped directly to requests. Instead @ModelAttribute methods in a controller are invoked before
@RequestMapping methods, within the same controller. A couple of examples:

// Add one attribute
// The return value of the method is added to the model under the name "account"
// You can customize the name via @ModelAttribute("myAccount")

@ModelAttribute
public Account addAccount(@RequestParam String number) {

Spring Framework

3.1 Reference Documentation 458

return accountManager.findAccount(number);
}

// Add multiple attributes

@ModelAttribute
public void populateModel(@RequestParam String number, Model model) {

model.addAttribute(accountManager.findAccount(number));
// add more ...

}

@ModelAttribute methods are used to populate the model with commonly needed attributes for
example to fill a drop-down with states or with pet types, or to retrieve a command object like Account in
order to use it to represent the data on an HTML form. The latter case is further discussed in the next
section.

Note the two styles of @ModelAttribute methods. In the first, the method adds an attribute implicitly
by returning it. In the second, the method accepts a Model and adds any number of model attributes to it.
You can choose between the two styles depending on your needs.

A controller can have any number of @ModelAttribute methods. All such methods are invoked
before @RequestMapping methods of the same controller.

Tip

What happens when a model attribute name is not explicitly specified? In such cases a default
name is assigned to the model attribute based on its type. For example if the method returns
an object of type Account, the default name used is "account". You can change that through
the value of the @ModelAttribute annotation. If adding attributes directly to the Model,
use the appropriate overloaded addAttribute(..) method - i.e., with or without an
attribute name.

The @ModelAttribute annotation can be used on @RequestMapping methods as well. In that case
the return value of the @RequestMapping method is interpreted as a model attribute rather than as a
view name. The view name is derived from view name conventions instead much like for methods
returning void — see the section called “The View - RequestToViewNameTranslator”.

Using @ModelAttribute on a method argument

As explained in the previous section @ModelAttribute can be used on methods or on method
arguments. This section explains its usage on method arguments.

An @ModelAttribute on a method argument indicates the argument should be retrieved from the
model. If not present in the model, the argument should be instantiated first and then added to the model.
Once present in the model, the argument's fields should be populated from all request parameters that
have matching names. This is known as data binding in Spring MVC, a very useful mechanism that saves
you from having to parse each form field individually.

Spring Framework

3.1 Reference Documentation 459

@RequestMapping(value="/owners/{ownerId}/pets/{petId}/edit", method = RequestMethod.POST)
public String processSubmit(@ModelAttribute Pet pet) {

}

Given the above example where can the Pet instance come from? There are several options:

• It may already be in the model due to use of @SessionAttributes — see the section called
“Using @SessionAttributes to store model attributes in the HTTP session between requests”.

• It may already be in the model due to an @ModelAttribute method in the same controller — as
explained in the previous section.

• It may be retrieved based on a URI template variable and type converter (explained in more detail
below).

• It may be instantiated using its default constructor.

An @ModelAttribute method is a common way to to retrieve an attribute from the database, which
may optionally be stored between requests through the use of @SessionAttributes. In some cases it
may be convenient to retrieve the attribute by using an URI template variable and a type converter. Here
is an example:

@RequestMapping(value="/accounts/{account}", method = RequestMethod.PUT)
public String save(@ModelAttribute("account") Account account) {

}

In this example the name of the model attribute (i.e. "account") matches the name of a URI template
variable. If you register Converter<String, Account> that can turn the String account value
into an Account instance, then the above example will work without the need for an
@ModelAttribute method.

The next step is data binding. The WebDataBinder class matches request parameter names —
including query string parameters and form fields — to model attribute fields by name. Matching fields
are populated after type conversion (from String to the target field type) has been applied where
necessary. Data binding and validation are covered in Chapter 6, Validation, Data Binding, and Type
Conversion. Customizing the data binding process for a controller level is covered in the section called
“Customizing WebDataBinder initialization”.

As a result of data binding there may be errors such as missing required fields or type conversion errors.
To check for such errors add a BindingResult argument immediately following the
@ModelAttribute argument:

@RequestMapping(value="/owners/{ownerId}/pets/{petId}/edit", method = RequestMethod.POST)
public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result) {

if (result.hasErrors()) {
return "petForm";

Spring Framework

3.1 Reference Documentation 460

}

// ...

}

With a BindingResult you can check if errors were found in which case it's common to render the
same form where the errors can be shown with the help of Spring's <errors> form tag.

In addition to data binding you can also invoke validation using your own custom validator passing the
same BindingResult that was used to record data binding errors. That allows for data binding and
validation errors to be accumulated in one place and subsequently reported back to the user:

@RequestMapping(value="/owners/{ownerId}/pets/{petId}/edit", method = RequestMethod.POST)
public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result) {

new PetValidator().validate(pet, result);
if (result.hasErrors()) {

return "petForm";
}

// ...
}

Or you can have validation invoked automatically by adding the JSR-303 @Valid annotation:

@RequestMapping(value="/owners/{ownerId}/pets/{petId}/edit", method = RequestMethod.POST)
public String processSubmit(@Valid @ModelAttribute("pet") Pet pet, BindingResult result) {

if (result.hasErrors()) {
return "petForm";

}

// ...
}

See Section 6.7, “Spring 3 Validation” and Chapter 6, Validation, Data Binding, and Type Conversion for
details on how to configure and use validation.

Using @SessionAttributes to store model attributes in the HTTP session between
requests

The type-level @SessionAttributes annotation declares session attributes used by a specific
handler. This will typically list the names of model attributes or types of model attributes which should be
transparently stored in the session or some conversational storage, serving as form-backing beans
between subsequent requests.

The following code snippet shows the usage of this annotation, specifying the model attribute name:

@Controller
@RequestMapping("/editPet.do")
@SessionAttributes("pet")
public class EditPetForm {

// ...

Spring Framework

3.1 Reference Documentation 461

}

Note

When using controller interfaces (e.g., for AOP proxying), make sure to consistently put all
your mapping annotations - such as @RequestMapping and @SessionAttributes -
on the controller interface rather than on the implementation class.

Specifying redirect and flash attributes

By default all model attributes are considered to be exposed as URI template variables in the redirect
URL. Of the remaining attributes those that are primitive types or collections/arrays of primitive types are
automatically appended as query parameters.

In annotated controllers however the model may contain additional attributes originally added for
rendering purposes (e.g. drop-down field values). To gain precise control over the attributes used in a
redirect scenario, an @RequestMapping method can declare an argument of type
RedirectAttributes and use it to add attributes for use in RedirectView. If the controller
method does redirect, the content of RedirectAttributes is used. Otherwise the content of the
default Model is used.

The RequestMappingHandlerAdapter provides a flag called
"ignoreDefaultModelOnRedirect" that can be used to indicate the content of the default
Model should never be used if a controller method redirects. Instead the controller method should
declare an attribute of type RedirectAttributes or if it doesn't do so no attributes should be passed
on to RedirectView. Both the MVC namespace and the MVC Java config (via @EnableWebMvc)
keep this flag set to false in order to maintain backwards compatibility. However, for new applications
we recommend setting it to true

The RedirectAttributes interface can also be used to add flash attributes. Unlike other redirect
attributes, which end up in the target redirect URL, flash attributes are saved in the HTTP session (and
hence do not appear in the URL). The model of the controller serving the target redirect URL
automatically receives these flash attributes after which they are removed from the session. See
Section 16.6, “Using flash attributes” for an overview of the general support for flash attributes in Spring
MVC.

Working with "application/x-www-form-urlencoded" data

The previous sections covered use of @ModelAttribute to support form submission requests from
browser clients. The same annotation is recommended for use with requests from non-browser clients as
well. However there is one notable difference when it comes to working with HTTP PUT requests.
Browsers can submit form data via HTTP GET or HTTP POST. Non-browser clients can also submit
forms via HTTP PUT. This presents a challenge because the Servlet specification requires the
ServletRequest.getParameter*() family of methods to support form field access only for
HTTP POST, not for HTTP PUT.

Spring Framework

3.1 Reference Documentation 462

To support HTTP PUT requests, the spring-web module provides the filter
HttpPutFormContentFilter, which can be configured in web.xml:

<filter>
<filter-name>httpPutFormFilter</filter-name>
<filter-class>org.springframework.web.filter.HttpPutFormContentFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>httpPutFormFilter</filter-name>
<servlet-name>dispatcherServlet</servlet-name>

</filter-mapping>

<servlet>
<servlet-name>dispatcherServlet</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

</servlet>

The above filter intercepts HTTP PUT requests with content type
application/x-www-form-urlencoded, reads the form data from the body of the request, and
wraps the ServletRequest in order to make the form data available through the
ServletRequest.getParameter*() family of methods.

Mapping cookie values with the @CookieValue annotation

The @CookieValue annotation allows a method parameter to be bound to the value of an HTTP
cookie.

Let us consider that the following cookie has been received with an http request:

JSESSIONID=415A4AC178C59DACE0B2C9CA727CDD84

The following code sample demonstrates how to get the value of the JSESSIONID cookie:

@RequestMapping("/displayHeaderInfo.do")
public void displayHeaderInfo(@CookieValue("JSESSIONID") String cookie) {

//...

}

Type conversion is applied automatically if the target method parameter type is not String. See the
section called “Method Parameters And Type Conversion”.

This annotation is supported for annotated handler methods in Servlet and Portlet environments.

Mapping request header attributes with the @RequestHeader annotation

The @RequestHeader annotation allows a method parameter to be bound to a request header.

Here is a sample request header:

Spring Framework

3.1 Reference Documentation 463

Host localhost:8080
Accept text/html,application/xhtml+xml,application/xml;q=0.9
Accept-Language fr,en-gb;q=0.7,en;q=0.3
Accept-Encoding gzip,deflate
Accept-Charset ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive 300

The following code sample demonstrates how to get the value of the Accept-Encoding and
Keep-Alive headers:

@RequestMapping("/displayHeaderInfo.do")
public void displayHeaderInfo(@RequestHeader("Accept-Encoding") String encoding,

@RequestHeader("Keep-Alive") long keepAlive) {

//...

}

Type conversion is applied automatically if the method parameter is not String. See the section called
“Method Parameters And Type Conversion”.

Tip

Built-in support is available for converting a comma-separated string into an array/collection
of strings or other types known to the type conversion system. For example a method
parameter annotated with @RequestHeader("Accept") may be of type String but
also String[] or List<String>.

This annotation is supported for annotated handler methods in Servlet and Portlet environments.

Method Parameters And Type Conversion

String-based values extracted from the request including request parameters, path variables, request
headers, and cookie values may need to be converted to the target type of the method parameter or field
(e.g., binding a request parameter to a field in an @ModelAttribute parameter) they're bound to. If
the target type is not String, Spring automatically converts to the appropriate type. All simple types
such as int, long, Date, etc. are supported. You can further customize the conversion process through a
WebDataBinder (see the section called “Customizing WebDataBinder initialization”) or by registering
Formatters with the FormattingConversionService (see Section 6.6, “Spring 3 Field
Formatting”).

Customizing WebDataBinder initialization

To customize request parameter binding with PropertyEditors through Spring's WebDataBinder, you
can use either @InitBinder-annotated methods within your controller or externalize your
configuration by providing a custom WebBindingInitializer.

Customizing data binding with @InitBinder

Spring Framework

3.1 Reference Documentation 464

Annotating controller methods with @InitBinder allows you to configure web data binding directly
within your controller class. @InitBinder identifies methods that initialize the WebDataBinder that
will be used to populate command and form object arguments of annotated handler methods.

Such init-binder methods support all arguments that @RequestMapping supports, except for
command/form objects and corresponding validation result objects. Init-binder methods must not have a
return value. Thus, they are usually declared as void. Typical arguments include WebDataBinder in
combination with WebRequest or java.util.Locale, allowing code to register context-specific
editors.

The following example demonstrates the use of @InitBinder to configure a CustomDateEditor
for all java.util.Date form properties.

@Controller
public class MyFormController {

@InitBinder
public void initBinder(WebDataBinder binder) {

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
dateFormat.setLenient(false);
binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false));

}

// ...
}

Configuring a custom WebBindingInitializer

To externalize data binding initialization, you can provide a custom implementation of the
WebBindingInitializer interface, which you then enable by supplying a custom bean
configuration for an AnnotationMethodHandlerAdapter, thus overriding the default
configuration.

The following example from the PetClinic application shows a configuration using a custom
implementation of the WebBindingInitializer interface,
org.springframework.samples.petclinic.web.ClinicBindingInitializer, which
configures PropertyEditors required by several of the PetClinic controllers.

<bean class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">
<property name="cacheSeconds" value="0" />
<property name="webBindingInitializer">

<bean class="org.springframework.samples.petclinic.web.ClinicBindingInitializer" />
</property>

</bean>

Support for the 'Last-Modified' Response Header To Facilitate Content Caching

An @RequestMapping method may wish to support 'Last-Modified' HTTP requests, as defined
in the contract for the Servlet API's getLastModified method, to facilitate content caching. This
involves calculating a lastModified long value for a given request, comparing it against the
'If-Modified-Since' request header value, and potentially returning a response with status code

Spring Framework

3.1 Reference Documentation 465

304 (Not Modified). An annotated controller method can achieve that as follows:

@RequestMapping
public String myHandleMethod(WebRequest webRequest, Model model) {

long lastModified = // 1. application-specific calculation

if (request.checkNotModified(lastModified)) {
// 2. shortcut exit - no further processing necessary
return null;

}

// 3. or otherwise further request processing, actually preparing content
model.addAttribute(...);
return "myViewName";

}

There are two key elements to note: calling request.checkNotModified(lastModified) and
returning null. The former sets the response status to 304 before it returns true. The latter, in
combination with the former, causes Spring MVC to do no further processing of the request.

16.4 Handler mappings

In previous versions of Spring, users were required to define one or more HandlerMapping beans in
the web application context to map incoming web requests to appropriate handlers. With the introduction
of annotated controllers, you generally don't need to do that because the
RequestMappingHandlerMapping automatically looks for @RequestMapping annotations on
all @Controller beans. However, do keep in mind that all HandlerMapping classes extending
from AbstractHandlerMapping have the following properties that you can use to customize their
behavior:

interceptors
List of interceptors to use. HandlerInterceptors are discussed in the section called
“Intercepting requests with a HandlerInterceptor”.

defaultHandler
Default handler to use, when this handler mapping does not result in a matching handler.

order
Based on the value of the order property (see the org.springframework.core.Ordered
interface), Spring sorts all handler mappings available in the context and applies the first matching
handler.

alwaysUseFullPath
If true , Spring uses the full path within the current Servlet context to find an appropriate handler. If
false (the default), the path within the current Servlet mapping is used. For example, if a Servlet is
mapped using /testing/* and the alwaysUseFullPath property is set to true,
/testing/viewPage.html is used, whereas if the property is set to false, /viewPage.html
is used.

Spring Framework

3.1 Reference Documentation 466

urlDecode
Defaults to true, as of Spring 2.5. If you prefer to compare encoded paths, set this flag to false.
However, the HttpServletRequest always exposes the Servlet path in decoded form. Be aware
that the Servlet path will not match when compared with encoded paths.

The following example shows how to configure an interceptor:

<beans>
<bean id="handlerMapping" class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping">

<property name="interceptors">
<bean class="example.MyInterceptor"/>

</property>
</bean>

<beans>

Intercepting requests with a HandlerInterceptor

Spring's handler mapping mechanism includes handler interceptors, which are useful when you want to
apply specific functionality to certain requests, for example, checking for a principal.

Interceptors located in the handler mapping must implement HandlerInterceptor from the
org.springframework.web.servlet package. This interface defines three methods:
preHandle(..) is called before the actual handler is executed; postHandle(..) is called after the
handler is executed; and afterCompletion(..) is called after the complete request has finished.
These three methods should provide enough flexibility to do all kinds of preprocessing and
postprocessing.

The preHandle(..) method returns a boolean value. You can use this method to break or continue the
processing of the execution chain. When this method returns true, the handler execution chain will
continue; when it returns false, the DispatcherServlet assumes the interceptor itself has taken care
of requests (and, for example, rendered an appropriate view) and does not continue executing the other
interceptors and the actual handler in the execution chain.

Interceptors can be configured using the interceptors property, which is present on all
HandlerMapping classes extending from AbstractHandlerMapping. This is shown in the
example below:

<beans>
<bean id="handlerMapping"

class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping">
<property name="interceptors">

<list>
<ref bean="officeHoursInterceptor"/>

</list>
</property>

</bean>

<bean id="officeHoursInterceptor"
class="samples.TimeBasedAccessInterceptor">

<property name="openingTime" value="9"/>
<property name="closingTime" value="18"/>

Spring Framework

3.1 Reference Documentation 467

</bean>
<beans>

package samples;

public class TimeBasedAccessInterceptor extends HandlerInterceptorAdapter {

private int openingTime;
private int closingTime;

public void setOpeningTime(int openingTime) {
this.openingTime = openingTime;

}

public void setClosingTime(int closingTime) {
this.closingTime = closingTime;

}

public boolean preHandle(
HttpServletRequest request,
HttpServletResponse response,
Object handler) throws Exception {

Calendar cal = Calendar.getInstance();
int hour = cal.get(HOUR_OF_DAY);
if (openingTime <= hour && hour < closingTime) {

return true;
} else {

response.sendRedirect("http://host.com/outsideOfficeHours.html");
return false;

}
}

}

Any request handled by this mapping is intercepted by the TimeBasedAccessInterceptor. If the
current time is outside office hours, the user is redirected to a static HTML file that says, for example,
you can only access the website during office hours.

Note

When using the RequestMappingHandlerMapping the actual handler is an instance of
HandlerMethod which identifies the specific controller method that will be invoked.

As you can see, the Spring adapter class HandlerInterceptorAdapter makes it easier to extend
the HandlerInterceptor interface.

Tip

In the example above, the configured interceptor will apply to all requests handled with
annotated controller methods. If you want to narrow down the URL paths to which an
interceptor applies, you can use the MVC namespace to do that. See ???.

16.5 Resolving views

Spring Framework

3.1 Reference Documentation 468

All MVC frameworks for web applications provide a way to address views. Spring provides view
resolvers, which enable you to render models in a browser without tying you to a specific view
technology. Out of the box, Spring enables you to use JSPs, Velocity templates and XSLT views, for
example. See Chapter 17, View technologies for a discussion of how to integrate and use a number of
disparate view technologies.

The two interfaces that are important to the way Spring handles views are ViewResolver and View.
The ViewResolver provides a mapping between view names and actual views. The View interface
addresses the preparation of the request and hands the request over to one of the view technologies.

Resolving views with the ViewResolver interface

As discussed in Section 16.3, “Implementing Controllers”, all handler methods in the Spring Web MVC
controllers must resolve to a logical view name, either explicitly (e.g., by returning a String, View, or
ModelAndView) or implicitly (i.e., based on conventions). Views in Spring are addressed by a logical
view name and are resolved by a view resolver. Spring comes with quite a few view resolvers. This table
lists most of them; a couple of examples follow.

Table 16.3. View resolvers

ViewResolver Description

AbstractCachingViewResolverAbstract view resolver that caches views. Often views need
preparation before they can be used; extending this view resolver
provides caching.

XmlViewResolver Implementation of ViewResolver that accepts a configuration
file written in XML with the same DTD as Spring's XML bean
factories. The default configuration file is
/WEB-INF/views.xml.

ResourceBundleViewResolverImplementation of ViewResolver that uses bean definitions in a
ResourceBundle, specified by the bundle base name. Typically
you define the bundle in a properties file, located in the classpath.
The default file name is views.properties.

UrlBasedViewResolver Simple implementation of the ViewResolver interface that
effects the direct resolution of logical view names to URLs, without
an explicit mapping definition. This is appropriate if your logical
names match the names of your view resources in a straightforward
manner, without the need for arbitrary mappings.

InternalResourceViewResolverConvenient subclass of UrlBasedViewResolver that supports
InternalResourceView (in effect, Servlets and JSPs) and
subclasses such as JstlView and TilesView. You can specify
the view class for all views generated by this resolver by using
setViewClass(..). See the Javadocs for the

Spring Framework

3.1 Reference Documentation 469

ViewResolver Description

UrlBasedViewResolver class for details.

VelocityViewResolver /
FreeMarkerViewResolver

Convenient subclass of UrlBasedViewResolver that supports
VelocityView (in effect, Velocity templates) or
FreeMarkerView ,respectively, and custom subclasses of them.

ContentNegotiatingViewResolverImplementation of the ViewResolver interface that resolves a
view based on the request file name or Accept header. See the
section called “ContentNegotiatingViewResolver”.

As an example, with JSP as a view technology, you can use the UrlBasedViewResolver. This view
resolver translates a view name to a URL and hands the request over to the RequestDispatcher to render
the view.

<bean id="viewResolver"
class="org.springframework.web.servlet.view.UrlBasedViewResolver">

<property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>

When returning test as a logical view name, this view resolver forwards the request to the
RequestDispatcher that will send the request to /WEB-INF/jsp/test.jsp.

When you combine different view technologies in a web application, you can use the
ResourceBundleViewResolver:

<bean id="viewResolver"
class="org.springframework.web.servlet.view.ResourceBundleViewResolver">

<property name="basename" value="views"/>
<property name="defaultParentView" value="parentView"/>

</bean>

The ResourceBundleViewResolver inspects the ResourceBundle identified by the basename,
and for each view it is supposed to resolve, it uses the value of the property [viewname].(class) as
the view class and the value of the property [viewname].url as the view url. Examples can be found
in the next chapter which covers view technologies. As you can see, you can identify a parent view, from
which all views in the properties file “extend”. This way you can specify a default view class, for
example.

Note

Subclasses of AbstractCachingViewResolver cache view instances that they resolve.
Caching improves performance of certain view technologies. It's possible to turn off the
cache by setting the cache property to false. Furthermore, if you must refresh a certain
view at runtime (for example when a Velocity template is modified), you can use the
removeFromCache(String viewName, Locale loc) method.

Spring Framework

3.1 Reference Documentation 470

Chaining ViewResolvers

Spring supports multiple view resolvers. Thus you can chain resolvers and, for example, override specific
views in certain circumstances. You chain view resolvers by adding more than one resolver to your
application context and, if necessary, by setting the order property to specify ordering. Remember, the
higher the order property, the later the view resolver is positioned in the chain.

In the following example, the chain of view resolvers consists of two resolvers, an
InternalResourceViewResolver, which is always automatically positioned as the last resolver in
the chain, and an XmlViewResolver for specifying Excel views. Excel views are not supported by the
InternalResourceViewResolver.

<bean id="jspViewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>

<bean id="excelViewResolver" class="org.springframework.web.servlet.view.XmlViewResolver">
<property name="order" value="1"/>
<property name="location" value="/WEB-INF/views.xml"/>

</bean>

<!-- in views.xml -->

<beans>
<bean name="report" class="org.springframework.example.ReportExcelView"/>

</beans>

If a specific view resolver does not result in a view, Spring examines the context for other view resolvers.
If additional view resolvers exist, Spring continues to inspect them until a view is resolved. If no view
resolver returns a view, Spring throws a ServletException.

The contract of a view resolver specifies that a view resolver can return null to indicate the view could
not be found. Not all view resolvers do this, however, because in some cases, the resolver simply cannot
detect whether or not the view exists. For example, the InternalResourceViewResolver uses the
RequestDispatcher internally, and dispatching is the only way to figure out if a JSP exists, but this
action can only execute once. The same holds for the VelocityViewResolver and some others.
Check the Javadoc for the view resolver to see whether it reports non-existing views. Thus, putting an
InternalResourceViewResolver in the chain in a place other than the last, results in the chain
not being fully inspected, because the InternalResourceViewResolver will always return a
view!

Redirecting to views

As mentioned previously, a controller typically returns a logical view name, which a view resolver
resolves to a particular view technology. For view technologies such as JSPs that are processed through
the Servlet or JSP engine, this resolution is usually handled through the combination of
InternalResourceViewResolver and InternalResourceView, which issues an internal
forward or include via the Servlet API's RequestDispatcher.forward(..) method or

Spring Framework

3.1 Reference Documentation 471

RequestDispatcher.include() method. For other view technologies, such as Velocity, XSLT,
and so on, the view itself writes the content directly to the response stream.

It is sometimes desirable to issue an HTTP redirect back to the client, before the view is rendered. This is
desirable, for example, when one controller has been called with POSTed data, and the response is
actually a delegation to another controller (for example on a successful form submission). In this case, a
normal internal forward will mean that the other controller will also see the same POST data, which is
potentially problematic if it can confuse it with other expected data. Another reason to perform a redirect
before displaying the result is to eliminate the possibility of the user submitting the form data multiple
times. In this scenario, the browser will first send an initial POST; it will then receive a response to
redirect to a different URL; and finally the browser will perform a subsequent GET for the URL named in
the redirect response. Thus, from the perspective of the browser, the current page does not reflect the
result of a POST but rather of a GET. The end effect is that there is no way the user can accidentally
re-POST the same data by performing a refresh. The refresh forces a GET of the result page, not a resend
of the initial POST data.

RedirectView

One way to force a redirect as the result of a controller response is for the controller to create and return
an instance of Spring's RedirectView. In this case, DispatcherServlet does not use the normal
view resolution mechanism. Rather because it has been given the (redirect) view already, the
DispatcherServlet simply instructs the view to do its work.

The RedirectView issues an HttpServletResponse.sendRedirect() call that returns to the
client browser as an HTTP redirect. By default all model attributes are considered to be exposed as URI
template variables in the redirect URL. Of the remaining attributes those that are primitive types or
collections/arrays of primitive types are automatically appended as query parameters.

Appending primitive type attributes as query parameters may be the desired result if a model instance was
prepared specifically for the redirect. However, in annotated controllers the model may contain additional
attributes added for rendering purposes (e.g. drop-down field values). To avoid the possibility of having
such attributes appear in the URL an annotated controller can declare an argument of type
RedirectAttributes and use it to specify the exact attributes to make available to
RedirectView. If the controller method decides to redirect, the content of RedirectAttributes
is used. Otherwise the content of the model is used.

Note that URI template variables from the present request are automatically made available when
expanding a redirect URL and do not need to be added explicitly neither through Model nor
RedirectAttributes. For example:

@RequestMapping(value = "/files/{path}", method = RequestMethod.POST)
public String upload(...) {

// ...
return "redirect:files/{path}";

}

If you use RedirectView and the view is created by the controller itself, it is recommended that you
configure the redirect URL to be injected into the controller so that it is not baked into the controller but

Spring Framework

3.1 Reference Documentation 472

configured in the context along with the view names. The next section discusses this process.

The redirect: prefix

While the use of RedirectView works fine, if the controller itself creates the RedirectView, there
is no avoiding the fact that the controller is aware that a redirection is happening. This is really
suboptimal and couples things too tightly. The controller should not really care about how the response
gets handled. In general it should operate only in terms of view names that have been injected into it.

The special redirect: prefix allows you to accomplish this. If a view name is returned that has the
prefix redirect:, the UrlBasedViewResolver (and all subclasses) will recognize this as a special
indication that a redirect is needed. The rest of the view name will be treated as the redirect URL.

The net effect is the same as if the controller had returned a RedirectView, but now the controller
itself can simply operate in terms of logical view names. A logical view name such as
redirect:/myapp/some/resource will redirect relative to the current Servlet context, while a
name such as redirect:http://myhost.com/some/arbitrary/path will redirect to an
absolute URL.

The forward: prefix

It is also possible to use a special forward: prefix for view names that are ultimately resolved by
UrlBasedViewResolver and subclasses. This creates an InternalResourceView (which
ultimately does a RequestDispatcher.forward()) around the rest of the view name, which is
considered a URL. Therefore, this prefix is not useful with InternalResourceViewResolver and
InternalResourceView (for JSPs for example). But the prefix can be helpful when you are
primarily using another view technology, but still want to force a forward of a resource to be handled by
the Servlet/JSP engine. (Note that you may also chain multiple view resolvers, instead.)

As with the redirect: prefix, if the view name with the forward: prefix is injected into the
controller, the controller does not detect that anything special is happening in terms of handling the
response.

ContentNegotiatingViewResolver

The ContentNegotiatingViewResolver does not resolve views itself but rather delegates to
other view resolvers, selecting the view that resembles the representation requested by the client. Two
strategies exist for a client to request a representation from the server:

• Use a distinct URI for each resource, typically by using a different file extension in the URI. For
example, the URI http://www.example.com/users/fred.pdf requests a PDF
representation of the user fred, and http://www.example.com/users/fred.xml requests an
XML representation.

• Use the same URI for the client to locate the resource, but set the Accept HTTP request header to list

Spring Framework

3.1 Reference Documentation 473

the media types that it understands. For example, an HTTP request for
http://www.example.com/users/fred with an Accept header set to application/pdf
requests a PDF representation of the user fred, while http://www.example.com/users/fred
with an Accept header set to text/xml requests an XML representation. This strategy is known as
content negotiation.

Note

One issue with the Accept header is that it is impossible to set it in a web browser within
HTML. For example, in Firefox, it is fixed to:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

For this reason it is common to see the use of a distinct URI for each representation when
developing browser based web applications.

To support multiple representations of a resource, Spring provides the
ContentNegotiatingViewResolver to resolve a view based on the file extension or Accept
header of the HTTP request. ContentNegotiatingViewResolver does not perform the view
resolution itself but instead delegates to a list of view resolvers that you specify through the bean property
ViewResolvers.

The ContentNegotiatingViewResolver selects an appropriate View to handle the request by
comparing the request media type(s) with the media type (also known as Content-Type) supported by
the View associated with each of its ViewResolvers. The first View in the list that has a compatible
Content-Type returns the representation to the client. If a compatible view cannot be supplied by the
ViewResolver chain, then the list of views specified through the DefaultViews property will be
consulted. This latter option is appropriate for singleton Views that can render an appropriate
representation of the current resource regardless of the logical view name. The Accept header may
include wild cards, for example text/*, in which case a View whose Content-Type was text/xml is
a compatible match.

To support the resolution of a view based on a file extension, use the
ContentNegotiatingViewResolver bean property mediaTypes to specify a mapping of file
extensions to media types. For more information on the algorithm used to determine the request media
type, refer to the API documentation for ContentNegotiatingViewResolver.

Here is an example configuration of a ContentNegotiatingViewResolver:

<bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver">
<property name="mediaTypes">

<map>
<entry key="atom" value="application/atom+xml"/>
<entry key="html" value="text/html"/>
<entry key="json" value="application/json"/>

</map>
</property>
<property name="viewResolvers">

<list>

Spring Framework

3.1 Reference Documentation 474

http://en.wikipedia.org/wiki/Internet_media_type
http://en.wikipedia.org/wiki/Content_negotiation

<bean class="org.springframework.web.servlet.view.BeanNameViewResolver"/>
<bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>
</list>

</property>
<property name="defaultViews">

<list>
<bean class="org.springframework.web.servlet.view.json.MappingJacksonJsonView" />

</list>
</property>

</bean>

<bean id="content" class="com.springsource.samples.rest.SampleContentAtomView"/>

The InternalResourceViewResolver handles the translation of view names and JSP pages,
while the BeanNameViewResolver returns a view based on the name of a bean. (See "Resolving
views with the ViewResolver interface" for more details on how Spring looks up and instantiates a view.)
In this example, the content bean is a class that inherits from AbstractAtomFeedView, which
returns an Atom RSS feed. For more information on creating an Atom Feed representation, see the
section Atom Views.

In the above configuration, if a request is made with an .html extension, the view resolver looks for a
view that matches the text/html media type. The InternalResourceViewResolver provides
the matching view for text/html. If the request is made with the file extension .atom, the view
resolver looks for a view that matches the application/atom+xml media type. This view is
provided by the BeanNameViewResolver that maps to the SampleContentAtomView if the view
name returned is content. If the request is made with the file extension .json, the
MappingJacksonJsonView instance from the DefaultViews list will be selected regardless of
the view name. Alternatively, client requests can be made without a file extension but with the Accept
header set to the preferred media-type, and the same resolution of request to views would occur.

Note

If ContentNegotiatingViewResolver's list of ViewResolvers is not configured
explicitly, it automatically uses any ViewResolvers defined in the application context.

The corresponding controller code that returns an Atom RSS feed for a URI of the form
http://localhost/content.atom or http://localhost/content with an Accept
header of application/atom+xml is shown below.

@Controller
public class ContentController {

private List<SampleContent> contentList = new ArrayList<SampleContent>();

@RequestMapping(value="/content", method=RequestMethod.GET)
public ModelAndView getContent() {

ModelAndView mav = new ModelAndView();
mav.setViewName("content");
mav.addObject("sampleContentList", contentList);
return mav;

Spring Framework

3.1 Reference Documentation 475

}

}

16.6 Using flash attributes

Flash attributes provide a way for one request to store attributes intended for use in another. This is most
commonly needed when redirecting — for example, the Post/Redirect/Get pattern. Flash attributes are
saved temporarily before the redirect (typically in the session) to be made available to the request after the
redirect and removed immediately.

Spring MVC has two main abstractions in support of flash attributes. FlashMap is used to hold flash
attributes while FlashMapManager is used to store, retrieve, and manage FlashMap instances.

Flash attribute support is always "on" and does not need to enabled explicitly although if not used, it
never causes HTTP session creation. On each request there is an "input" FlashMap with attributes
passed from a previous request (if any) and an "output" FlashMap with attributes to save for a
subsequent request. Both FlashMap instances are accessible from anywhere in Spring MVC through
static methods in RequestContextUtils.

Annotated controllers typically do not need to work with FlashMap directly. Instead an
@RequestMapping method can accept an argument of type RedirectAttributes and use it to
add flash attributes for a redirect scenario. Flash attributes added via RedirectAttributes are
automatically propagated to the "output" FlashMap. Similarly after the redirect attributes from the "input"
FlashMap are automatically added to the Model of the controller serving the target URL.

Matching requests to flash attributes

The concept of flash attributes exists in many other Web frameworks and has proven to be exposed
sometimes to concurrency issues. This is because by definition flash attributes are to be stored until
the next request. However the very "next" request may not be the intended recipient but another
asynchronous request (e.g. polling or resource requests) in which case the flash attributes are
removed too early.

To reduce the possibility of such issues, RedirectView automatically "stamps" FlashMap
instances with the path and query parameters of the target redirect URL. In turn the default
FlashMapManager matches that information to incoming requests when looking up the "input"
FlashMap.

This does not eliminate the possibility of a concurrency issue entirely but nevertheless reduces it
greatly with information that is already available in the redirect URL. Therefore the use of flash
attributes is recommended mainly for redirect scenarios .

Spring Framework

3.1 Reference Documentation 476

16.7 Building URIs

Spring MVC provides a mechanism for building and encoding a URI using UriComponentsBuilder
and UriComponents.

For example you can expand and encode a URI template string:

UriComponents uriComponents =
UriComponentsBuilder.fromUriString("http://example.com/hotels/{hotel}/bookings/{booking}").build();

URI uri = uriComponents.expand("42", "21").encode().toUri();

Note that UriComponents is immutable and the expand() and encode() operations return new
instances if necessary.

You can also expand and encode using individual URI components:

UriComponents uriComponents =
UriComponentsBuilder.newInstance()

.scheme("http").host("example.com").path("/hotels/{hotel}/bookings/{booking}").build()

.expand("42", "21")

.encode();

In a Servlet environment the ServletUriComponentsBuilder sub-class provides static factory
methods to copy available URL information from a Servlet requests:

HttpServletRequest request = ...

// Re-use host, scheme, port, path and query string
// Replace the "accountId" query param

ServletUriComponentsBuilder ucb =
ServletUriComponentsBuilder.fromRequest(request).replaceQueryParam("accountId", "{id}").build()

.expand("123")

.encode();

Alternatively, you may choose to copy a subset of the available information up to and including the
context path:

// Re-use host, port and context path
// Append "/accounts" to the path

ServletUriComponentsBuilder ucb =
ServletUriComponentsBuilder.fromContextPath(request).path("/accounts").build()

Or in cases where the DispatcherServlet is mapped by name (e.g. /main/*), you can also have
the literal part of the servlet mapping included:

// Re-use host, port, context path
// Append the literal part of the servlet mapping to the path
// Append "/accounts" to the path

ServletUriComponentsBuilder ucb =
ServletUriComponentsBuilder.fromServletMapping(request).path("/accounts").build()

Spring Framework

3.1 Reference Documentation 477

16.8 Using locales

Most parts of Spring's architecture support internationalization, just as the Spring web MVC framework
does. DispatcherServlet enables you to automatically resolve messages using the client's locale.
This is done with LocaleResolver objects.

When a request comes in, the DispatcherServlet looks for a locale resolver, and if it finds one it
tries to use it to set the locale. Using the RequestContext.getLocale() method, you can always
retrieve the locale that was resolved by the locale resolver.

In addition to automatic locale resolution, you can also attach an interceptor to the handler mapping (see
the section called “Intercepting requests with a HandlerInterceptor” for more information on handler
mapping interceptors) to change the locale under specific circumstances, for example, based on a
parameter in the request.

Locale resolvers and interceptors are defined in the org.springframework.web.servlet.i18n
package and are configured in your application context in the normal way. Here is a selection of the
locale resolvers included in Spring.

AcceptHeaderLocaleResolver

This locale resolver inspects the accept-language header in the request that was sent by the client
(e.g., a web browser). Usually this header field contains the locale of the client's operating system.

CookieLocaleResolver

This locale resolver inspects a Cookie that might exist on the client to see if a locale is specified. If so, it
uses the specified locale. Using the properties of this locale resolver, you can specify the name of the
cookie as well as the maximum age. Find below an example of defining a CookieLocaleResolver.

<bean id="localeResolver" class="org.springframework.web.servlet.i18n.CookieLocaleResolver">

<property name="cookieName" value="clientlanguage"/>

<!-- in seconds. If set to -1, the cookie is not persisted (deleted when browser shuts down) -->
<property name="cookieMaxAge" value="100000">

</bean>

Table 16.4. CookieLocaleResolver properties

Property Default Description

cookieName classname +
LOCALE

The name of the cookie

cookieMaxAge Integer.MAX_INT The maximum time a cookie will stay persistent on the client.

Spring Framework

3.1 Reference Documentation 478

Property Default Description

If -1 is specified, the cookie will not be persisted; it will only
be available until the client shuts down his or her browser.

cookiePath / Limits the visibility of the cookie to a certain part of your
site. When cookiePath is specified, the cookie will only be
visible to that path and the paths below it.

SessionLocaleResolver

The SessionLocaleResolver allows you to retrieve locales from the session that might be
associated with the user's request.

LocaleChangeInterceptor

You can enable changing of locales by adding the LocaleChangeInterceptor to one of the handler
mappings (see Section 16.4, “Handler mappings”). It will detect a parameter in the request and change the
locale. It calls setLocale() on the LocaleResolver that also exists in the context. The following
example shows that calls to all *.view resources containing a parameter named siteLanguage will
now change the locale. So, for example, a request for the following URL,
http://www.sf.net/home.view?siteLanguage=nl will change the site language to Dutch.

<bean id="localeChangeInterceptor"
class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">

<property name="paramName" value="siteLanguage"/>
</bean>

<bean id="localeResolver"
class="org.springframework.web.servlet.i18n.CookieLocaleResolver"/>

<bean id="urlMapping"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="interceptors">
<list>

<ref bean="localeChangeInterceptor"/>
</list>

</property>
<property name="mappings">

<value>/**/*.view=someController</value>
</property>

</bean>

16.9 Using themes

Overview of themes

You can apply Spring Web MVC framework themes to set the overall look-and-feel of your application,

Spring Framework

3.1 Reference Documentation 479

thereby enhancing user experience. A theme is a collection of static resources, typically style sheets and
images, that affect the visual style of the application.

Defining themes

To use themes in your web application, you must set up an implementation of the
org.springframework.ui.context.ThemeSource interface. The
WebApplicationContext interface extends ThemeSource but delegates its responsibilities to a
dedicated implementation. By default the delegate will be an
org.springframework.ui.context.support.ResourceBundleThemeSource
implementation that loads properties files from the root of the classpath. To use a custom ThemeSource
implementation or to configure the base name prefix of the ResourceBundleThemeSource, you can
register a bean in the application context with the reserved name themeSource. The web application
context automatically detects a bean with that name and uses it.

When using the ResourceBundleThemeSource, a theme is defined in a simple properties file. The
properties file lists the resources that make up the theme. Here is an example:

styleSheet=/themes/cool/style.css
background=/themes/cool/img/coolBg.jpg

The keys of the properties are the names that refer to the themed elements from view code. For a JSP, you
typically do this using the spring:theme custom tag, which is very similar to the spring:message
tag. The following JSP fragment uses the theme defined in the previous example to customize the look
and feel:

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<html>

<head>
<link rel="stylesheet" href="<spring:theme code='styleSheet'/>" type="text/css"/>

</head>
<body style="background=<spring:theme code='background'/>">

...
</body>

</html>

By default, the ResourceBundleThemeSource uses an empty base name prefix. As a result, the
properties files are loaded from the root of the classpath. Thus you would put the cool.properties
theme definition in a directory at the root of the classpath, for example, in /WEB-INF/classes. The
ResourceBundleThemeSource uses the standard Java resource bundle loading mechanism,
allowing for full internationalization of themes. For example, we could have a
/WEB-INF/classes/cool_nl.properties that references a special background image with
Dutch text on it.

Theme resolvers

After you define themes, as in the preceding section, you decide which theme to use. The

Spring Framework

3.1 Reference Documentation 480

DispatcherServlet will look for a bean named themeResolver to find out which
ThemeResolver implementation to use. A theme resolver works in much the same way as a
LocaleResolver. It detects the theme to use for a particular request and can also alter the request's
theme. The following theme resolvers are provided by Spring:

Table 16.5. ThemeResolver implementations

Class Description

FixedThemeResolverSelects a fixed theme, set using the defaultThemeName property.

SessionThemeResolverThe theme is maintained in the user's HTTP session. It only needs to be set
once for each session, but is not persisted between sessions.

CookieThemeResolverThe selected theme is stored in a cookie on the client.

Spring also provides a ThemeChangeInterceptor that allows theme changes on every request with
a simple request parameter.

16.10 Spring's multipart (file upload) support

Introduction

Spring's built-in multipart support handles file uploads in web applications. You enable this multipart
support with pluggable MultipartResolver objects, defined in the
org.springframework.web.multipart package. Spring provides one MultipartResolver
implementation for use with Commons FileUpload and another for use with Servlet 3.0 multipart request
parsing.

By default, Spring does no multipart handling, because some developers want to handle multiparts
themselves. You enable Spring multipart handling by adding a multipart resolver to the web application's
context. Each request is inspected to see if it contains a multipart. If no multipart is found, the request
continues as expected. If a multipart is found in the request, the MultipartResolver that has been
declared in your context is used. After that, the multipart attribute in your request is treated like any other
attribute.

Using a MultipartResolver with Commons FileUpload

The following example shows how to use the CommonsMultipartResolver:

<bean id="multipartResolver"
class="org.springframework.web.multipart.commons.CommonsMultipartResolver">

<!-- one of the properties available; the maximum file size in bytes -->
<property name="maxUploadSize" value="100000"/>

</bean>

Spring Framework

3.1 Reference Documentation 481

http://jakarta.apache.org/commons/fileupload

Of course you also need to put the appropriate jars in your classpath for the multipart resolver to work. In
the case of the CommonsMultipartResolver, you need to use commons-fileupload.jar.

When the Spring DispatcherServlet detects a multi-part request, it activates the resolver that has
been declared in your context and hands over the request. The resolver then wraps the current
HttpServletRequest into a MultipartHttpServletRequest that supports multipart file
uploads. Using the MultipartHttpServletRequest, you can get information about the multiparts
contained by this request and actually get access to the multipart files themselves in your controllers.

Using a MultipartResolver with Servlet 3.0

In order to use Servlet 3.0 based multipart parsing, you need to mark the DispatcherServlet with a
"multipart-config" section in web.xml, or with a
javax.servlet.MultipartConfigElement in programmatic Servlet registration, or in case of a
custom Servlet class possibly with a javax.servlet.annotation.MultipartConfig
annotation on your Servlet class. Configuration settings such as maximum sizes or storage locations need
to be applied at that Servlet registration level as Servlet 3.0 does not allow for those settings to be done
from the MultipartResolver.

Once Servlet 3.0 multipart parsing has been enabled in one of the above mentioned ways you can add the
StandardServletMultipartResolver to your Spring configuration:

<bean id="multipartResolver"
class="org.springframework.web.multipart.support.StandardServletMultipartResolver">

</bean>

Handling a file upload in a form

After the MultipartResolver completes its job, the request is processed like any other. First, create
a form with a file input that will allow the user to upload a form. The encoding attribute
(enctype="multipart/form-data") lets the browser know how to encode the form as multipart
request:

<html>
<head>

<title>Upload a file please</title>
</head>
<body>

<h1>Please upload a file</h1>
<form method="post" action="/form" enctype="multipart/form-data">

<input type="text" name="name"/>
<input type="file" name="file"/>
<input type="submit"/>

</form>
</body>

</html>

The next step is to create a controller that handles the file upload. This controller is very similar to a
normal annotated @Controller, except that we use MultipartHttpServletRequest or

Spring Framework

3.1 Reference Documentation 482

MultipartFile in the method parameters:

@Controller
public class FileUploadController {

@RequestMapping(value = "/form", method = RequestMethod.POST)
public String handleFormUpload(@RequestParam("name") String name,

@RequestParam("file") MultipartFile file) {

if (!file.isEmpty()) {
byte[] bytes = file.getBytes();
// store the bytes somewhere

return "redirect:uploadSuccess";
} else {

return "redirect:uploadFailure";
}

}

}

Note how the @RequestParam method parameters map to the input elements declared in the form. In
this example, nothing is done with the byte[], but in practice you can save it in a database, store it on
the file system, and so on.

When using Servlet 3.0 multipart parsing you can also use javax.servlet.http.Part for the
method parameter:

@Controller
public class FileUploadController {

@RequestMapping(value = "/form", method = RequestMethod.POST)
public String handleFormUpload(@RequestParam("name") String name,

@RequestParam("file") Part file) {

InputStream inputStream = file.getInputStream();
// store bytes from uploaded file somewhere

return "redirect:uploadSuccess";
}

}

Handling a file upload request from programmatic clients

Multipart requests can also be submitted from non-browser clients in a RESTful service scenario. All of
the above examples and configuration apply here as well. However, unlike browsers that typically submit
files and simple form fields, a programmatic client can also send more complex data of a specific content
type — for example a multipart request with a file and second part with JSON formatted data:

POST /someUrl
Content-Type: multipart/mixed

--edt7Tfrdusa7r3lNQc79vXuhIIMlatb7PQg7Vp
Content-Disposition: form-data; name="meta-data"
Content-Type: application/json; charset=UTF-8
Content-Transfer-Encoding: 8bit

{
"name": "value"

Spring Framework

3.1 Reference Documentation 483

}
--edt7Tfrdusa7r3lNQc79vXuhIIMlatb7PQg7Vp
Content-Disposition: form-data; name="file-data"; filename="file.properties"
Content-Type: text/xml
Content-Transfer-Encoding: 8bit
... File Data ...

You could access the part named "meta-data" with a @RequestParam("meta-data") String
metadata controller method argument. However, you would probably prefer to accept a strongly typed
object initialized from the JSON formatted data in the body of the request part, very similar to the way
@RequestBody converts the body of a non-multipart request to a target object with the help of an
HttpMessageConverter.

You can use the @RequestPart annotation instead of the @RequestParam annotation for this
purpose. It allows you to have the content of a specific multipart passed through an
HttpMessageConverter taking into consideration the 'Content-Type' header of the multipart:

@RequestMapping(value="/someUrl", method = RequestMethod.POST)
public String onSubmit(@RequestPart("meta-data") MetaData metadata,

@RequestPart("file-data") MultipartFile file) {
// ...

}

Notice how MultipartFile method arguments can be accessed with @RequestParam or with
@RequestPart interchangeably. However, the @RequestPart("meta-data") MetaData
method argument in this case is read as JSON content based on its 'Content-Type' header and
converted with the help of the MappingJacksonHttpMessageConverter.

16.11 Handling exceptions

HandlerExceptionResolver

Spring HandlerExceptionResolver implementations deal with unexpected exceptions that occur
during controller execution. A HandlerExceptionResolver somewhat resembles the exception
mappings you can define in the web application descriptor web.xml. However, they provide a more
flexible way to do so. For example they provide information about which handler was executing when the
exception was thrown. Furthermore, a programmatic way of handling exceptions gives you more options
for responding appropriately before the request is forwarded to another URL (the same end result as when
you use the Servlet specific exception mappings).

Besides implementing the HandlerExceptionResolver interface, which is only a matter of
implementing the resolveException(Exception, Handler) method and returning a
ModelAndView, you may also use the SimpleMappingExceptionResolver. This resolver
enables you to take the class name of any exception that might be thrown and map it to a view name. This
is functionally equivalent to the exception mapping feature from the Servlet API, but it is also possible to
implement more finely grained mappings of exceptions from different handlers.

Spring Framework

3.1 Reference Documentation 484

By default, the DispatcherServlet registers the DefaultHandlerExceptionResolver.
This resolver handles certain standard Spring MVC exceptions by setting a specific response status code:

Exception HTTP Status Code

ConversionNotSupportedException 500 (Internal Server Error)

HttpMediaTypeNotAcceptableException 406 (Not Acceptable)

HttpMediaTypeNotSupportedException 415 (Unsupported Media Type)

HttpMessageNotReadableException 400 (Bad Request)

HttpMessageNotWritableException 500 (Internal Server Error)

HttpRequestMethodNotSupportedException405 (Method Not Allowed)

MissingServletRequestParameterException400 (Bad Request)

NoSuchRequestHandlingMethodException404 (Not Found)

TypeMismatchException 400 (Bad Request)

@ExceptionHandler

An alternative to the HandlerExceptionResolver interface is the @ExceptionHandler
annotation. You use the @ExceptionHandler method annotation within a controller to specify which
method is invoked when an exception of a specific type is thrown during the execution of controller
methods. For example:

@Controller
public class SimpleController {

// other controller method omitted

@ExceptionHandler(IOException.class)
public String handleIOException(IOException ex, HttpServletRequest request) {

return ClassUtils.getShortName(ex.getClass());
}

}

will invoke the 'handlerIOException' method when a java.io.IOException is thrown.

The @ExceptionHandler value can be set to an array of Exception types. If an exception is thrown
matches one of the types in the list, then the method annotated with the matching
@ExceptionHandler will be invoked. If the annotation value is not set then the exception types listed
as method arguments are used.

Much like standard controller methods annotated with a @RequestMapping annotation, the method
arguments and return values of @ExceptionHandler methods are very flexible. For example, the

Spring Framework

3.1 Reference Documentation 485

HttpServletRequest can be accessed in Servlet environments and the PortletRequest in
Portlet environments. The return type can be a String, which is interpreted as a view name or a
ModelAndView object. Refer to the API documentation for more details.

16.12 Convention over configuration support

For a lot of projects, sticking to established conventions and having reasonable defaults is just what they
(the projects) need, and Spring Web MVC now has explicit support for convention over configuration.
What this means is that if you establish a set of naming conventions and suchlike, you can substantially
cut down on the amount of configuration that is required to set up handler mappings, view resolvers,
ModelAndView instances, etc. This is a great boon with regards to rapid prototyping, and can also lend
a degree of (always good-to-have) consistency across a codebase should you choose to move forward
with it into production.

Convention-over-configuration support addresses the three core areas of MVC: models, views, and
controllers.

The Controller ControllerClassNameHandlerMapping

The ControllerClassNameHandlerMapping class is a HandlerMapping implementation that
uses a convention to determine the mapping between request URLs and the Controller instances that
are to handle those requests.

Consider the following simple Controller implementation. Take special notice of the name of the
class.

public class ViewShoppingCartController implements Controller {

public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) {
// the implementation is not hugely important for this example...

}
}

Here is a snippet from the corresponding Spring Web MVC configuration file:

<bean class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/>

<bean id="viewShoppingCart" class="x.y.z.ViewShoppingCartController">
<!-- inject dependencies as required... -->

</bean>

The ControllerClassNameHandlerMapping finds all of the various handler (or Controller)
beans defined in its application context and strips Controller off the name to define its handler
mappings. Thus, ViewShoppingCartController maps to the /viewshoppingcart* request
URL.

Let's look at some more examples so that the central idea becomes immediately familiar. (Notice all
lowercase in the URLs, in contrast to camel-cased Controller class names.)

Spring Framework

3.1 Reference Documentation 486

• WelcomeController maps to the /welcome* request URL

• HomeController maps to the /home* request URL

• IndexController maps to the /index* request URL

• RegisterController maps to the /register* request URL

In the case of MultiActionController handler classes, the mappings generated are slightly more
complex. The Controller names in the following examples are assumed to be
MultiActionController implementations:

• AdminController maps to the /admin/* request URL

• CatalogController maps to the /catalog/* request URL

If you follow the convention of naming your Controller implementations as xxxController, the
ControllerClassNameHandlerMapping saves you the tedium of defining and maintaining a
potentially looooong SimpleUrlHandlerMapping (or suchlike).

The ControllerClassNameHandlerMapping class extends the AbstractHandlerMapping
base class so you can define HandlerInterceptor instances and everything else just as you would
with many other HandlerMapping implementations.

The Model ModelMap (ModelAndView)

The ModelMap class is essentially a glorified Map that can make adding objects that are to be displayed
in (or on) a View adhere to a common naming convention. Consider the following Controller
implementation; notice that objects are added to the ModelAndView without any associated name
specified.

public class DisplayShoppingCartController implements Controller {

public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) {

List cartItems = // get a List of CartItem objects
User user = // get the User doing the shopping

ModelAndView mav = new ModelAndView("displayShoppingCart"); <-- the logical view name

mav.addObject(cartItems); <-- look ma, no name, just the object
mav.addObject(user); <-- and again ma!

return mav;
}

}

The ModelAndView class uses a ModelMap class that is a custom Map implementation that
automatically generates a key for an object when an object is added to it. The strategy for determining the
name for an added object is, in the case of a scalar object such as User, to use the short class name of the

Spring Framework

3.1 Reference Documentation 487

object's class. The following examples are names that are generated for scalar objects put into a
ModelMap instance.

• An x.y.User instance added will have the name user generated.

• An x.y.Registration instance added will have the name registration generated.

• An x.y.Foo instance added will have the name foo generated.

• A java.util.HashMap instance added will have the name hashMap generated. You probably
want to be explicit about the name in this case because hashMap is less than intuitive.

• Adding null will result in an IllegalArgumentException being thrown. If the object (or
objects) that you are adding could be null, then you will also want to be explicit about the name.

What, no automatic pluralization?

Spring Web MVC's convention-over-configuration support does not support automatic
pluralization. That is, you cannot add a List of Person objects to a ModelAndView and have
the generated name be people.

This decision was made after some debate, with the “Principle of Least Surprise” winning out in the
end.

The strategy for generating a name after adding a Set or a List is to peek into the collection, take the
short class name of the first object in the collection, and use that with List appended to the name. The
same applies to arrays although with arrays it is not necessary to peek into the array contents. A few
examples will make the semantics of name generation for collections clearer:

• An x.y.User[] array with zero or more x.y.User elements added will have the name userList
generated.

• An x.y.Foo[] array with zero or more x.y.User elements added will have the name fooList
generated.

• A java.util.ArrayList with one or more x.y.User elements added will have the name
userList generated.

• A java.util.HashSet with one or more x.y.Foo elements added will have the name fooList
generated.

• An empty java.util.ArrayList will not be added at all (in effect, the addObject(..) call
will essentially be a no-op).

The View - RequestToViewNameTranslator

Spring Framework

3.1 Reference Documentation 488

The RequestToViewNameTranslator interface determines a logical View name when no such
logical view name is explicitly supplied. It has just one implementation, the
DefaultRequestToViewNameTranslator class.

The DefaultRequestToViewNameTranslator maps request URLs to logical view names, as
with this example:

public class RegistrationController implements Controller {

public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) {
// process the request...
ModelAndView mav = new ModelAndView();
// add data as necessary to the model...
return mav;
// notice that no View or logical view name has been set

}
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- this bean with the well known name generates view names for us -->
<bean id="viewNameTranslator"

class="org.springframework.web.servlet.view.DefaultRequestToViewNameTranslator"/>

<bean class="x.y.RegistrationController">
<!-- inject dependencies as necessary -->

</bean>

<!-- maps request URLs to Controller names -->
<bean class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/>

<bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>

</beans>

Notice how in the implementation of the handleRequest(..) method no View or logical view name
is ever set on the ModelAndView that is returned. The
DefaultRequestToViewNameTranslator is tasked with generating a logical view name from the
URL of the request. In the case of the above RegistrationController, which is used in
conjunction with the ControllerClassNameHandlerMapping, a request URL of
http://localhost/registration.html results in a logical view name of registration
being generated by the DefaultRequestToViewNameTranslator. This logical view name is then
resolved into the /WEB-INF/jsp/registration.jsp view by the
InternalResourceViewResolver bean.

Tip

You do not need to define a DefaultRequestToViewNameTranslator bean

Spring Framework

3.1 Reference Documentation 489

explicitly. If you like the default settings of the
DefaultRequestToViewNameTranslator, you can rely on the Spring Web MVC
DispatcherServlet to instantiate an instance of this class if one is not explicitly
configured.

Of course, if you need to change the default settings, then you do need to configure your own
DefaultRequestToViewNameTranslator bean explicitly. Consult the comprehensive Javadoc
for the DefaultRequestToViewNameTranslator class for details of the various properties that
can be configured.

16.13 ETag support

An ETag (entity tag) is an HTTP response header returned by an HTTP/1.1 compliant web server used to
determine change in content at a given URL. It can be considered to be the more sophisticated successor
to the Last-Modified header. When a server returns a representation with an ETag header, the client
can use this header in subsequent GETs, in an If-None-Match header. If the content has not changed,
the server returns 304: Not Modified.

Support for ETags is provided by the Servlet filter ShallowEtagHeaderFilter. It is a plain Servlet
Filter, and thus can be used in combination with any web framework. The
ShallowEtagHeaderFilter filter creates so-called shallow ETags (as opposed to deep ETags,
more about that later).The filter caches the content of the rendered JSP (or other content), generates an
MD5 hash over that, and returns that as an ETag header in the response. The next time a client sends a
request for the same resource, it uses that hash as the If-None-Match value. The filter detects this,
renders the view again, and compares the two hashes. If they are equal, a 304 is returned. This filter will
not save processing power, as the view is still rendered. The only thing it saves is bandwidth, as the
rendered response is not sent back over the wire.

You configure the ShallowEtagHeaderFilter in web.xml:

<filter>
<filter-name>etagFilter</filter-name>

<filter-class>org.springframework.web.filter.ShallowEtagHeaderFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>etagFilter</filter-name>
<servlet-name>petclinic</servlet-name>

</filter-mapping>

16.14 Configuring Spring MVC

the section called “Special Bean Types In the WebApplicationContext” and the section called “Default
DispatcherServlet Configuration” explained about Spring MVC's special beans and the default
implementations used by the DispatcherServlet. In this section you'll learn about two additional

Spring Framework

3.1 Reference Documentation 490

http://en.wikipedia.org/wiki/HTTP_ETag

ways of configuring Spring MVC. Namely the MVC Java config and the MVC XML namespace.

The MVC Java config and the MVC namespace provide similar default configuration that overrides the
DispatcherServlet defaults. The goal is to spare most applications from having to having to create
the same configuration and also to provide higher-level constructs for configuring Spring MVC that serve
as a simple starting point and require little or no prior knowledge of the underlying configuration.

You can choose either the MVC Java config or the MVC namespace depending on your preference. Also
as you will see further below, with the MVC Java config it is easier to see the underlying configuration as
well as to make fine-grained customizations directly to the created Spring MVC beans. But let's start from
the beginning.

Enabling MVC Java Config or the MVC XML Namespace

To enable MVC Java config add the annotation @EnableWebMvc to one of your @Configuration
classes:

@EnableWebMvc
@Configuration
public class WebConfig {

}

To achieve the same in XML use the mvc:annotation-driven element:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.1.xsd">

<mvc:annotation-driven />

<beans>

The above registers a RequestMappingHandlerMapping, a
RequestMappingHandlerAdapter, and an ExceptionHandlerExceptionResolver
(among others) in support of processing requests with annotated controller methods using annotations
such as @RequestMapping , @ExceptionHandler, and others.

It also enables the following:

1. Spring 3 style type conversion through a ConversionService instance in addition to the JavaBeans
PropertyEditors used for Data Binding.

2. Support for formatting Number fields using the @NumberFormat annotation through the
ConversionService.

Spring Framework

3.1 Reference Documentation 491

3. Support for formatting Date, Calendar, Long, and Joda Time fields using the @DateTimeFormat
annotation, if Joda Time 1.3 or higher is present on the classpath.

4. Support for validating @Controller inputs with @Valid, if a JSR-303 Provider is present on the
classpath.

5. HttpMessageConverter support for @RequestBody method parameters and @ResponseBody
method return values from @RequestMapping or @ExceptionHandler methods.

This is the complete list of HttpMessageConverters set up by mvc:annotation-driven:

• ByteArrayHttpMessageConverter converts byte arrays.

• StringHttpMessageConverter converts strings.

• ResourceHttpMessageConverter converts to/from
org.springframework.core.io.Resource for all media types.

• SourceHttpMessageConverter converts to/from a javax.xml.transform.Source.

• FormHttpMessageConverter converts form data to/from a MultiValueMap<String,
String>.

• Jaxb2RootElementHttpMessageConverter converts Java objects to/from XML — added
if JAXB2 is present on the classpath.

• MappingJacksonHttpMessageConverter converts to/from JSON — added if Jackson is
present on the classpath.

• AtomFeedHttpMessageConverter converts Atom feeds — added if Rome is present on the
classpath.

• RssChannelHttpMessageConverter converts RSS feeds — added if Rome is present on the
classpath.

Customizing the Provided Configuration

To customize the default configuration in Java you simply implement the WebMvcConfigurer
interface or more likely extend the class WebMvcConfigurerAdapter and override the methods you
need. Below is an example of some of the available methods to override. See WebMvcConifgurer for
a list of all methods and the Javadoc for further details:

@EnableWebMvc
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

@Override
protected void addFormatters(FormatterRegistry registry) {

// Add formatters and/or converters

Spring Framework

3.1 Reference Documentation 492

}

@Override
public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {

// Configure the list of HttpMessageConverters to use
}

}

To customize the default configuration of <mvc:annotation-driven /> check what attributes and
sub-elements it supports. You can view the Spring MVC XML schema or use the code completion feature
of your IDE to discover what attributes and sub-elements are available. The sample below shows a subset
of what is available:

<mvc:annotation-driven conversion-service="conversionService">
<mvc:message-converters>

<bean class="org.example.MyHttpMessageConverter"/>
<bean class="org.example.MyOtherHttpMessageConverter"/>

</mvc:message-converters>
</mvc:annotation-driven>

<bean id="conversionService" class="org.springframework.format.support.FormattingConversionServiceFactoryBean">
<property name="formatters">

<list>
<bean class="org.example.MyFormatter"/>
<bean class="org.example.MyOtherFormatter"/>

</list>
</property>

</bean>

Configuring Interceptors

You can configure HandlerInterceptors or WebRequestInterceptors to be applied to all
incoming requests or restricted to specific URL path patterns.

An example of registering interceptors in Java:

@EnableWebMvc
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

@Override
public void addInterceptors(InterceptorRegistry registry) {

registry.addInterceptor(new LocalInterceptor());
registry.addInterceptor(new SecurityInterceptor()).addPathPatterns("/secure/*");

}

}

And in XML use the <mvc:interceptors> element:

<mvc:interceptors>
<bean class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor" />
<mvc:interceptor>

<mapping path="/secure/*"/>
<bean class="org.example.SecurityInterceptor" />

</mvc:interceptor>
</mvc:interceptors>

Spring Framework

3.1 Reference Documentation 493

http://static.springsource.org/schema/mvc/spring-mvc-3.1.xsd

Configuring View Controllers

This is a shortcut for defining a ParameterizableViewController that immediately forwards to
a view when invoked. Use it in static cases when there is no Java controller logic to execute before the
view generates the response.

An example of forwarding a request for "/" to a view called "home" in Java:

@EnableWebMvc
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

@Override
public void addViewControllers(ViewControllerRegistry registry) {

registry.addViewController("/").setViewName("home");
}

}

And the same in XML use the <mvc:view-controller> element:

<mvc:view-controller path="/" view-name="home"/>

Configuring Serving of Resources

This option allows static resource requests following a particular URL pattern to be served by a
ResourceHttpRequestHandler from any of a list of Resource locations. This provides a
convenient way to serve static resources from locations other than the web application root, including
locations on the classpath. The cache-period property may be used to set far future expiration
headers (1 year is the recommendation of optimization tools such as Page Speed and YSlow) so that they
will be more efficiently utilized by the client. The handler also properly evaluates the Last-Modified
header (if present) so that a 304 status code will be returned as appropriate, avoiding unnecessary
overhead for resources that are already cached by the client. For example, to serve resource requests with
a URL pattern of /resources/** from a public-resources directory within the web application
root you would use:

@EnableWebMvc
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {

registry.addResourceHandler("/resources/**").addResourceLocations("/public-resources/");
}

}

And the same in XML:

<mvc:resources mapping="/resources/**" location="/public-resources/"/>

Spring Framework

3.1 Reference Documentation 494

To serve these resources with a 1-year future expiration to ensure maximum use of the browser cache and
a reduction in HTTP requests made by the browser:

@EnableWebMvc
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {

registry.addResourceHandler("/resources/**").addResourceLocations("/public-resources/").setCachePeriod(31556926);
}

}

And in XML:

<mvc:resources mapping="/resources/**" location="/public-resources/" cache-period="31556926"/>

The mapping attribute must be an Ant pattern that can be used by SimpleUrlHandlerMapping,
and the location attribute must specify one or more valid resource directory locations. Multiple
resource locations may be specified using a comma-separated list of values. The locations specified will
be checked in the specified order for the presence of the resource for any given request. For example, to
enable the serving of resources from both the web application root and from a known path of
/META-INF/public-web-resources/ in any jar on the classpath use:

@EnableWebMvc
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {

registry.addResourceHandler("/resources/**")
.addResourceLocations("/", "classpath:/META-INF/public-web-resources/");

}

}

And in XML:

<mvc:resources mapping="/resources/**" location="/, classpath:/META-INF/public-web-resources/"/>

When serving resources that may change when a new version of the application is deployed, it is
recommended that you incorporate a version string into the mapping pattern used to request the resources,
so that you may force clients to request the newly deployed version of your application's resources. Such
a version string can be parameterized and accessed using SpEL so that it may be easily managed in a
single place when deploying new versions.

As an example, let's consider an application that uses a performance-optimized custom build (as
recommended) of the Dojo JavaScript library in production, and that the build is generally deployed
within the web application at a path of /public-resources/dojo/dojo.js. Since different parts
of Dojo may be incorporated into the custom build for each new version of the application, the client web
browsers need to be forced to re-download that custom-built dojo.js resource any time a new version

Spring Framework

3.1 Reference Documentation 495

of the application is deployed. A simple way to achieve this would be to manage the version of the
application in a properties file, such as:

application.version=1.0.0

and then to make the properties file's values accessible to SpEL as a bean using the util:properties
tag:

<util:properties id="applicationProps" location="/WEB-INF/spring/application.properties"/>

With the application version now accessible via SpEL, we can incorporate this into the use of the
resources tag:

<mvc:resources mapping="/resources-#{applicationProps['application.version']}/**" location="/public-resources/"/>

In Java, you can use the @PropertySouce annotation and then inject the Environment abstraction
for access to all defined properties:

@EnableWebMvc
@Configuration
@PropertySource("/WEB-INF/spring/application.properties")
public class WebConfig extends WebMvcConfigurerAdapter {

@Inject Environment env;

@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {

registry.addResourceHandler("/resources-" + env.getProperty("application.version") + "/**")
.addResourceLocations("/public-resources/");

}

}

and finally, to request the resource with the proper URL, we can take advantage of the Spring JSP tags:

<spring:eval expression="@applicationProps['application.version']" var="applicationVersion"/>

<spring:url value="/resources-{applicationVersion}" var="resourceUrl">
<spring:param name="applicationVersion" value="${applicationVersion}"/>

</spring:url>

<script src="${resourceUrl}/dojo/dojo.js" type="text/javascript"> </script>

mvc:default-servlet-handler

This tag allows for mapping the DispatcherServlet to "/" (thus overriding the mapping of the
container's default Servlet), while still allowing static resource requests to be handled by the container's
default Servlet. It configures a DefaultServletHttpRequestHandler with a URL mapping of
"/**" and the lowest priority relative to other URL mappings.

This handler will forward all requests to the default Servlet. Therefore it is important that it remains last
in the order of all other URL HandlerMappings. That will be the case if you use
<mvc:annotation-driven> or alternatively if you are setting up your own customized

Spring Framework

3.1 Reference Documentation 496

HandlerMapping instance be sure to set its order property to a value lower than that of the
DefaultServletHttpRequestHandler, which is Integer.MAX_VALUE.

To enable the feature using the default setup use:

@EnableWebMvc
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

@Override
public void configureDefaultServletHandling(DefaultServletHandlerConfigurer configurer) {

configurer.enable();
}

}

Or in XML:

<mvc:default-servlet-handler/>

The caveat to overriding the "/" Servlet mapping is that the RequestDispatcher for the default
Servlet must be retrieved by name rather than by path. The
DefaultServletHttpRequestHandler will attempt to auto-detect the default Servlet for the
container at startup time, using a list of known names for most of the major Servlet containers (including
Tomcat, Jetty, Glassfish, JBoss, Resin, WebLogic, and WebSphere). If the default Servlet has been
custom configured with a different name, or if a different Servlet container is being used where the
default Servlet name is unknown, then the default Servlet's name must be explicitly provided as in the
following example:

@EnableWebMvc
@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {

@Override
public void configureDefaultServletHandling(DefaultServletHandlerConfigurer configurer) {

configurer.enable("myCustomDefaultServlet");
}

}

Or in XML:

<mvc:default-servlet-handler default-servlet-name="myCustomDefaultServlet"/>

More Spring Web MVC Resources

See the following links and pointers for more resources about Spring Web MVC:

• There are many excellent articles and tutorials that show how to build web applications with Spring
MVC. Read them at the Spring Documentation page.

• “Expert Spring Web MVC and Web Flow” by Seth Ladd and others (published by Apress) is an

Spring Framework

3.1 Reference Documentation 497

http://www.springsource.org/documentation

excellent hard copy source of Spring Web MVC goodness.

Advanced Customizations with MVC Java Config

As you can see from the above examples, MVC Java config and the MVC namespace provide higher
level constructs that do not require deep knowledge of the underlying beans created for you. Instead it
helps you to focus on your application needs. However, at some point you may need more fine-grained
control or you may simply wish to understand the underlying configuration.

The first step towards more fine-grained control is to see the underlying beans created for you. In MVC
Java config you can see the Javadoc and the @Bean methods in WebMvcConfigurationSupport.
The configuration in this class is automatically imported through the @EnableWebMvc annotation. In
fact if you open @EnableWebMvc you can see the @Import statement.

The next step towards more fine-grained control is to customize a property on one of the beans created in
WebMvcConfigurationSupport or perhaps to provide your own instance. This requires two things
-- remove the @EnableWebMvc annotation in order to prevent the import and then extend directly from
WebMvcConfigurationSupport. Here is an example:

@Configuration
public class WebConfig extends WebMvcConfigurationSupport {

@Override
public void addInterceptors(InterceptorRegistry registry){

// ...
}

@Override
@Bean
public RequestMappingHandlerAdapter requestMappingHandlerAdapter() {

// Create or let "super" create the adapter
// Then customize one of its properties

}

}

Note that modifying beans in this way does not prevent you from using any of the higher-level constructs
shown earlier in this section.

Advanced Customizations with the MVC Namespace

Fine-grained control over the configuration created for you is a bit harder with the MVC namespace.

If you do need to do that, rather than replicating the configuration it provides, consider configuring a
BeanPostProcessor that detects the bean you want to customize by type and then modifying its
properties as necessary. For example:

@Component
public class MyPostProcessor implements BeanPostProcessor {

Spring Framework

3.1 Reference Documentation 498

public Object postProcessBeforeInitialization(Object bean, String name) throws BeansException {
if (bean instanceof RequestMappingHandlerAdapter) {
// Modify properties of the adapter

}
}

}

Note that MyPostProcessor needs to be included in an <component scan /> in order for it to be
detected or if you prefer you can declare it explicitly with an XML bean declaration.

Spring Framework

3.1 Reference Documentation 499

17. View technologies

17.1 Introduction

One of the areas in which Spring excels is in the separation of view technologies from the rest of the
MVC framework. For example, deciding to use Velocity or XSLT in place of an existing JSP is primarily
a matter of configuration. This chapter covers the major view technologies that work with Spring and
touches briefly on how to add new ones. This chapter assumes you are already familiar with Section 16.5,
“Resolving views” which covers the basics of how views in general are coupled to the MVC framework.

17.2 JSP & JSTL

Spring provides a couple of out-of-the-box solutions for JSP and JSTL views. Using JSP or JSTL is done
using a normal view resolver defined in the WebApplicationContext. Furthermore, of course you
need to write some JSPs that will actually render the view.

Note

Setting up your application to use JSTL is a common source of error, mainly caused by
confusion over the different servlet spec., JSP and JSTL version numbers, what they mean
and how to declare the taglibs correctly. The article How to Reference and Use JSTL in your
Web Application provides a useful guide to the common pitfalls and how to avoid them. Note
that as of Spring 3.0, the minimum supported servlet version is 2.4 (JSP 2.0 and JSTL 1.1),
which reduces the scope for confusion somewhat.

View resolvers

Just as with any other view technology you're integrating with Spring, for JSPs you'll need a view
resolver that will resolve your views. The most commonly used view resolvers when developing with
JSPs are the InternalResourceViewResolver and the ResourceBundleViewResolver.
Both are declared in the WebApplicationContext:

<!-- the ResourceBundleViewResolver -->
<bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
<property name="basename" value="views"/>

</bean>

And a sample properties file is uses (views.properties in WEB-INF/classes):
welcome.(class)=org.springframework.web.servlet.view.JstlView
welcome.url=/WEB-INF/jsp/welcome.jsp

productList.(class)=org.springframework.web.servlet.view.JstlView
productList.url=/WEB-INF/jsp/productlist.jsp

Spring Framework

3.1 Reference Documentation 500

http://www.mularien.com/blog/2008/04/24/how-to-reference-and-use-jstl-in-your-web-application/
http://www.mularien.com/blog/2008/04/24/how-to-reference-and-use-jstl-in-your-web-application/

As you can see, the ResourceBundleViewResolver needs a properties file defining the view
names mapped to 1) a class and 2) a URL. With a ResourceBundleViewResolver you can mix
different types of views using only one resolver.

<bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>

The InternalResourceBundleViewResolver can be configured for using JSPs as described
above. As a best practice, we strongly encourage placing your JSP files in a directory under the
'WEB-INF' directory, so there can be no direct access by clients.

'Plain-old' JSPs versus JSTL

When using the Java Standard Tag Library you must use a special view class, the JstlView, as JSTL
needs some preparation before things such as the I18N features will work.

Additional tags facilitating development

Spring provides data binding of request parameters to command objects as described in earlier chapters.
To facilitate the development of JSP pages in combination with those data binding features, Spring
provides a few tags that make things even easier. All Spring tags have HTML escaping features to enable
or disable escaping of characters.

The tag library descriptor (TLD) is included in the spring-webmvc.jar. Further information about
the individual tags can be found in the appendix entitled Appendix F, spring.tld.

Using Spring's form tag library

As of version 2.0, Spring provides a comprehensive set of data binding-aware tags for handling form
elements when using JSP and Spring Web MVC. Each tag provides support for the set of attributes of its
corresponding HTML tag counterpart, making the tags familiar and intuitive to use. The tag-generated
HTML is HTML 4.01/XHTML 1.0 compliant.

Unlike other form/input tag libraries, Spring's form tag library is integrated with Spring Web MVC,
giving the tags access to the command object and reference data your controller deals with. As you will
see in the following examples, the form tags make JSPs easier to develop, read and maintain.

Let's go through the form tags and look at an example of how each tag is used. We have included
generated HTML snippets where certain tags require further commentary.

Configuration

Spring Framework

3.1 Reference Documentation 501

The form tag library comes bundled in spring-webmvc.jar. The library descriptor is called
spring-form.tld.

To use the tags from this library, add the following directive to the top of your JSP page:

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

... where form is the tag name prefix you want to use for the tags from this library.

The form tag

This tag renders an HTML 'form' tag and exposes a binding path to inner tags for binding. It puts the
command object in the PageContext so that the command object can be accessed by inner tags. All the
other tags in this library are nested tags of the form tag.

Let's assume we have a domain object called User. It is a JavaBean with properties such as firstName
and lastName. We will use it as the form backing object of our form controller which returns
form.jsp. Below is an example of what form.jsp would look like:

<form:form>
<table>

<tr>
<td>First Name:</td>
<td><form:input path="firstName" /></td>

</tr>
<tr>

<td>Last Name:</td>
<td><form:input path="lastName" /></td>

</tr>
<tr>

<td colspan="2">
<input type="submit" value="Save Changes" />

</td>
</tr>

</table>
</form:form>

The firstName and lastName values are retrieved from the command object placed in the
PageContext by the page controller. Keep reading to see more complex examples of how inner tags
are used with the form tag.

The generated HTML looks like a standard form:

<form method="POST">
<table>
<tr>

<td>First Name:</td>
<td><input name="firstName" type="text" value="Harry"/></td>

</tr>
<tr>

<td>Last Name:</td>
<td><input name="lastName" type="text" value="Potter"/></td>

</tr>
<tr>

<td colspan="2">
<input type="submit" value="Save Changes" />

Spring Framework

3.1 Reference Documentation 502

</td>
</tr>

</table>
</form>

The preceding JSP assumes that the variable name of the form backing object is 'command'. If you
have put the form backing object into the model under another name (definitely a best practice), then you
can bind the form to the named variable like so:

<form:form commandName="user">
<table>

<tr>
<td>First Name:</td>
<td><form:input path="firstName" /></td>

</tr>
<tr>

<td>Last Name:</td>
<td><form:input path="lastName" /></td>

</tr>
<tr>

<td colspan="2">
<input type="submit" value="Save Changes" />

</td>
</tr>

</table>
</form:form>

The input tag

This tag renders an HTML 'input' tag using the bound value and type='text' by default. For an example of
this tag, see the section called “The form tag”. Starting with Spring 3.1 you can use other types such
HTML5-specific types like 'email', 'tel', 'date', and others.

The checkbox tag

This tag renders an HTML 'input' tag with type 'checkbox'.

Let's assume our User has preferences such as newsletter subscription and a list of hobbies. Below is an
example of the Preferences class:

public class Preferences {

private boolean receiveNewsletter;

private String[] interests;

private String favouriteWord;

public boolean isReceiveNewsletter() {
return receiveNewsletter;

}

public void setReceiveNewsletter(boolean receiveNewsletter) {
this.receiveNewsletter = receiveNewsletter;

}

public String[] getInterests() {
return interests;

}

Spring Framework

3.1 Reference Documentation 503

public void setInterests(String[] interests) {
this.interests = interests;

}

public String getFavouriteWord() {
return favouriteWord;

}

public void setFavouriteWord(String favouriteWord) {
this.favouriteWord = favouriteWord;

}
}

The form.jsp would look like:

<form:form>
<table>

<tr>
<td>Subscribe to newsletter?:</td>
<%-- Approach 1: Property is of type java.lang.Boolean --%>
<td><form:checkbox path="preferences.receiveNewsletter"/></td>

</tr>

<tr>
<td>Interests:</td>
<td>

<%-- Approach 2: Property is of an array or of type java.util.Collection --%>
Quidditch: <form:checkbox path="preferences.interests" value="Quidditch"/>
Herbology: <form:checkbox path="preferences.interests" value="Herbology"/>
Defence Against the Dark Arts: <form:checkbox path="preferences.interests"

value="Defence Against the Dark Arts"/>
</td>

</tr>
<tr>

<td>Favourite Word:</td>
<td>

<%-- Approach 3: Property is of type java.lang.Object --%>
Magic: <form:checkbox path="preferences.favouriteWord" value="Magic"/>

</td>
</tr>

</table>
</form:form>

There are 3 approaches to the checkbox tag which should meet all your checkbox needs.

• Approach One - When the bound value is of type java.lang.Boolean, the input(checkbox)
is marked as 'checked' if the bound value is true. The value attribute corresponds to the resolved
value of the setValue(Object) value property.

• Approach Two - When the bound value is of type array or java.util.Collection, the
input(checkbox) is marked as 'checked' if the configured setValue(Object) value is present
in the bound Collection.

• Approach Three - For any other bound value type, the input(checkbox) is marked as 'checked' if
the configured setValue(Object) is equal to the bound value.

Note that regardless of the approach, the same HTML structure is generated. Below is an HTML snippet
of some checkboxes:

Spring Framework

3.1 Reference Documentation 504

<tr>
<td>Interests:</td>
<td>

Quidditch: <input name="preferences.interests" type="checkbox" value="Quidditch"/>
<input type="hidden" value="1" name="_preferences.interests"/>
Herbology: <input name="preferences.interests" type="checkbox" value="Herbology"/>
<input type="hidden" value="1" name="_preferences.interests"/>
Defence Against the Dark Arts: <input name="preferences.interests" type="checkbox"

value="Defence Against the Dark Arts"/>
<input type="hidden" value="1" name="_preferences.interests"/>

</td>
</tr>

What you might not expect to see is the additional hidden field after each checkbox. When a checkbox in
an HTML page is not checked, its value will not be sent to the server as part of the HTTP request
parameters once the form is submitted, so we need a workaround for this quirk in HTML in order for
Spring form data binding to work. The checkbox tag follows the existing Spring convention of
including a hidden parameter prefixed by an underscore ("_") for each checkbox. By doing this, you are
effectively telling Spring that “ the checkbox was visible in the form and I want my object to which the
form data will be bound to reflect the state of the checkbox no matter what ”.

The checkboxes tag

This tag renders multiple HTML 'input' tags with type 'checkbox'.

Building on the example from the previous checkbox tag section. Sometimes you prefer not to have to
list all the possible hobbies in your JSP page. You would rather provide a list at runtime of the available
options and pass that in to the tag. That is the purpose of the checkboxes tag. You pass in an Array, a
List or a Map containing the available options in the "items" property. Typically the bound property is a
collection so it can hold multiple values selected by the user. Below is an example of the JSP using this
tag:

<form:form>
<table>

<tr>
<td>Interests:</td>
<td>

<%-- Property is of an array or of type java.util.Collection --%>
<form:checkboxes path="preferences.interests" items="${interestList}"/>

</td>
</tr>

</table>
</form:form>

This example assumes that the "interestList" is a List available as a model attribute containing strings of
the values to be selected from. In the case where you use a Map, the map entry key will be used as the
value and the map entry's value will be used as the label to be displayed. You can also use a custom
object where you can provide the property names for the value using "itemValue" and the label using
"itemLabel".

The radiobutton tag

Spring Framework

3.1 Reference Documentation 505

This tag renders an HTML 'input' tag with type 'radio'.

A typical usage pattern will involve multiple tag instances bound to the same property but with different
values.

<tr>
<td>Sex:</td>
<td>Male: <form:radiobutton path="sex" value="M"/>

Female: <form:radiobutton path="sex" value="F"/> </td>
</tr>

The radiobuttons tag

This tag renders multiple HTML 'input' tags with type 'radio'.

Just like the checkboxes tag above, you might want to pass in the available options as a runtime
variable. For this usage you would use the radiobuttons tag. You pass in an Array, a List or a
Map containing the available options in the "items" property. In the case where you use a Map, the map
entry key will be used as the value and the map entry's value will be used as the label to be displayed.
You can also use a custom object where you can provide the property names for the value using
"itemValue" and the label using "itemLabel".

<tr>
<td>Sex:</td>
<td><form:radiobuttons path="sex" items="${sexOptions}"/></td>

</tr>

The password tag

This tag renders an HTML 'input' tag with type 'password' using the bound value.

<tr>
<td>Password:</td>
<td>

<form:password path="password" />
</td>

</tr>

Please note that by default, the password value is not shown. If you do want the password value to be
shown, then set the value of the 'showPassword' attribute to true, like so.

<tr>
<td>Password:</td>
<td>

<form:password path="password" value="^76525bvHGq" showPassword="true" />
</td>

</tr>

The select tag

This tag renders an HTML 'select' element. It supports data binding to the selected option as well as the

Spring Framework

3.1 Reference Documentation 506

use of nested option and options tags.

Let's assume a User has a list of skills.

<tr>
<td>Skills:</td>
<td><form:select path="skills" items="${skills}"/></td>

</tr>

If the User's skill were in Herbology, the HTML source of the 'Skills' row would look like:

<tr>
<td>Skills:</td>
<td><select name="skills" multiple="true">

<option value="Potions">Potions</option>
<option value="Herbology" selected="selected">Herbology</option>
<option value="Quidditch">Quidditch</option></select>

</td>
</tr>

The option tag

This tag renders an HTML 'option'. It sets 'selected' as appropriate based on the bound value.

<tr>
<td>House:</td>
<td>

<form:select path="house">
<form:option value="Gryffindor"/>
<form:option value="Hufflepuff"/>
<form:option value="Ravenclaw"/>
<form:option value="Slytherin"/>

</form:select>
</td>

</tr>

If the User's house was in Gryffindor, the HTML source of the 'House' row would look like:

<tr>
<td>House:</td>
<td>

<select name="house">
<option value="Gryffindor" selected="selected">Gryffindor</option>
<option value="Hufflepuff">Hufflepuff</option>
<option value="Ravenclaw">Ravenclaw</option>
<option value="Slytherin">Slytherin</option>

</select>
</td>

</tr>

The options tag

This tag renders a list of HTML 'option' tags. It sets the 'selected' attribute as appropriate based on the
bound value.

<tr>
<td>Country:</td>

Spring Framework

3.1 Reference Documentation 507

<td>
<form:select path="country">

<form:option value="-" label="--Please Select"/>
<form:options items="${countryList}" itemValue="code" itemLabel="name"/>

</form:select>
</td>

</tr>

If the User lived in the UK, the HTML source of the 'Country' row would look like:

<tr>
<td>Country:</td>
<td>

<select name="country">
<option value="-">--Please Select</option>
<option value="AT">Austria</option>
<option value="UK" selected="selected">United Kingdom</option>
<option value="US">United States</option>

</select>
</td>

</tr>

As the example shows, the combined usage of an option tag with the options tag generates the same
standard HTML, but allows you to explicitly specify a value in the JSP that is for display only (where it
belongs) such as the default string in the example: "-- Please Select".

The items attribute is typically populated with a collection or array of item objects. itemValue and
itemLabel simply refer to bean properties of those item objects, if specified; otherwise, the item
objects themselves will be stringified. Alternatively, you may specify a Map of items, in which case the
map keys are interpreted as option values and the map values correspond to option labels. If itemValue
and/or itemLabel happen to be specified as well, the item value property will apply to the map key and
the item label property will apply to the map value.

The textarea tag

This tag renders an HTML 'textarea'.

<tr>
<td>Notes:</td>
<td><form:textarea path="notes" rows="3" cols="20" /></td>
<td><form:errors path="notes" /></td>

</tr>

The hidden tag

This tag renders an HTML 'input' tag with type 'hidden' using the bound value. To submit an unbound
hidden value, use the HTML input tag with type 'hidden'.

<form:hidden path="house" />

If we choose to submit the 'house' value as a hidden one, the HTML would look like:

<input name="house" type="hidden" value="Gryffindor"/>

Spring Framework

3.1 Reference Documentation 508

The errors tag

This tag renders field errors in an HTML 'span' tag. It provides access to the errors created in your
controller or those that were created by any validators associated with your controller.

Let's assume we want to display all error messages for the firstName and lastName fields once we
submit the form. We have a validator for instances of the User class called UserValidator.

public class UserValidator implements Validator {

public boolean supports(Class candidate) {
return User.class.isAssignableFrom(candidate);

}

public void validate(Object obj, Errors errors) {
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "required", "Field is required.");
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "lastName", "required", "Field is required.");

}
}

The form.jsp would look like:

<form:form>
<table>

<tr>
<td>First Name:</td>
<td><form:input path="firstName" /></td>
<%-- Show errors for firstName field --%>
<td><form:errors path="firstName" /></td>

</tr>

<tr>
<td>Last Name:</td>
<td><form:input path="lastName" /></td>
<%-- Show errors for lastName field --%>
<td><form:errors path="lastName" /></td>

</tr>
<tr>

<td colspan="3">
<input type="submit" value="Save Changes" />

</td>
</tr>

</table>
</form:form>

If we submit a form with empty values in the firstName and lastName fields, this is what the HTML
would look like:

<form method="POST">
<table>

<tr>
<td>First Name:</td>
<td><input name="firstName" type="text" value=""/></td>
<%-- Associated errors to firstName field displayed --%>
<td>Field is required.</td>

</tr>

<tr>

Spring Framework

3.1 Reference Documentation 509

<td>Last Name:</td>
<td><input name="lastName" type="text" value=""/></td>
<%-- Associated errors to lastName field displayed --%>
<td>Field is required.</td>

</tr>
<tr>

<td colspan="3">
<input type="submit" value="Save Changes" />

</td>
</tr>

</table>
</form>

What if we want to display the entire list of errors for a given page? The example below shows that the
errors tag also supports some basic wildcarding functionality.

• path="*" - displays all errors

• path="lastName" - displays all errors associated with the lastName field

The example below will display a list of errors at the top of the page, followed by field-specific errors
next to the fields:

<form:form>
<form:errors path="*" cssClass="errorBox" />
<table>

<tr>
<td>First Name:</td>
<td><form:input path="firstName" /></td>
<td><form:errors path="firstName" /></td>

</tr>
<tr>

<td>Last Name:</td>
<td><form:input path="lastName" /></td>
<td><form:errors path="lastName" /></td>

</tr>
<tr>

<td colspan="3">
<input type="submit" value="Save Changes" />

</td>
</tr>

</table>
</form:form>

The HTML would look like:

<form method="POST">
Field is required.
Field is required.
<table>

<tr>
<td>First Name:</td>
<td><input name="firstName" type="text" value=""/></td>
<td>Field is required.</td>

</tr>

<tr>
<td>Last Name:</td>
<td><input name="lastName" type="text" value=""/></td>
<td>Field is required.</td>

</tr>
<tr>

<td colspan="3">

Spring Framework

3.1 Reference Documentation 510

<input type="submit" value="Save Changes" />
</td>

</tr>
</form>

HTTP Method Conversion

A key principle of REST is the use of the Uniform Interface. This means that all resources (URLs) can be
manipulated using the same four HTTP methods: GET, PUT, POST, and DELETE. For each method, the
HTTP specification defines the exact semantics. For instance, a GET should always be a safe operation,
meaning that is has no side effects, and a PUT or DELETE should be idempotent, meaning that you can
repeat these operations over and over again, but the end result should be the same. While HTTP defines
these four methods, HTML only supports two: GET and POST. Fortunately, there are two possible
workarounds: you can either use JavaScript to do your PUT or DELETE, or simply do a POST with the
'real' method as an additional parameter (modeled as a hidden input field in an HTML form). This latter
trick is what Spring's HiddenHttpMethodFilter does. This filter is a plain Servlet Filter and
therefore it can be used in combination with any web framework (not just Spring MVC). Simply add this
filter to your web.xml, and a POST with a hidden _method parameter will be converted into the
corresponding HTTP method request.

To support HTTP method conversion the Spring MVC form tag was updated to support setting the HTTP
method. For example, the following snippet taken from the updated Petclinic sample

<form:form method="delete">
<p class="submit"><input type="submit" value="Delete Pet"/></p>

</form:form>

This will actually perform an HTTP POST, with the 'real' DELETE method hidden behind a request
parameter, to be picked up by the HiddenHttpMethodFilter, as defined in web.xml:

<filter>
<filter-name>httpMethodFilter</filter-name>
<filter-class>org.springframework.web.filter.HiddenHttpMethodFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>httpMethodFilter</filter-name>
<servlet-name>petclinic</servlet-name>

</filter-mapping>

The corresponding @Controller method is shown below:

@RequestMapping(method = RequestMethod.DELETE)
public String deletePet(@PathVariable int ownerId, @PathVariable int petId) {
this.clinic.deletePet(petId);
return "redirect:/owners/" + ownerId;

}

HTML5 Tags

Starting with Spring 3, the Spring form tag library allows entering dynamic attributes, which means you
can enter any HTML5 specific attributes.

Spring Framework

3.1 Reference Documentation 511

In Spring 3.1, the form input tag supports entering a type attribute other than 'text'. This is intended to
allow rendering new HTML5 specific input types such as 'email', 'date', 'range', and others. Note that
entering type='text' is not required since 'text' is the default type.

17.3 Tiles

It is possible to integrate Tiles - just as any other view technology - in web applications using Spring. The
following describes in a broad way how to do this.

NOTE: This section focuses on Spring's support for Tiles 2 (the standalone version of Tiles, requiring
Java 5+) in the org.springframework.web.servlet.view.tiles2 package. Spring also
continues to support Tiles 1.x (a.k.a. "Struts Tiles", as shipped with Struts 1.1+; compatible with Java 1.4)
in the original org.springframework.web.servlet.view.tiles package.

Dependencies

To be able to use Tiles you have to have a couple of additional dependencies included in your project.
The following is the list of dependencies you need.

• Tiles version 2.1.2 or higher
• Commons BeanUtils
• Commons Digester
• Commons Logging

How to integrate Tiles

To be able to use Tiles, you have to configure it using files containing definitions (for basic information
on definitions and other Tiles concepts, please have a look at http://tiles.apache.org). In Spring this is
done using the TilesConfigurer. Have a look at the following piece of example ApplicationContext
configuration:

<bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles2.TilesConfigurer">
<property name="definitions">

<list>
<value>/WEB-INF/defs/general.xml</value>
<value>/WEB-INF/defs/widgets.xml</value>
<value>/WEB-INF/defs/administrator.xml</value>
<value>/WEB-INF/defs/customer.xml</value>
<value>/WEB-INF/defs/templates.xml</value>

</list>
</property>

</bean>

As you can see, there are five files containing definitions, which are all located in the
'WEB-INF/defs' directory. At initialization of the WebApplicationContext, the files will be
loaded and the definitions factory will be initialized. After that has been done, the Tiles includes in the
definition files can be used as views within your Spring web application. To be able to use the views you

Spring Framework

3.1 Reference Documentation 512

http://tiles.apache.org

have to have a ViewResolver just as with any other view technology used with Spring. Below you can
find two possibilities, the UrlBasedViewResolver and the ResourceBundleViewResolver.

UrlBasedViewResolver

The UrlBasedViewResolver instantiates the given viewClass for each view it has to resolve.

<bean id="viewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.tiles2.TilesView"/>

</bean>

ResourceBundleViewResolver

The ResourceBundleViewResolver has to be provided with a property file containing viewnames
and viewclasses the resolver can use:

<bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
<property name="basename" value="views"/>

</bean>

...
welcomeView.(class)=org.springframework.web.servlet.view.tiles2.TilesView
welcomeView.url=welcome (this is the name of a Tiles definition)

vetsView.(class)=org.springframework.web.servlet.view.tiles2.TilesView
vetsView.url=vetsView (again, this is the name of a Tiles definition)

findOwnersForm.(class)=org.springframework.web.servlet.view.JstlView
findOwnersForm.url=/WEB-INF/jsp/findOwners.jsp
...

As you can see, when using the ResourceBundleViewResolver, you can easily mix different view
technologies.

Note that the TilesView class for Tiles 2 supports JSTL (the JSP Standard Tag Library) out of the box,
whereas there is a separate TilesJstlView subclass in the Tiles 1.x support.

SimpleSpringPreparerFactory and SpringBeanPreparerFactory

As an advanced feature, Spring also supports two special Tiles 2 PreparerFactory implementations.
Check out the Tiles documentation for details on how to use ViewPreparer references in your Tiles
definition files.

Specify SimpleSpringPreparerFactory to autowire ViewPreparer instances based on specified
preparer classes, applying Spring's container callbacks as well as applying configured Spring
BeanPostProcessors. If Spring's context-wide annotation-config has been activated, annotations in
ViewPreparer classes will be automatically detected and applied. Note that this expects preparer classes
in the Tiles definition files, just like the default PreparerFactory does.

Specify SpringBeanPreparerFactory to operate on specified preparer names instead of classes,
obtaining the corresponding Spring bean from the DispatcherServlet's application context. The full bean

Spring Framework

3.1 Reference Documentation 513

creation process will be in the control of the Spring application context in this case, allowing for the use
of explicit dependency injection configuration, scoped beans etc. Note that you need to define one Spring
bean definition per preparer name (as used in your Tiles definitions).

<bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles2.TilesConfigurer">
<property name="definitions">

<list>
<value>/WEB-INF/defs/general.xml</value>
<value>/WEB-INF/defs/widgets.xml</value>
<value>/WEB-INF/defs/administrator.xml</value>
<value>/WEB-INF/defs/customer.xml</value>
<value>/WEB-INF/defs/templates.xml</value>

</list>
</property>

<!-- resolving preparer names as Spring bean definition names -->
<property name="preparerFactoryClass"

value="org.springframework.web.servlet.view.tiles2.SpringBeanPreparerFactory"/>

</bean>

17.4 Velocity & FreeMarker

Velocity and FreeMarker are two templating languages that can be used as view technologies within
Spring MVC applications. The languages are quite similar and serve similar needs and so are considered
together in this section. For semantic and syntactic differences between the two languages, see the
FreeMarker web site.

Dependencies

Your web application will need to include velocity-1.x.x.jar or freemarker-2.x.jar in
order to work with Velocity or FreeMarker respectively and commons-collections.jar is required
for Velocity. Typically they are included in the WEB-INF/lib folder where they are guaranteed to be
found by a Java EE server and added to the classpath for your application. It is of course assumed that
you already have the spring-webmvc.jar in your 'WEB-INF/lib' directory too! If you make use
of Spring's 'dateToolAttribute' or 'numberToolAttribute' in your Velocity views, you will also need to
include the velocity-tools-generic-1.x.jar

Context configuration

A suitable configuration is initialized by adding the relevant configurer bean definition to your
'*-servlet.xml' as shown below:

<!--
This bean sets up the Velocity environment for us based on a root path for templates.
Optionally, a properties file can be specified for more control over the Velocity
environment, but the defaults are pretty sane for file based template loading.

-->
<bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
<property name="resourceLoaderPath" value="/WEB-INF/velocity/"/>

</bean>

Spring Framework

3.1 Reference Documentation 514

http://velocity.apache.org
http://www.freemarker.org
http://www.freemarker.org

<!--

View resolvers can also be configured with ResourceBundles or XML files. If you need
different view resolving based on Locale, you have to use the resource bundle resolver.

-->
<bean id="viewResolver" class="org.springframework.web.servlet.view.velocity.VelocityViewResolver">
<property name="cache" value="true"/>
<property name="prefix" value=""/>
<property name="suffix" value=".vm"/>

</bean>

<!-- freemarker config -->
<bean id="freemarkerConfig" class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
<property name="templateLoaderPath" value="/WEB-INF/freemarker/"/>

</bean>

<!--

View resolvers can also be configured with ResourceBundles or XML files. If you need
different view resolving based on Locale, you have to use the resource bundle resolver.

-->
<bean id="viewResolver" class="org.springframework.web.servlet.view.freemarker.FreeMarkerViewResolver">
<property name="cache" value="true"/>
<property name="prefix" value=""/>
<property name="suffix" value=".ftl"/>

</bean>

Note

For non web-apps add a VelocityConfigurationFactoryBean or a
FreeMarkerConfigurationFactoryBean to your application context definition file.

Creating templates

Your templates need to be stored in the directory specified by the *Configurer bean shown above.
This document does not cover details of creating templates for the two languages - please see their
relevant websites for information. If you use the view resolvers highlighted, then the logical view names
relate to the template file names in similar fashion to InternalResourceViewResolver for JSP's.
So if your controller returns a ModelAndView object containing a view name of "welcome" then the
resolvers will look for the /WEB-INF/freemarker/welcome.ftl or
/WEB-INF/velocity/welcome.vm template as appropriate.

Advanced configuration

The basic configurations highlighted above will be suitable for most application requirements, however
additional configuration options are available for when unusual or advanced requirements dictate.

velocity.properties

Spring Framework

3.1 Reference Documentation 515

This file is completely optional, but if specified, contains the values that are passed to the Velocity
runtime in order to configure velocity itself. Only required for advanced configurations, if you need this
file, specify its location on the VelocityConfigurer bean definition above.

<bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
<property name="configLocation" value="/WEB-INF/velocity.properties"/>

</bean>

Alternatively, you can specify velocity properties directly in the bean definition for the Velocity config
bean by replacing the "configLocation" property with the following inline properties.

<bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
<property name="velocityProperties">

<props>
<prop key="resource.loader">file</prop>
<prop key="file.resource.loader.class">
org.apache.velocity.runtime.resource.loader.FileResourceLoader

</prop>
<prop key="file.resource.loader.path">${webapp.root}/WEB-INF/velocity</prop>
<prop key="file.resource.loader.cache">false</prop>

</props>
</property>

</bean>

Refer to the API documentation for Spring configuration of Velocity, or the Velocity documentation for
examples and definitions of the 'velocity.properties' file itself.

FreeMarker

FreeMarker 'Settings' and 'SharedVariables' can be passed directly to the FreeMarker Configuration
object managed by Spring by setting the appropriate bean properties on the FreeMarkerConfigurer
bean. The freemarkerSettings property requires a java.util.Properties object and the
freemarkerVariables property requires a java.util.Map.

<bean id="freemarkerConfig" class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
<property name="templateLoaderPath" value="/WEB-INF/freemarker/"/>
<property name="freemarkerVariables">

<map>
<entry key="xml_escape" value-ref="fmXmlEscape"/>

</map>
</property>

</bean>

<bean id="fmXmlEscape" class="freemarker.template.utility.XmlEscape"/>

See the FreeMarker documentation for details of settings and variables as they apply to the
Configuration object.

Bind support and form handling

Spring provides a tag library for use in JSP's that contains (amongst other things) a <spring:bind/>
tag. This tag primarily enables forms to display values from form backing objects and to show the results

Spring Framework

3.1 Reference Documentation 516

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/ui/velocity/VelocityEngineFactory.html

of failed validations from a Validator in the web or business tier. From version 1.1, Spring now has
support for the same functionality in both Velocity and FreeMarker, with additional convenience macros
for generating form input elements themselves.

The bind macros

A standard set of macros are maintained within the spring-webmvc.jar file for both languages, so
they are always available to a suitably configured application.

Some of the macros defined in the Spring libraries are considered internal (private) but no such scoping
exists in the macro definitions making all macros visible to calling code and user templates. The
following sections concentrate only on the macros you need to be directly calling from within your
templates. If you wish to view the macro code directly, the files are called spring.vm / spring.ftl and are in
the packages org.springframework.web.servlet.view.velocity or
org.springframework.web.servlet.view.freemarker respectively.

Simple binding

In your html forms (vm / ftl templates) that act as the 'formView' for a Spring form controller, you can
use code similar to the following to bind to field values and display error messages for each input field in
similar fashion to the JSP equivalent. Note that the name of the command object is "command" by
default, but can be overridden in your MVC configuration by setting the 'commandName' bean property
on your form controller. Example code is shown below for the personFormV and personFormF
views configured earlier;

<!-- velocity macros are automatically available -->
<html>
...
<form action="" method="POST">
Name:
#springBind("command.name")
<input type="text"

name="${status.expression}"
value="$!status.value" />

#foreach($error in $status.errorMessages) $error
 #end

...
<input type="submit" value="submit"/>

</form>
...
</html>

<!-- freemarker macros have to be imported into a namespace. We strongly
recommend sticking to 'spring' -->
<#import "/spring.ftl" as spring />
<html>
...
<form action="" method="POST">
Name:
<@spring.bind "command.name" />
<input type="text"

name="${spring.status.expression}"
value="${spring.status.value?default("")}" />

<#list spring.status.errorMessages as error> ${error}
 </#list>

...

Spring Framework

3.1 Reference Documentation 517

<input type="submit" value="submit"/>
</form>
...
</html>

#springBind / <@spring.bind> requires a 'path' argument which consists of the name of your
command object (it will be 'command' unless you changed it in your FormController properties) followed
by a period and the name of the field on the command object you wish to bind to. Nested fields can be
used too such as "command.address.street". The bind macro assumes the default HTML escaping
behavior specified by the ServletContext parameter defaultHtmlEscape in web.xml

The optional form of the macro called #springBindEscaped / <@spring.bindEscaped> takes
a second argument and explicitly specifies whether HTML escaping should be used in the status error
messages or values. Set to true or false as required. Additional form handling macros simplify the use of
HTML escaping and these macros should be used wherever possible. They are explained in the next
section.

Form input generation macros

Additional convenience macros for both languages simplify both binding and form generation (including
validation error display). It is never necessary to use these macros to generate form input fields, and they
can be mixed and matched with simple HTML or calls direct to the spring bind macros highlighted
previously.

The following table of available macros show the VTL and FTL definitions and the parameter list that
each takes.

Table 17.1. Table of macro definitions

macro VTL definition FTL definition

message (output a string from a
resource bundle based on the
code parameter)

#springMessage($code) <@spring.message
code/>

messageText (output a string
from a resource bundle based on
the code parameter, falling back
to the value of the default
parameter)

#springMessageText($code
$text)

<@spring.messageText
code, text/>

url (prefix a relative URL with
the application's context root)

#springUrl($relativeUrl)<@spring.url
relativeUrl/>

formInput (standard input field
for gathering user input)

#springFormInput($path
$attributes)

<@spring.formInput
path, attributes,
fieldType/>

formHiddenInput * (hidden #springFormHiddenInput($path<@spring.formHiddenInput

Spring Framework

3.1 Reference Documentation 518

macro VTL definition FTL definition

input field for submitting
non-user input)

$attributes) path, attributes/>

formPasswordInput * (standard
input field for gathering
passwords. Note that no value
will ever be populated in fields
of this type)

#springFormPasswordInput($path
$attributes)

<@spring.formPasswordInput
path, attributes/>

formTextarea (large text field
for gathering long, freeform text
input)

#springFormTextarea($path
$attributes)

<@spring.formTextarea
path, attributes/>

formSingleSelect (drop down
box of options allowing a single
required value to be selected)

#springFormSingleSelect(
$path $options
$attributes)

<@spring.formSingleSelect
path, options,
attributes/>

formMultiSelect (a list box of
options allowing the user to
select 0 or more values)

#springFormMultiSelect($path
$options $attributes)

<@spring.formMultiSelect
path, options,
attributes/>

formRadioButtons (a set of
radio buttons allowing a single
selection to be made from the
available choices)

#springFormRadioButtons($path
$options $separator
$attributes)

<@spring.formRadioButtons
path, options
separator,
attributes/>

formCheckboxes (a set of
checkboxes allowing 0 or more
values to be selected)

#springFormCheckboxes($path
$options $separator
$attributes)

<@spring.formCheckboxes
path, options,
separator,
attributes/>

formCheckbox (a single
checkbox)

#springFormCheckbox($path
$attributes)

<@spring.formCheckbox
path, attributes/>

showErrors (simplify display of
validation errors for the bound
field)

#springShowErrors($separator
$classOrStyle)

<@spring.showErrors
separator,
classOrStyle/>

* In FTL (FreeMarker), these two macros are not actually required as you can use the normal
formInput macro, specifying 'hidden' or 'password' as the value for the fieldType parameter.

The parameters to any of the above macros have consistent meanings:

• path: the name of the field to bind to (ie "command.name")

• options: a Map of all the available values that can be selected from in the input field. The keys to the

Spring Framework

3.1 Reference Documentation 519

map represent the values that will be POSTed back from the form and bound to the command object.
Map objects stored against the keys are the labels displayed on the form to the user and may be
different from the corresponding values posted back by the form. Usually such a map is supplied as
reference data by the controller. Any Map implementation can be used depending on required behavior.
For strictly sorted maps, a SortedMap such as a TreeMap with a suitable Comparator may be used
and for arbitrary Maps that should return values in insertion order, use a LinkedHashMap or a
LinkedMap from commons-collections.

• separator: where multiple options are available as discreet elements (radio buttons or checkboxes), the
sequence of characters used to separate each one in the list (ie "
").

• attributes: an additional string of arbitrary tags or text to be included within the HTML tag itself. This
string is echoed literally by the macro. For example, in a textarea field you may supply attributes as
'rows="5" cols="60"' or you could pass style information such as 'style="border:1px solid silver"'.

• classOrStyle: for the showErrors macro, the name of the CSS class that the span tag wrapping each
error will use. If no information is supplied (or the value is empty) then the errors will be wrapped in
 tags.

Examples of the macros are outlined below some in FTL and some in VTL. Where usage differences
exist between the two languages, they are explained in the notes.

Input Fields

<!-- the Name field example from above using form macros in VTL -->
...

Name:
#springFormInput("command.name" "")

#springShowErrors("
" "")

The formInput macro takes the path parameter (command.name) and an additional attributes parameter
which is empty in the example above. The macro, along with all other form generation macros, performs
an implicit spring bind on the path parameter. The binding remains valid until a new bind occurs so the
showErrors macro doesn't need to pass the path parameter again - it simply operates on whichever field a
bind was last created for.

The showErrors macro takes a separator parameter (the characters that will be used to separate multiple
errors on a given field) and also accepts a second parameter, this time a class name or style attribute. Note
that FreeMarker is able to specify default values for the attributes parameter, unlike Velocity, and the two
macro calls above could be expressed as follows in FTL:

<@spring.formInput "command.name"/>
<@spring.showErrors "
"/>

Output is shown below of the form fragment generating the name field, and displaying a validation error
after the form was submitted with no value in the field. Validation occurs through Spring's Validation
framework.

Spring Framework

3.1 Reference Documentation 520

The generated HTML looks like this:

Name:
<input type="text" name="name" value=""

>

required

The formTextarea macro works the same way as the formInput macro and accepts the same parameter
list. Commonly, the second parameter (attributes) will be used to pass style information or rows and cols
attributes for the textarea.

Selection Fields

Four selection field macros can be used to generate common UI value selection inputs in your HTML
forms.

• formSingleSelect

• formMultiSelect

• formRadioButtons

• formCheckboxes

Each of the four macros accepts a Map of options containing the value for the form field, and the label
corresponding to that value. The value and the label can be the same.

An example of radio buttons in FTL is below. The form backing object specifies a default value of
'London' for this field and so no validation is necessary. When the form is rendered, the entire list of cities
to choose from is supplied as reference data in the model under the name 'cityMap'.

...
Town:
<@spring.formRadioButtons "command.address.town", cityMap, "" />

This renders a line of radio buttons, one for each value in cityMap using the separator "". No additional
attributes are supplied (the last parameter to the macro is missing). The cityMap uses the same String for
each key-value pair in the map. The map's keys are what the form actually submits as POSTed request
parameters, map values are the labels that the user sees. In the example above, given a list of three well
known cities and a default value in the form backing object, the HTML would be

Town:
<input type="radio" name="address.town" value="London"

>
London
<input type="radio" name="address.town" value="Paris"
checked="checked"

>
Paris

Spring Framework

3.1 Reference Documentation 521

<input type="radio" name="address.town" value="New York"

>
New York

If your application expects to handle cities by internal codes for example, the map of codes would be
created with suitable keys like the example below.

protected Map referenceData(HttpServletRequest request) throws Exception {
Map cityMap = new LinkedHashMap();
cityMap.put("LDN", "London");
cityMap.put("PRS", "Paris");
cityMap.put("NYC", "New York");

Map m = new HashMap();
m.put("cityMap", cityMap);
return m;

}

The code would now produce output where the radio values are the relevant codes but the user still sees
the more user friendly city names.

Town:
<input type="radio" name="address.town" value="LDN"

>
London
<input type="radio" name="address.town" value="PRS"
checked="checked"

>
Paris
<input type="radio" name="address.town" value="NYC"

>
New York

HTML escaping and XHTML compliance

Default usage of the form macros above will result in HTML tags that are HTML 4.01 compliant and that
use the default value for HTML escaping defined in your web.xml as used by Spring's bind support. In
order to make the tags XHTML compliant or to override the default HTML escaping value, you can
specify two variables in your template (or in your model where they will be visible to your templates).
The advantage of specifying them in the templates is that they can be changed to different values later in
the template processing to provide different behavior for different fields in your form.

To switch to XHTML compliance for your tags, specify a value of 'true' for a model/context variable
named xhtmlCompliant:

for Velocity..
#set($springXhtmlCompliant = true)

<#-- for FreeMarker -->
<#assign xhtmlCompliant = true in spring>

Any tags generated by the Spring macros will now be XHTML compliant after processing this directive.

Spring Framework

3.1 Reference Documentation 522

In similar fashion, HTML escaping can be specified per field:

<#-- until this point, default HTML escaping is used -->

<#assign htmlEscape = true in spring>
<#-- next field will use HTML escaping -->
<@spring.formInput "command.name" />

<#assign htmlEscape = false in spring>
<#-- all future fields will be bound with HTML escaping off -->

17.5 XSLT

XSLT is a transformation language for XML and is popular as a view technology within web
applications. XSLT can be a good choice as a view technology if your application naturally deals with
XML, or if your model can easily be converted to XML. The following section shows how to produce an
XML document as model data and have it transformed with XSLT in a Spring Web MVC application.

My First Words

This example is a trivial Spring application that creates a list of words in the Controller and adds
them to the model map. The map is returned along with the view name of our XSLT view. See
Section 16.3, “Implementing Controllers” for details of Spring Web MVC's Controller interface. The
XSLT view will turn the list of words into a simple XML document ready for transformation.

Bean definitions

Configuration is standard for a simple Spring application. The dispatcher servlet config file contains a
reference to a ViewResolver, URL mappings and a single controller bean...

<bean id="homeController"class="xslt.HomeController"/>

... that encapsulates our word generation logic.

Standard MVC controller code

The controller logic is encapsulated in a subclass of AbstractController, with the handler method
being defined like so...

protected ModelAndView handleRequestInternal(
HttpServletRequest request,
HttpServletResponse response) throws Exception {

Map map = new HashMap();
List wordList = new ArrayList();

wordList.add("hello");
wordList.add("world");

map.put("wordList", wordList);

Spring Framework

3.1 Reference Documentation 523

return new ModelAndView("home", map);
}

So far we've done nothing that's XSLT specific. The model data has been created in the same way as you
would for any other Spring MVC application. Depending on the configuration of the application now, that
list of words could be rendered by JSP/JSTL by having them added as request attributes, or they could be
handled by Velocity by adding the object to the VelocityContext. In order to have XSLT render
them, they of course have to be converted into an XML document somehow. There are software packages
available that will automatically 'domify' an object graph, but within Spring, you have complete flexibility
to create the DOM from your model in any way you choose. This prevents the transformation of XML
playing too great a part in the structure of your model data which is a danger when using tools to manage
the domification process.

Convert the model data to XML

In order to create a DOM document from our list of words or any other model data, we must subclass the
(provided) org.springframework.web.servlet.view.xslt.AbstractXsltView class.
In doing so, we must also typically implement the abstract method createXsltSource(..) method.
The first parameter passed to this method is our model map. Here's the complete listing of the HomePage
class in our trivial word application:

package xslt;

// imports omitted for brevity

public class HomePage extends AbstractXsltView {

protected Source createXsltSource(Map model, String rootName, HttpServletRequest
request, HttpServletResponse response) throws Exception {

Document document = DocumentBuilderFactory.newInstance().newDocumentBuilder().newDocument();
Element root = document.createElement(rootName);

List words = (List) model.get("wordList");
for (Iterator it = words.iterator(); it.hasNext();) {

String nextWord = (String) it.next();
Element wordNode = document.createElement("word");
Text textNode = document.createTextNode(nextWord);
wordNode.appendChild(textNode);
root.appendChild(wordNode);

}
return new DOMSource(root);

}

}

A series of parameter name/value pairs can optionally be defined by your subclass which will be added to
the transformation object. The parameter names must match those defined in your XSLT template
declared with <xsl:param name="myParam">defaultValue</xsl:param>. To specify the
parameters, override the getParameters() method of the AbstractXsltView class and return a
Map of the name/value pairs. If your parameters need to derive information from the current request, you
can override the getParameters(HttpServletRequest request) method instead.

Spring Framework

3.1 Reference Documentation 524

Defining the view properties

The views.properties file (or equivalent xml definition if you're using an XML based view resolver as we
did in the Velocity examples above) looks like this for the one-view application that is 'My First Words':

home.(class)=xslt.HomePage
home.stylesheetLocation=/WEB-INF/xsl/home.xslt
home.root=words

Here, you can see how the view is tied in with the HomePage class just written which handles the model
domification in the first property '.(class)'. The 'stylesheetLocation' property points to the
XSLT file which will handle the XML transformation into HTML for us and the final property '.root'
is the name that will be used as the root of the XML document. This gets passed to the HomePage class
above in the second parameter to the createXsltSource(..) method(s).

Document transformation

Finally, we have the XSLT code used for transforming the above document. As shown in the above
'views.properties' file, the stylesheet is called 'home.xslt' and it lives in the war file in the
'WEB-INF/xsl' directory.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" omit-xml-declaration="yes"/>

<xsl:template match="/">
<html>

<head><title>Hello!</title></head>
<body>

<h1>My First Words</h1>
<xsl:apply-templates/>

</body>
</html>

</xsl:template>

<xsl:template match="word">
<xsl:value-of select="."/>

</xsl:template>

</xsl:stylesheet>

Summary

A summary of the files discussed and their location in the WAR file is shown in the simplified WAR
structure below.

ProjectRoot
|
+- WebContent

|
+- WEB-INF

|
+- classes

Spring Framework

3.1 Reference Documentation 525

| |
| +- xslt
| | |
| | +- HomePageController.class
| | +- HomePage.class
| |
| +- views.properties
|
+- lib
| |
| +- spring-*.jar
|
+- xsl
| |
| +- home.xslt
|
+- frontcontroller-servlet.xml

You will also need to ensure that an XML parser and an XSLT engine are available on the classpath. JDK
1.4 provides them by default, and most Java EE containers will also make them available by default, but
it's a possible source of errors to be aware of.

17.6 Document views (PDF/Excel)

Introduction

Returning an HTML page isn't always the best way for the user to view the model output, and Spring
makes it simple to generate a PDF document or an Excel spreadsheet dynamically from the model data.
The document is the view and will be streamed from the server with the correct content type to
(hopefully) enable the client PC to run their spreadsheet or PDF viewer application in response.

In order to use Excel views, you need to add the 'poi' library to your classpath, and for PDF generation,
the iText library.

Configuration and setup

Document based views are handled in an almost identical fashion to XSLT views, and the following
sections build upon the previous one by demonstrating how the same controller used in the XSLT
example is invoked to render the same model as both a PDF document and an Excel spreadsheet (which
can also be viewed or manipulated in Open Office).

Document view definitions

First, let's amend the views.properties file (or xml equivalent) and add a simple view definition for both
document types. The entire file now looks like this with the XSLT view shown from earlier:

home.(class)=xslt.HomePage
home.stylesheetLocation=/WEB-INF/xsl/home.xslt
home.root=words

Spring Framework

3.1 Reference Documentation 526

xl.(class)=excel.HomePage

pdf.(class)=pdf.HomePage

If you want to start with a template spreadsheet or a fillable PDF form to add your model data to, specify
the location as the 'url' property in the view definition

Controller code

The controller code we'll use remains exactly the same from the XSLT example earlier other than to
change the name of the view to use. Of course, you could be clever and have this selected based on a
URL parameter or some other logic - proof that Spring really is very good at decoupling the views from
the controllers!

Subclassing for Excel views

Exactly as we did for the XSLT example, we'll subclass suitable abstract classes in order to implement
custom behavior in generating our output documents. For Excel, this involves writing a subclass of
org.springframework.web.servlet.view.document.AbstractExcelView (for Excel
files generated by POI) or
org.springframework.web.servlet.view.document.AbstractJExcelView (for
JExcelApi-generated Excel files) and implementing the buildExcelDocument() method.

Here's the complete listing for our POI Excel view which displays the word list from the model map in
consecutive rows of the first column of a new spreadsheet:

package excel;

// imports omitted for brevity

public class HomePage extends AbstractExcelView {

protected void buildExcelDocument(
Map model,
HSSFWorkbook wb,
HttpServletRequest req,
HttpServletResponse resp)
throws Exception {

HSSFSheet sheet;
HSSFRow sheetRow;
HSSFCell cell;

// Go to the first sheet
// getSheetAt: only if wb is created from an existing document
// sheet = wb.getSheetAt(0);
sheet = wb.createSheet("Spring");
sheet.setDefaultColumnWidth((short) 12);

// write a text at A1
cell = getCell(sheet, 0, 0);
setText(cell, "Spring-Excel test");

List words = (List) model.get("wordList");
for (int i=0; i < words.size(); i++) {

Spring Framework

3.1 Reference Documentation 527

cell = getCell(sheet, 2+i, 0);
setText(cell, (String) words.get(i));

}
}

}

And the following is a view generating the same Excel file, now using JExcelApi:

package excel;

// imports omitted for brevity

public class HomePage extends AbstractJExcelView {

protected void buildExcelDocument(Map model,
WritableWorkbook wb,
HttpServletRequest request,
HttpServletResponse response)

throws Exception {

WritableSheet sheet = wb.createSheet("Spring", 0);

sheet.addCell(new Label(0, 0, "Spring-Excel test"));

List words = (List) model.get("wordList");
for (int i = 0; i < words.size(); i++) {

sheet.addCell(new Label(2+i, 0, (String) words.get(i)));
}

}
}

Note the differences between the APIs. We've found that the JExcelApi is somewhat more intuitive, and
furthermore, JExcelApi has slightly better image-handling capabilities. There have been memory
problems with large Excel files when using JExcelApi however.

If you now amend the controller such that it returns xl as the name of the view (return new
ModelAndView("xl", map);) and run your application again, you should find that the Excel
spreadsheet is created and downloaded automatically when you request the same page as before.

Subclassing for PDF views

The PDF version of the word list is even simpler. This time, the class extends
org.springframework.web.servlet.view.document.AbstractPdfView and
implements the buildPdfDocument() method as follows:

package pdf;

// imports omitted for brevity

public class PDFPage extends AbstractPdfView {

protected void buildPdfDocument(
Map model,
Document doc,
PdfWriter writer,
HttpServletRequest req,
HttpServletResponse resp)
throws Exception {

Spring Framework

3.1 Reference Documentation 528

List words = (List) model.get("wordList");

for (int i=0; i<words.size(); i++)
doc.add(new Paragraph((String) words.get(i)));

}
}

Once again, amend the controller to return the pdf view with return new
ModelAndView("pdf", map);, and reload the URL in your application. This time a PDF document
should appear listing each of the words in the model map.

17.7 JasperReports

JasperReports (http://jasperreports.sourceforge.net) is a powerful open-source reporting engine that
supports the creation of report designs using an easily understood XML file format. JasperReports is
capable of rendering reports in four different formats: CSV, Excel, HTML and PDF.

Dependencies

Your application will need to include the latest release of JasperReports, which at the time of writing was
0.6.1. JasperReports itself depends on the following projects:

• BeanShell

• Commons BeanUtils

• Commons Collections

• Commons Digester

• Commons Logging

• iText

• POI

JasperReports also requires a JAXP compliant XML parser.

Configuration

To configure JasperReports views in your Spring container configuration you need to define a
ViewResolver to map view names to the appropriate view class depending on which format you want
your report rendered in.

Configuring the ViewResolver

Spring Framework

3.1 Reference Documentation 529

http://jasperreports.sourceforge.net

Typically, you will use the ResourceBundleViewResolver to map view names to view classes and
files in a properties file.

<bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
<property name="basename" value="views"/>

</bean>

Here we've configured an instance of the ResourceBundleViewResolver class that will look for
view mappings in the resource bundle with base name views. (The content of this file is described in the
next section.)

Configuring the Views

The Spring Framework contains five different View implementations for JasperReports, four of which
correspond to one of the four output formats supported by JasperReports, and one that allows for the
format to be determined at runtime:

Table 17.2. JasperReports View classes

Class Name Render Format

JasperReportsCsvView CSV

JasperReportsHtmlView HTML

JasperReportsPdfView PDF

JasperReportsXlsView Microsoft Excel

JasperReportsMultiFormatView The view is decided upon at runtime

Mapping one of these classes to a view name and a report file is a matter of adding the appropriate entries
in the resource bundle configured in the previous section as shown here:

simpleReport.(class)=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView
simpleReport.url=/WEB-INF/reports/DataSourceReport.jasper

Here you can see that the view with name simpleReport is mapped to the
JasperReportsPdfView class, causing the output of this report to be rendered in PDF format. The
url property of the view is set to the location of the underlying report file.

About Report Files

JasperReports has two distinct types of report file: the design file, which has a .jrxml extension, and
the compiled report file, which has a .jasper extension. Typically, you use the JasperReports Ant task
to compile your .jrxml design file into a .jasper file before deploying it into your application. With
the Spring Framework you can map either of these files to your report file and the framework will take
care of compiling the .jrxml file on the fly for you. You should note that after a .jrxml file is

Spring Framework

3.1 Reference Documentation 530

compiled by the Spring Framework, the compiled report is cached for the lifetime of the application.
Thus, to make changes to the file you will need to restart your application.

Using JasperReportsMultiFormatView

The JasperReportsMultiFormatView allows for the report format to be specified at runtime. The
actual rendering of the report is delegated to one of the other JasperReports view classes - the
JasperReportsMultiFormatView class simply adds a wrapper layer that allows for the exact
implementation to be specified at runtime.

The JasperReportsMultiFormatView class introduces two concepts: the format key and the
discriminator key. The JasperReportsMultiFormatView class uses the mapping key to look up
the actual view implementation class, and it uses the format key to lookup up the mapping key. From a
coding perspective you add an entry to your model with the format key as the key and the mapping key as
the value, for example:

public ModelAndView handleSimpleReportMulti(HttpServletRequest request,
HttpServletResponse response) throws Exception {

String uri = request.getRequestURI();
String format = uri.substring(uri.lastIndexOf(".") + 1);

Map model = getModel();
model.put("format", format);

return new ModelAndView("simpleReportMulti", model);
}

In this example, the mapping key is determined from the extension of the request URI and is added to the
model under the default format key: format. If you wish to use a different format key then you can
configure this using the formatKey property of the JasperReportsMultiFormatView class.

By default the following mapping key mappings are configured in
JasperReportsMultiFormatView:

Table 17.3. JasperReportsMultiFormatView Default Mapping Key Mappings

Mapping Key View Class

csv JasperReportsCsvView

html JasperReportsHtmlView

pdf JasperReportsPdfView

xls JasperReportsXlsView

So in the example above a request to URI /foo/myReport.pdf would be mapped to the
JasperReportsPdfView class. You can override the mapping key to view class mappings using the
formatMappings property of JasperReportsMultiFormatView.

Spring Framework

3.1 Reference Documentation 531

Populating the ModelAndView

In order to render your report correctly in the format you have chosen, you must supply Spring with all of
the data needed to populate your report. For JasperReports this means you must pass in all report
parameters along with the report datasource. Report parameters are simple name/value pairs and can be
added to the Map for your model as you would add any name/value pair.

When adding the datasource to the model you have two approaches to choose from. The first approach is
to add an instance of JRDataSource or a Collection type to the model Map under any arbitrary
key. Spring will then locate this object in the model and treat it as the report datasource. For example, you
may populate your model like so:

private Map getModel() {
Map model = new HashMap();
Collection beanData = getBeanData();
model.put("myBeanData", beanData);
return model;

}

The second approach is to add the instance of JRDataSource or Collection under a specific key
and then configure this key using the reportDataKey property of the view class. In both cases Spring
will wrap instances of Collection in a JRBeanCollectionDataSource instance. For example:

private Map getModel() {
Map model = new HashMap();
Collection beanData = getBeanData();
Collection someData = getSomeData();
model.put("myBeanData", beanData);
model.put("someData", someData);
return model;

}

Here you can see that two Collection instances are being added to the model. To ensure that the
correct one is used, we simply modify our view configuration as appropriate:

simpleReport.(class)=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView
simpleReport.url=/WEB-INF/reports/DataSourceReport.jasper
simpleReport.reportDataKey=myBeanData

Be aware that when using the first approach, Spring will use the first instance of JRDataSource or
Collection that it encounters. If you need to place multiple instances of JRDataSource or
Collection into the model you need to use the second approach.

Working with Sub-Reports

JasperReports provides support for embedded sub-reports within your master report files. There are a
wide variety of mechanisms for including sub-reports in your report files. The easiest way is to hard code
the report path and the SQL query for the sub report into your design files. The drawback of this approach
is obvious: the values are hard-coded into your report files reducing reusability and making it harder to
modify and update report designs. To overcome this you can configure sub-reports declaratively, and you

Spring Framework

3.1 Reference Documentation 532

can include additional data for these sub-reports directly from your controllers.

Configuring Sub-Report Files

To control which sub-report files are included in a master report using Spring, your report file must be
configured to accept sub-reports from an external source. To do this you declare a parameter in your
report file like so:

<parameter name="ProductsSubReport" class="net.sf.jasperreports.engine.JasperReport"/>

Then, you define your sub-report to use this sub-report parameter:

<subreport>
<reportElement isPrintRepeatedValues="false" x="5" y="25" width="325"

height="20" isRemoveLineWhenBlank="true" backcolor="#ffcc99"/>
<subreportParameter name="City">

<subreportParameterExpression><![CDATA[$F{city}]]></subreportParameterExpression>
</subreportParameter>
<dataSourceExpression><![CDATA[$P{SubReportData}]]></dataSourceExpression>
<subreportExpression class="net.sf.jasperreports.engine.JasperReport">

<![CDATA[$P{ProductsSubReport}]]></subreportExpression>
</subreport>

This defines a master report file that expects the sub-report to be passed in as an instance of
net.sf.jasperreports.engine.JasperReports under the parameter
ProductsSubReport. When configuring your Jasper view class, you can instruct Spring to load a
report file and pass it into the JasperReports engine as a sub-report using the subReportUrls property:

<property name="subReportUrls">
<map>

<entry key="ProductsSubReport" value="/WEB-INF/reports/subReportChild.jrxml"/>
</map>

</property>

Here, the key of the Map corresponds to the name of the sub-report parameter in the report design file,
and the entry is the URL of the report file. Spring will load this report file, compiling it if necessary, and
pass it into the JasperReports engine under the given key.

Configuring Sub-Report Data Sources

This step is entirely optional when using Spring to configure your sub-reports. If you wish, you can still
configure the data source for your sub-reports using static queries. However, if you want Spring to
convert data returned in your ModelAndView into instances of JRDataSource then you need to
specify which of the parameters in your ModelAndView Spring should convert. To do this, configure
the list of parameter names using the subReportDataKeys property of your chosen view class:

<property name="subReportDataKeys" value="SubReportData"/>

Here, the key you supply must correspond to both the key used in your ModelAndView and the key
used in your report design file.

Spring Framework

3.1 Reference Documentation 533

Configuring Exporter Parameters

If you have special requirements for exporter configuration -- perhaps you want a specific page size for
your PDF report -- you can configure these exporter parameters declaratively in your Spring
configuration file using the exporterParameters property of the view class. The
exporterParameters property is typed as a Map. In your configuration the key of an entry should
be the fully-qualified name of a static field that contains the exporter parameter definition, and the value
of an entry should be the value you want to assign to the parameter. An example of this is shown below:

<bean id="htmlReport" class="org.springframework.web.servlet.view.jasperreports.JasperReportsHtmlView">
<property name="url" value="/WEB-INF/reports/simpleReport.jrxml"/>
<property name="exporterParameters">

<map>
<entry key="net.sf.jasperreports.engine.export.JRHtmlExporterParameter.HTML_FOOTER">
<value>Footer by Spring!

</td><td width="50%">&nbsp; </td></tr>
</table></body></html>

</value>
</entry>

</map>
</property>

</bean>

Here you can see that the JasperReportsHtmlView is configured with an exporter parameter for
net.sf.jasperreports.engine.export.JRHtmlExporterParameter.HTML_FOOTER
which will output a footer in the resulting HTML.

17.8 Feed Views

Both AbstractAtomFeedView and AbstractRssFeedView inherit from the base class
AbstractFeedView and are used to provide Atom and RSS Feed views respectfully. They are based
on java.net's ROME project and are located in the package
org.springframework.web.servlet.view.feed.

AbstractAtomFeedView requires you to implement the buildFeedEntries() method and
optionally override the buildFeedMetadata() method (the default implementation is empty), as
shown below.

public class SampleContentAtomView extends AbstractAtomFeedView {

@Override
protected void buildFeedMetadata(Map<String, Object> model, Feed feed,

HttpServletRequest request) {
// implementation omitted

}

@Override
protected List<Entry> buildFeedEntries(Map<String, Object> model,

HttpServletRequest request, HttpServletResponse response)
throws Exception {

// implementation omitted
}

}

Spring Framework

3.1 Reference Documentation 534

https://rome.dev.java.net

Similar requirements apply for implementing AbstractRssFeedView, as shown below.

public class SampleContentAtomView extends AbstractRssFeedView {

@Override
protected void buildFeedMetadata(Map<String, Object> model, Channel feed,

HttpServletRequest request) {
// implementation omitted

}

@Override
protected List<Item> buildFeedItems(Map<String, Object> model,

HttpServletRequest request, HttpServletResponse response)
throws Exception {

// implementation omitted
}

}

The buildFeedItems() and buildFeedEntires() methods pass in the HTTP request in case
you need to access the Locale. The HTTP response is passed in only for the setting of cookies or other
HTTP headers. The feed will automatically be written to the response object after the method returns.

For an example of creating an Atom view please refer to Alef Arendsen's SpringSource Team Blog entry.

17.9 XML Marshalling View

The MarhsallingView uses an XML Marshaller defined in the org.springframework.oxm
package to render the response content as XML. The object to be marshalled can be set explicitly using
MarhsallingView's modelKey bean property. Alternatively, the view will iterate over all model
properties and marshal only those types that are supported by the Marshaller. For more information
on the functionality in the org.springframework.oxm package refer to the chapter Marshalling
XML using O/X Mappers.

17.10 JSON Mapping View

The MappingJacksonJsonView uses the Jackson library's ObjectMapper to render the response
content as JSON. By default, the entire contents of the model map (with the exception of
framework-specific classes) will be encoded as JSON. For cases where the contents of the map need to be
filtered, users may specify a specific set of model attributes to encode via the RenderedAttributes
property. The extractValueFromSingleKeyModel property may also be used to have the value in
single-key models extracted and serialized directly rather than as a map of model attributes.

JSON mapping can be customized as needed through the use of Jackson's provided annotations. When
further control is needed, a custom ObjectMapper can be injected through the ObjectMapper
property for cases where custom JSON serializers/deserializers need to be provided for specific types.

Spring Framework

3.1 Reference Documentation 535

http://blog.springsource.com/2009/03/16/adding-an-atom-view-to-an-application-using-springs-rest-support/

18. Integrating with other web frameworks

18.1 Introduction

This chapter details Spring's integration with third party web frameworks such as JSF, Struts, WebWork,
and Tapestry.

Spring Web Flow

Spring Web Flow (SWF) aims to be the best solution for the management of web application page
flow.

SWF integrates with existing frameworks like Spring MVC, Struts, and JSF, in both servlet and
portlet environments. If you have a business process (or processes) that would benefit from a
conversational model as opposed to a purely request model, then SWF may be the solution.

SWF allows you to capture logical page flows as self-contained modules that are reusable in
different situations, and as such is ideal for building web application modules that guide the user
through controlled navigations that drive business processes.

For more information about SWF, consult the Spring Web Flow website.

One of the core value propositions of the Spring Framework is that of enabling choice. In a general sense,
Spring does not force one to use or buy into any particular architecture, technology, or methodology
(although it certainly recommends some over others). This freedom to pick and choose the architecture,
technology, or methodology that is most relevant to a developer and his or her development team is
arguably most evident in the web area, where Spring provides its own web framework (Spring MVC),
while at the same time providing integration with a number of popular third party web frameworks. This
allows one to continue to leverage any and all of the skills one may have acquired in a particular web
framework such as Struts, while at the same time being able to enjoy the benefits afforded by Spring in
other areas such as data access, declarative transaction management, and flexible configuration and
application assembly.

Having dispensed with the woolly sales patter (c.f. the previous paragraph), the remainder of this chapter
will concentrate upon the meaty details of integrating your favorite web framework with Spring. One
thing that is often commented upon by developers coming to Java from other languages is the seeming
super-abundance of web frameworks available in Java. There are indeed a great number of web
frameworks in the Java space; in fact there are far too many to cover with any semblance of detail in a
single chapter. This chapter thus picks four of the more popular web frameworks in Java, starting with the
Spring configuration that is common to all of the supported web frameworks, and then detailing the
specific integration options for each supported web framework.

Spring Framework

3.1 Reference Documentation 536

http://java.sun.com/javaee/javaserverfaces/
http://struts.apache.org/
http://www.opensymphony.com/webwork/
http://tapestry.apache.org/
http://www.springframework.org/webflow

Note

Please note that this chapter does not attempt to explain how to use any of the supported web
frameworks. For example, if you want to use Struts for the presentation layer of your web
application, the assumption is that you are already familiar with Struts. If you need further
details about any of the supported web frameworks themselves, please do consult
Section 18.7, “Further Resources” at the end of this chapter.

18.2 Common configuration

Before diving into the integration specifics of each supported web framework, let us first take a look at
the Spring configuration that is not specific to any one web framework. (This section is equally applicable
to Spring's own web framework, Spring MVC.)

One of the concepts (for want of a better word) espoused by (Spring's) lightweight application model is
that of a layered architecture. Remember that in a 'classic' layered architecture, the web layer is but one of
many layers; it serves as one of the entry points into a server side application and it delegates to service
objects (facades) defined in a service layer to satisfy business specific (and presentation-technology
agnostic) use cases. In Spring, these service objects, any other business-specific objects, data access
objects, etc. exist in a distinct 'business context', which contains no web or presentation layer objects
(presentation objects such as Spring MVC controllers are typically configured in a distinct 'presentation
context'). This section details how one configures a Spring container (a WebApplicationContext)
that contains all of the 'business beans' in one's application.

On to specifics: all that one need do is to declare a ContextLoaderListener in the standard Java
EE servlet web.xml file of one's web application, and add a contextConfigLocation
<context-param/> section (in the same file) that defines which set of Spring XML configuration files to
load.

Find below the <listener/> configuration:

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

Find below the <context-param/> configuration:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/applicationContext*.xml</param-value>

</context-param>

If you don't specify the contextConfigLocation context parameter, the
ContextLoaderListener will look for a file called /WEB-INF/applicationContext.xml
to load. Once the context files are loaded, Spring creates a WebApplicationContext object based

Spring Framework

3.1 Reference Documentation 537

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/context/ContextLoaderListener.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/context/WebApplicationContext.html

on the bean definitions and stores it in the ServletContext of the web application.

All Java web frameworks are built on top of the Servlet API, and so one can use the following code
snippet to get access to this 'business context' ApplicationContext created by the
ContextLoaderListener.

WebApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext(servletContext);

The WebApplicationContextUtils class is for convenience, so you don't have to remember the
name of the ServletContext attribute. Its getWebApplicationContext() method will return null if an
object doesn't exist under the
WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE key. Rather
than risk getting NullPointerExceptions in your application, it's better to use the
getRequiredWebApplicationContext() method. This method throws an exception when the
ApplicationContext is missing.

Once you have a reference to the WebApplicationContext, you can retrieve beans by their name or
type. Most developers retrieve beans by name and then cast them to one of their implemented interfaces.

Fortunately, most of the frameworks in this section have simpler ways of looking up beans. Not only do
they make it easy to get beans from a Spring container, but they also allow you to use dependency
injection on their controllers. Each web framework section has more detail on its specific integration
strategies.

18.3 JavaServer Faces 1.1 and 1.2

JavaServer Faces (JSF) is the JCP's standard component-based, event-driven web user interface
framework. As of Java EE 5, it is an official part of the Java EE umbrella.

For a popular JSF runtime as well as for popular JSF component libraries, check out the Apache MyFaces
project. The MyFaces project also provides common JSF extensions such as MyFaces Orchestra: a
Spring-based JSF extension that provides rich conversation scope support.

Note

Spring Web Flow 2.0 provides rich JSF support through its newly established Spring Faces
module, both for JSF-centric usage (as described in this section) and for Spring-centric usage
(using JSF views within a Spring MVC dispatcher). Check out the Spring Web Flow website
for details!

The key element in Spring's JSF integration is the JSF 1.1 VariableResolver mechanism. On JSF
1.2, Spring supports the ELResolver mechanism as a next-generation version of JSF EL integration.

DelegatingVariableResolver (JSF 1.1/1.2)

Spring Framework

3.1 Reference Documentation 538

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/context/support/WebApplicationContextUtils.html
http://myfaces.apache.org/
http://myfaces.apache.org/
http://myfaces.apache.org/orchestra/
http://www.springframework.org/webflow

The easiest way to integrate one's Spring middle-tier with one's JSF web layer is to use the
DelegatingVariableResolver class. To configure this variable resolver in one's application, one
will need to edit one's faces-context.xml file. After the opening <faces-config/> element, add an
<application/> element and a <variable-resolver/> element within it. The value of the
variable resolver should reference Spring's DelegatingVariableResolver; for example:

<faces-config>
<application>

<variable-resolver>org.springframework.web.jsf.DelegatingVariableResolver</variable-resolver>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>en</supported-locale>
<supported-locale>es</supported-locale>

</locale-config>
<message-bundle>messages</message-bundle>

</application>
</faces-config>

The DelegatingVariableResolver will first delegate value lookups to the default resolver of the
underlying JSF implementation and then to Spring's 'business context' WebApplicationContext.
This allows one to easily inject dependencies into one's JSF-managed beans.

Managed beans are defined in one's faces-config.xml file. Find below an example where
#{userManager} is a bean that is retrieved from the Spring 'business context'.

<managed-bean>
<managed-bean-name>userList</managed-bean-name>
<managed-bean-class>com.whatever.jsf.UserList</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>

<property-name>userManager</property-name>
<value>#{userManager}</value>

</managed-property>
</managed-bean>

SpringBeanVariableResolver (JSF 1.1/1.2)

SpringBeanVariableResolver is a variant of DelegatingVariableResolver. It delegates
to the Spring's 'business context' WebApplicationContext first and then to the default resolver of
the underlying JSF implementation. This is useful in particular when using request/session-scoped beans
with special Spring resolution rules, e.g. Spring FactoryBean implementations.

Configuration-wise, simply define SpringBeanVariableResolver in your faces-context.xml file:

<faces-config>
<application>

<variable-resolver>org.springframework.web.jsf.SpringBeanVariableResolver</variable-resolver>
...

</application>
</faces-config>

SpringBeanFacesELResolver (JSF 1.2+)

Spring Framework

3.1 Reference Documentation 539

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/jsf/DelegatingVariableResolver.html

SpringBeanFacesELResolver is a JSF 1.2 compliant ELResolver implementation, integrating
with the standard Unified EL as used by JSF 1.2 and JSP 2.1. Like
SpringBeanVariableResolver, it delegates to the Spring's 'business context'
WebApplicationContext first, then to the default resolver of the underlying JSF implementation.

Configuration-wise, simply define SpringBeanFacesELResolver in your JSF 1.2
faces-context.xml file:

<faces-config>
<application>

<el-resolver>org.springframework.web.jsf.el.SpringBeanFacesELResolver</el-resolver>
...

</application>
</faces-config>

FacesContextUtils

A custom VariableResolver works well when mapping one's properties to beans in
faces-config.xml, but at times one may need to grab a bean explicitly. The FacesContextUtils class
makes this easy. It is similar to WebApplicationContextUtils, except that it takes a
FacesContext parameter rather than a ServletContext parameter.

ApplicationContext ctx = FacesContextUtils.getWebApplicationContext(FacesContext.getCurrentInstance());

18.4 Apache Struts 1.x and 2.x

Struts used to be the de facto web framework for Java applications, mainly because it was one of the first
to be released (June 2001). It has now been renamed to Struts 1 (as opposed to Struts 2). Many
applications still use it. Invented by Craig McClanahan, Struts is an open source project hosted by the
Apache Software Foundation. At the time, it greatly simplified the JSP/Servlet programming paradigm
and won over many developers who were using proprietary frameworks. It simplified the programming
model, it was open source (and thus free as in beer), and it had a large community, which allowed the
project to grow and become popular among Java web developers.

Note

The following section discusses Struts 1 a.k.a. "Struts Classic".

Struts 2 is effectively a different product - a successor of WebWork 2.2 (as discussed in
Section 18.5, “WebWork 2.x”), carrying the Struts brand now. Check out the Struts 2 Spring
Plugin for the built-in Spring integration shipped with Struts 2. In general, Struts 2 is closer to
WebWork 2.2 than to Struts 1 in terms of its Spring integration implications.

To integrate your Struts 1.x application with Spring, you have two options:

Spring Framework

3.1 Reference Documentation 540

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/jsf/FacesContextUtils.html
http://struts.apache.org
http://struts.apache.org/2.x/docs/spring-plugin.html
http://struts.apache.org/2.x/docs/spring-plugin.html

• Configure Spring to manage your Actions as beans, using the ContextLoaderPlugin, and set
their dependencies in a Spring context file.

• Subclass Spring's ActionSupport classes and grab your Spring-managed beans explicitly using a
getWebApplicationContext() method.

ContextLoaderPlugin

The ContextLoaderPlugin is a Struts 1.1+ plug-in that loads a Spring context file for the Struts
ActionServlet. This context refers to the root WebApplicationContext (loaded by the
ContextLoaderListener) as its parent. The default name of the context file is the name of the
mapped servlet, plus -servlet.xml. If ActionServlet is defined in web.xml as
<servlet-name>action</servlet-name>, the default is /WEB-INF/action-servlet.xml.

To configure this plug-in, add the following XML to the plug-ins section near the bottom of your
struts-config.xml file:

<plug-in className="org.springframework.web.struts.ContextLoaderPlugIn"/>

The location of the context configuration files can be customized using the
'contextConfigLocation' property.

<plug-in className="org.springframework.web.struts.ContextLoaderPlugIn">
<set-property property="contextConfigLocation"

value="/WEB-INF/action-servlet.xml,/WEB-INF/applicationContext.xml"/>
</plug-in>

It is possible to use this plugin to load all your context files, which can be useful when using testing tools
like StrutsTestCase. StrutsTestCase's MockStrutsTestCase won't initialize Listeners on startup so
putting all your context files in the plugin is a workaround. (A bug has been filed for this issue, but has
been closed as 'Wont Fix').

After configuring this plug-in in struts-config.xml, you can configure your Action to be managed by
Spring. Spring (1.1.3+) provides two ways to do this:

• Override Struts' default RequestProcessor with Spring's DelegatingRequestProcessor.

• Use the DelegatingActionProxy class in the type attribute of your <action-mapping>.

Both of these methods allow you to manage your Actions and their dependencies in the action-servlet.xml
file. The bridge between the Action in struts-config.xml and action-servlet.xml is built with the
action-mapping's "path" and the bean's "name". If you have the following in your struts-config.xml file:

<action path="/users" .../>

You must define that Action's bean with the "/users" name in action-servlet.xml:

<bean name="/users" .../>

Spring Framework

3.1 Reference Documentation 541

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/struts/ContextLoaderPlugIn.html
http://sourceforge.net/tracker/index.php?func=detail&aid=1088866&group_id=39190&atid=424562

DelegatingRequestProcessor

To configure the DelegatingRequestProcessor in your struts-config.xml file, override the
"processorClass" property in the <controller> element. These lines follow the <action-mapping> element.

<controller>
<set-property property="processorClass"

value="org.springframework.web.struts.DelegatingRequestProcessor"/>
</controller>

After adding this setting, your Action will automatically be looked up in Spring's context file, no matter
what the type. In fact, you don't even need to specify a type. Both of the following snippets will work:

<action path="/user" type="com.whatever.struts.UserAction"/>
<action path="/user"/>

If you're using Struts' modules feature, your bean names must contain the module prefix. For example, an
action defined as <action path="/user"/> with module prefix "admin" requires a bean name with
<bean name="/admin/user"/>.

Note

If you are using Tiles in your Struts application, you must configure your <controller> with
the DelegatingTilesRequestProcessor instead.

DelegatingActionProxy

If you have a custom RequestProcessor and can't use the DelegatingRequestProcessor or
DelegatingTilesRequestProcessor approaches, you can use the
DelegatingActionProxy as the type in your action-mapping.

<action path="/user" type="org.springframework.web.struts.DelegatingActionProxy"
name="userForm" scope="request" validate="false" parameter="method">

<forward name="list" path="/userList.jsp"/>
<forward name="edit" path="/userForm.jsp"/>

</action>

The bean definition in action-servlet.xml remains the same, whether you use a custom
RequestProcessor or the DelegatingActionProxy.

If you define your Action in a context file, the full feature set of Spring's bean container will be
available for it: dependency injection as well as the option to instantiate a new Action instance for each
request. To activate the latter, add scope="prototype" to your Action's bean definition.

<bean name="/user" scope="prototype" autowire="byName"
class="org.example.web.UserAction"/>

Spring Framework

3.1 Reference Documentation 542

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/struts/DelegatingRequestProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/struts/DelegatingTilesRequestProcessor.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/struts/DelegatingActionProxy.html

ActionSupport Classes

As previously mentioned, you can retrieve the WebApplicationContext from the ServletContext
using the WebApplicationContextUtils class. An easier way is to extend Spring's Action
classes for Struts. For example, instead of subclassing Struts' Action class, you can subclass Spring's
ActionSupport class.

The ActionSupport class provides additional convenience methods, like
getWebApplicationContext(). Below is an example of how you might use this in an Action:

public class UserAction extends DispatchActionSupport {

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response) throws Exception {

if (log.isDebugEnabled()) {
log.debug("entering 'delete' method...");

}
WebApplicationContext ctx = getWebApplicationContext();
UserManager mgr = (UserManager) ctx.getBean("userManager");
// talk to manager for business logic
return mapping.findForward("success");

}
}

Spring includes subclasses for all of the standard Struts Actions - the Spring versions merely have
Support appended to the name:

• ActionSupport,
• DispatchActionSupport,
• LookupDispatchActionSupport and
• MappingDispatchActionSupport.

The recommended strategy is to use the approach that best suits your project. Subclassing makes your
code more readable, and you know exactly how your dependencies are resolved. In contrast, using the
ContextLoaderPlugin allows you to easily add new dependencies in your context XML file. Either
way, Spring provides some nice options for integrating with Struts.

18.5 WebWork 2.x

From the WebWork homepage:

“ WebWork is a Java web-application development framework. It is built specifically with developer
productivity and code simplicity in mind, providing robust support for building reusable UI templates,
such as form controls, UI themes, internationalization, dynamic form parameter mapping to JavaBeans,
robust client and server side validation, and much more. ”

Web work's architecture and concepts are easy to understand, and the framework also has an extensive tag
library as well as nicely decoupled validation.

Spring Framework

3.1 Reference Documentation 543

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/struts/ActionSupport.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/struts/ActionSupport.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/struts/DispatchActionSupport.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/struts/LookupDispatchActionSupport.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/struts/MappingDispatchActionSupport.html
http://www.opensymphony.com/webwork/

One of the key enablers in WebWork's technology stack is an IoC container to manage Webwork Actions,
handle the "wiring" of business objects, etc. Prior to WebWork version 2.2, WebWork used its own
proprietary IoC container (and provided integration points so that one could integrate an IoC container
such as Spring's into the mix). However, as of WebWork version 2.2, the default IoC container that is
used within WebWork is Spring. This is obviously great news if one is a Spring developer, because it
means that one is immediately familiar with the basics of IoC configuration, idioms, and suchlike within
WebWork.

Now in the interests of adhering to the DRY (Don't Repeat Yourself) principle, it would be foolish to
document the Spring-WebWork integration in light of the fact that the WebWork team have already
written such a writeup. Please consult the Spring-WebWork integration page on the WebWork wiki for
the full lowdown.

Note that the Spring-WebWork integration code was developed (and continues to be maintained and
improved) by the WebWork developers themselves. So please refer first to the WebWork site and forums
if you are having issues with the integration. But feel free to post comments and queries regarding the
Spring-WebWork integration on the Spring support forums, too.

18.6 Tapestry 3.x and 4.x

From the Tapestry homepage:

“ Tapestry is an open-source framework for creating dynamic, robust, highly scalable web applications in
Java. Tapestry complements and builds upon the standard Java Servlet API, and so it works in any servlet
container or application server. ”

While Spring has its own powerful web layer, there are a number of unique advantages to building an
enterprise Java application using a combination of Tapestry for the web user interface and the Spring
container for the lower layers. This section of the web integration chapter attempts to detail a few best
practices for combining these two frameworks.

A typical layered enterprise Java application built with Tapestry and Spring will consist of a top user
interface (UI) layer built with Tapestry, and a number of lower layers, all wired together by one or more
Spring containers. Tapestry's own reference documentation contains the following snippet of best practice
advice. (Text that the author of this Spring section has added is contained within [] brackets.)

“ A very succesful design pattern in Tapestry is to keep pages and components very simple, and delegate
as much logic as possible out to HiveMind [or Spring, or whatever] services. Listener methods should
ideally do little more than marshal together the correct information and pass it over to a service. ”

The key question then is: how does one supply Tapestry pages with collaborating services? The answer,
ideally, is that one would want to dependency inject those services directly into one's Tapestry pages. In
Tapestry, one can effect this dependency injection by a variety of means. This section is only going to
enumerate the dependency injection means afforded by Spring. The real beauty of the rest of this
Spring-Tapestry integration is that the elegant and flexible design of Tapestry itself makes doing this

Spring Framework

3.1 Reference Documentation 544

http://www.opensymphony.com/webwork/wikidocs/IoC%20Overview.html
http://www.opensymphony.com/webwork/wikidocs/Spring.html
http://wiki.opensymphony.com/display/WW/WebWork
http://forum.springframework.org/forumdisplay.php?f=25
http://tapestry.apache.org/

dependency injection of Spring-managed beans a cinch. (Another nice thing is that this Spring-Tapestry
integration code was written - and continues to be maintained - by the Tapestry creator Howard M. Lewis
Ship, so hats off to him for what is really some silky smooth integration).

Injecting Spring-managed beans

Assume we have the following simple Spring container definition (in the ubiquitous XML format):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/jee http://www.springframework.org/schema/jee/spring-jee-3.0.xsd">

<beans>
<!-- the DataSource -->
<jee:jndi-lookup id="dataSource" jndi-name="java:DefaultDS"/>

<bean id="hibSessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

<property name="dataSource" ref="dataSource"/>
</bean>

<bean id="transactionManager"
class="org.springframework.transaction.jta.JtaTransactionManager"/>

<bean id="mapper"
class="com.whatever.dataaccess.mapper.hibernate.MapperImpl">

<property name="sessionFactory" ref="hibSessionFactory"/>
</bean>

<!-- (transactional) AuthenticationService -->
<bean id="authenticationService"

class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
<property name="transactionManager" ref="transactionManager"/>
<property name="target">

<bean class="com.whatever.services.service.user.AuthenticationServiceImpl">
<property name="mapper" ref="mapper"/>

</bean>
</property>
<property name="proxyInterfacesOnly" value="true"/>
<property name="transactionAttributes">

<value>
*=PROPAGATION_REQUIRED

</value>
</property>

</bean>

<!-- (transactional) UserService -->
<bean id="userService"

class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
<property name="transactionManager" ref="transactionManager"/>
<property name="target">

<bean class="com.whatever.services.service.user.UserServiceImpl">
<property name="mapper" ref="mapper"/>

</bean>
</property>
<property name="proxyInterfacesOnly" value="true"/>
<property name="transactionAttributes">

<value>
*=PROPAGATION_REQUIRED

Spring Framework

3.1 Reference Documentation 545

http://howardlewisship.com/blog/
http://howardlewisship.com/blog/

</value>
</property>

</bean>

</beans>

Inside the Tapestry application, the above bean definitions need to be loaded into a Spring container, and
any relevant Tapestry pages need to be supplied (injected) with the authenticationService and
userService beans, which implement the AuthenticationService and UserService
interfaces, respectively.

At this point, the application context is available to a web application by calling Spring's static utility
function WebApplicationContextUtils.getApplicationContext(servletContext),
where servletContext is the standard ServletContext from the Java EE Servlet specification. As such, one
simple mechanism for a page to get an instance of the UserService, for example, would be with code
such as:

WebApplicationContext appContext = WebApplicationContextUtils.getApplicationContext(
getRequestCycle().getRequestContext().getServlet().getServletContext());

UserService userService = (UserService) appContext.getBean("userService");
// ... some code which uses UserService

This mechanism does work. Having said that, it can be made a lot less verbose by encapsulating most of
the functionality in a method in the base class for the page or component. However, in some respects it
goes against the IoC principle; ideally you would like the page to not have to ask the context for a specific
bean by name, and in fact, the page would ideally not know about the context at all.

Luckily, there is a mechanism to allow this. We rely upon the fact that Tapestry already has a mechanism
to declaratively add properties to a page, and it is in fact the preferred approach to manage all properties
on a page in this declarative fashion, so that Tapestry can properly manage their lifecycle as part of the
page and component lifecycle.

Note

This next section is applicable to Tapestry 3.x. If you are using Tapestry version 4.x, please
consult the section entitled the section called “Dependency Injecting Spring Beans into
Tapestry pages - Tapestry 4.x style”.

Dependency Injecting Spring Beans into Tapestry pages

First we need to make the ApplicationContext available to the Tapestry page or Component without
having to have the ServletContext; this is because at the stage in the page's/component's lifecycle when
we need to access the ApplicationContext, the ServletContext won't be easily available to the page, so we
can't use WebApplicationContextUtils.getApplicationContext(servletContext)
directly. One way is by defining a custom version of the Tapestry IEngine which exposes this for us:

package com.whatever.web.xportal;

// import ...

Spring Framework

3.1 Reference Documentation 546

public class MyEngine extends org.apache.tapestry.engine.BaseEngine {

public static final String APPLICATION_CONTEXT_KEY = "appContext";

/**
* @see org.apache.tapestry.engine.AbstractEngine#setupForRequest(org.apache.tapestry.request.RequestContext)
*/
protected void setupForRequest(RequestContext context) {

super.setupForRequest(context);

// insert ApplicationContext in global, if not there
Map global = (Map) getGlobal();
ApplicationContext ac = (ApplicationContext) global.get(APPLICATION_CONTEXT_KEY);
if (ac == null) {

ac = WebApplicationContextUtils.getWebApplicationContext(
context.getServlet().getServletContext()

);
global.put(APPLICATION_CONTEXT_KEY, ac);

}
}

}

This engine class places the Spring Application Context as an attribute called "appContext" in this
Tapestry app's 'Global' object. Make sure to register the fact that this special IEngine instance should be
used for this Tapestry application, with an entry in the Tapestry application definition file. For example:

file: xportal.application:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC

"-//Apache Software Foundation//Tapestry Specification 3.0//EN"
"http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<application
name="Whatever xPortal"
engine-class="com.whatever.web.xportal.MyEngine">

</application>

Component definition files

Now in our page or component definition file (*.page or *.jwc), we simply add property-specification
elements to grab the beans we need out of the ApplicationContext, and create page or component
properties for them. For example:

<property-specification name="userService"
type="com.whatever.services.service.user.UserService">

global.appContext.getBean("userService")
</property-specification>
<property-specification name="authenticationService"

type="com.whatever.services.service.user.AuthenticationService">
global.appContext.getBean("authenticationService")

</property-specification>

The OGNL expression inside the property-specification specifies the initial value for the property, as a
bean obtained from the context. The entire page definition might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC

"-//Apache Software Foundation//Tapestry Specification 3.0//EN"
"http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

Spring Framework

3.1 Reference Documentation 547

<page-specification class="com.whatever.web.xportal.pages.Login">

<property-specification name="username" type="java.lang.String"/>
<property-specification name="password" type="java.lang.String"/>
<property-specification name="error" type="java.lang.String"/>
<property-specification name="callback" type="org.apache.tapestry.callback.ICallback" persistent="yes"/>
<property-specification name="userService"

type="com.whatever.services.service.user.UserService">
global.appContext.getBean("userService")

</property-specification>
<property-specification name="authenticationService"

type="com.whatever.services.service.user.AuthenticationService">
global.appContext.getBean("authenticationService")

</property-specification>

<bean name="delegate" class="com.whatever.web.xportal.PortalValidationDelegate"/>

<bean name="validator" class="org.apache.tapestry.valid.StringValidator" lifecycle="page">
<set-property name="required" expression="true"/>
<set-property name="clientScriptingEnabled" expression="true"/>

</bean>

<component id="inputUsername" type="ValidField">
<static-binding name="displayName" value="Username"/>
<binding name="value" expression="username"/>
<binding name="validator" expression="beans.validator"/>

</component>

<component id="inputPassword" type="ValidField">
<binding name="value" expression="password"/>

<binding name="validator" expression="beans.validator"/>
<static-binding name="displayName" value="Password"/>
<binding name="hidden" expression="true"/>

</component>

</page-specification>

Adding abstract accessors

Now in the Java class definition for the page or component itself, all we need to do is add an abstract
getter method for the properties we have defined (in order to be able to access the properties).

// our UserService implementation; will come from page definition
public abstract UserService getUserService();
// our AuthenticationService implementation; will come from page definition
public abstract AuthenticationService getAuthenticationService();

For the sake of completeness, the entire Java class, for a login page in this example, might look like this:

package com.whatever.web.xportal.pages;

/**
* Allows the user to login, by providing username and password.
* After successfully logging in, a cookie is placed on the client browser
* that provides the default username for future logins (the cookie
* persists for a week).
*/

public abstract class Login extends BasePage implements ErrorProperty, PageRenderListener {

/** the key under which the authenticated user object is stored in the visit as */
public static final String USER_KEY = "user";

/** The name of the cookie that identifies a user **/

Spring Framework

3.1 Reference Documentation 548

private static final String COOKIE_NAME = Login.class.getName() + ".username";
private final static int ONE_WEEK = 7 * 24 * 60 * 60;

public abstract String getUsername();
public abstract void setUsername(String username);

public abstract String getPassword();
public abstract void setPassword(String password);

public abstract ICallback getCallback();
public abstract void setCallback(ICallback value);

public abstract UserService getUserService();
public abstract AuthenticationService getAuthenticationService();

protected IValidationDelegate getValidationDelegate() {
return (IValidationDelegate) getBeans().getBean("delegate");

}

protected void setErrorField(String componentId, String message) {
IFormComponent field = (IFormComponent) getComponent(componentId);
IValidationDelegate delegate = getValidationDelegate();
delegate.setFormComponent(field);
delegate.record(new ValidatorException(message));

}

/**
* Attempts to login.
* <p>
* If the user name is not known, or the password is invalid, then an error
* message is displayed.
**/
public void attemptLogin(IRequestCycle cycle) {

String password = getPassword();

// Do a little extra work to clear out the password.
setPassword(null);
IValidationDelegate delegate = getValidationDelegate();

delegate.setFormComponent((IFormComponent) getComponent("inputPassword"));
delegate.recordFieldInputValue(null);

// An error, from a validation field, may already have occurred.
if (delegate.getHasErrors()) {

return;
}

try {
User user = getAuthenticationService().login(getUsername(), getPassword());

loginUser(user, cycle);
}
catch (FailedLoginException ex) {

this.setError("Login failed: " + ex.getMessage());
return;

}
}

/**
* Sets up the {@link User} as the logged in user, creates
* a cookie for their username (for subsequent logins),
* and redirects to the appropriate page, or
* a specified page).
**/
public void loginUser(User user, IRequestCycle cycle) {

String username = user.getUsername();

Spring Framework

3.1 Reference Documentation 549

// Get the visit object; this will likely force the
// creation of the visit object and an HttpSession
Map visit = (Map) getVisit();
visit.put(USER_KEY, user);

// After logging in, go to the MyLibrary page, unless otherwise specified
ICallback callback = getCallback();

if (callback == null) {
cycle.activate("Home");

}
else {

callback.performCallback(cycle);
}

IEngine engine = getEngine();
Cookie cookie = new Cookie(COOKIE_NAME, username);
cookie.setPath(engine.getServletPath());
cookie.setMaxAge(ONE_WEEK);

// Record the user's username in a cookie
cycle.getRequestContext().addCookie(cookie);
engine.forgetPage(getPageName());

}

public void pageBeginRender(PageEvent event) {
if (getUsername() == null) {

setUsername(getRequestCycle().getRequestContext().getCookieValue(COOKIE_NAME));
}

}
}

Dependency Injecting Spring Beans into Tapestry pages - Tapestry 4.x style

Effecting the dependency injection of Spring-managed beans into Tapestry pages in Tapestry version 4.x
is so much simpler. All that is needed is a single add-on library, and some (small) amount of (essentially
boilerplate) configuration. Simply package and deploy this library with the (any of the) other libraries
required by your web application (typically in WEB-INF/lib).

You will then need to create and expose the Spring container using the method detailed previously. You
can then inject Spring-managed beans into Tapestry very easily; if we are using Java 5, consider the
Login page from above: we simply need to annotate the appropriate getter methods in order to
dependency inject the Spring-managed userService and authenticationService objects (lots
of the class definition has been elided for clarity).

package com.whatever.web.xportal.pages;

public abstract class Login extends BasePage implements ErrorProperty, PageRenderListener {

@InjectObject("spring:userService")
public abstract UserService getUserService();

@InjectObject("spring:authenticationService")
public abstract AuthenticationService getAuthenticationService();

}

We are almost done. All that remains is the HiveMind configuration that exposes the Spring container
stored in the ServletContext as a HiveMind service; for example:

Spring Framework

3.1 Reference Documentation 550

http://howardlewisship.com/tapestry-javaforge/tapestry-spring/

<?xml version="1.0"?>
<module id="com.javaforge.tapestry.spring" version="0.1.1">

<service-point id="SpringApplicationInitializer"
interface="org.apache.tapestry.services.ApplicationInitializer"
visibility="private">
<invoke-factory>

<construct class="com.javaforge.tapestry.spring.SpringApplicationInitializer">
<set-object property="beanFactoryHolder"

value="service:hivemind.lib.DefaultSpringBeanFactoryHolder" />
</construct>

</invoke-factory>
</service-point>

<!-- Hook the Spring setup into the overall application initialization. -->
<contribution

configuration-id="tapestry.init.ApplicationInitializers">
<command id="spring-context"

object="service:SpringApplicationInitializer" />
</contribution>

</module>

If you are using Java 5 (and thus have access to annotations), then that really is it.

If you are not using Java 5, then one obviously doesn't annotate one's Tapestry page classes with
annotations; instead, one simply uses good old fashioned XML to declare the dependency injection; for
example, inside the .page or .jwc file for the Login page (or component):

<inject property="userService" object="spring:userService"/>
<inject property="authenticationService" object="spring:authenticationService"/>

In this example, we've managed to allow service beans defined in a Spring container to be provided to the
Tapestry page in a declarative fashion. The page class does not know where the service implementations
are coming from, and in fact it is easy to slip in another implementation, for example, during testing. This
inversion of control is one of the prime goals and benefits of the Spring Framework, and we have
managed to extend it throughout the stack in this Tapestry application.

18.7 Further Resources

Find below links to further resources about the various web frameworks described in this chapter.

• The JSF homepage

• The Struts homepage

• The WebWork homepage

• The Tapestry homepage

Spring Framework

3.1 Reference Documentation 551

http://java.sun.com/javaee/javaserverfaces/
http://struts.apache.org/
http://www.opensymphony.com/webwork/
http://tapestry.apache.org/

19. Portlet MVC Framework

19.1 Introduction

JSR-168 The Java Portlet Specification

For more general information about portlet development, please review a whitepaper from Sun
entitled "Introduction to JSR 168", and of course the JSR-168 Specification itself.

In addition to supporting conventional (servlet-based) Web development, Spring also supports JSR-168
Portlet development. As much as possible, the Portlet MVC framework is a mirror image of the Web
MVC framework, and also uses the same underlying view abstractions and integration technology. So, be
sure to review the chapters entitled Chapter 16, Web MVC framework and Chapter 17, View technologies
before continuing with this chapter.

Note

Bear in mind that while the concepts of Spring MVC are the same in Spring Portlet MVC,
there are some notable differences created by the unique workflow of JSR-168 portlets.

The main way in which portlet workflow differs from servlet workflow is that the request to the portlet
can have two distinct phases: the action phase and the render phase. The action phase is executed only
once and is where any 'backend' changes or actions occur, such as making changes in a database. The
render phase then produces what is displayed to the user each time the display is refreshed. The critical
point here is that for a single overall request, the action phase is executed only once, but the render phase
may be executed multiple times. This provides (and requires) a clean separation between the activities
that modify the persistent state of your system and the activities that generate what is displayed to the
user.

Spring Web Flow

Spring Web Flow (SWF) aims to be the best solution for the management of web application page
flow.

SWF integrates with existing frameworks like Spring MVC, Struts, and JSF, in both servlet and
portlet environments. If you have a business process (or processes) that would benefit from a
conversational model as opposed to a purely request model, then SWF may be the solution.

SWF allows you to capture logical page flows as self-contained modules that are reusable in
different situations, and as such is ideal for building web application modules that guide the user

Spring Framework

3.1 Reference Documentation 552

http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/
http://jcp.org/aboutJava/communityprocess/final/jsr168/

through controlled navigations that drive business processes.

For more information about SWF, consult the Spring Web Flow website.

The dual phases of portlet requests are one of the real strengths of the JSR-168 specification. For
example, dynamic search results can be updated routinely on the display without the user explicitly
rerunning the search. Most other portlet MVC frameworks attempt to completely hide the two phases
from the developer and make it look as much like traditional servlet development as possible - we think
this approach removes one of the main benefits of using portlets. So, the separation of the two phases is
preserved throughout the Spring Portlet MVC framework. The primary manifestation of this approach is
that where the servlet version of the MVC classes will have one method that deals with the request, the
portlet version of the MVC classes will have two methods that deal with the request: one for the action
phase and one for the render phase. For example, where the servlet version of AbstractController
has the handleRequestInternal(..) method, the portlet version of AbstractController
has handleActionRequestInternal(..) and handleRenderRequestInternal(..)
methods.

The framework is designed around a DispatcherPortlet that dispatches requests to handlers, with
configurable handler mappings and view resolution, just as the DispatcherServlet in the web
framework does. File upload is also supported in the same way.

Locale resolution and theme resolution are not supported in Portlet MVC - these areas are in the purview
of the portal/portlet container and are not appropriate at the Spring level. However, all mechanisms in
Spring that depend on the locale (such as internationalization of messages) will still function properly
because DispatcherPortlet exposes the current locale in the same way as
DispatcherServlet.

Controllers - The C in MVC

The default handler is still a very simple Controller interface, offering just two methods:

• void handleActionRequest(request,response)

• ModelAndView handleRenderRequest(request,response)

The framework also includes most of the same controller implementation hierarchy, such as
AbstractController, SimpleFormController, and so on. Data binding, command object
usage, model handling, and view resolution are all the same as in the servlet framework.

Views - The V in MVC

All the view rendering capabilities of the servlet framework are used directly via a special bridge servlet
named ViewRendererServlet. By using this servlet, the portlet request is converted into a servlet

Spring Framework

3.1 Reference Documentation 553

http://www.springframework.org/webflow

request and the view can be rendered using the entire normal servlet infrastructure. This means all the
existing renderers, such as JSP, Velocity, etc., can still be used within the portlet.

Web-scoped beans

Spring Portlet MVC supports beans whose lifecycle is scoped to the current HTTP request or HTTP
Session (both normal and global). This is not a specific feature of Spring Portlet MVC itself, but rather
of the WebApplicationContext container(s) that Spring Portlet MVC uses. These bean scopes are
described in detail in the section called “Request, session, and global session scopes”

19.2 The DispatcherPortlet

Portlet MVC is a request-driven web MVC framework, designed around a portlet that dispatches requests
to controllers and offers other functionality facilitating the development of portlet applications. Spring's
DispatcherPortlet however, does more than just that. It is completely integrated with the Spring
ApplicationContext and allows you to use every other feature Spring has.

Like ordinary portlets, the DispatcherPortlet is declared in the portlet.xml file of your web
application:

<portlet>
<portlet-name>sample</portlet-name>
<portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>

</supports>
<portlet-info>

<title>Sample Portlet</title>
</portlet-info>

</portlet>

The DispatcherPortlet now needs to be configured.

In the Portlet MVC framework, each DispatcherPortlet has its own
WebApplicationContext, which inherits all the beans already defined in the Root
WebApplicationContext. These inherited beans can be overridden in the portlet-specific scope, and
new scope-specific beans can be defined local to a given portlet instance.

The framework will, on initialization of a DispatcherPortlet, look for a file named
[portlet-name]-portlet.xml in the WEB-INF directory of your web application and create the
beans defined there (overriding the definitions of any beans defined with the same name in the global
scope).

The config location used by the DispatcherPortlet can be modified through a portlet initialization
parameter (see below for details).

The Spring DispatcherPortlet has a few special beans it uses, in order to be able to process

Spring Framework

3.1 Reference Documentation 554

requests and render the appropriate views. These beans are included in the Spring framework and can be
configured in the WebApplicationContext, just as any other bean would be configured. Each of
those beans is described in more detail below. Right now, we'll just mention them, just to let you know
they exist and to enable us to go on talking about the DispatcherPortlet. For most of the beans,
defaults are provided so you don't have to worry about configuring them.

Table 19.1. Special beans in the WebApplicationContext

Expression Explanation

handler mapping(s) (Section 19.5, “Handler mappings”) a list of pre- and post-processors and
controllers that will be executed if they match certain criteria (for instance a
matching portlet mode specified with the controller)

controller(s) (Section 19.4, “Controllers”) the beans providing the actual functionality (or
at least, access to the functionality) as part of the MVC triad

view resolver (Section 19.6, “Views and resolving them”) capable of resolving view names
to view definitions

multipart resolver (Section 19.7, “Multipart (file upload) support”) offers functionality to
process file uploads from HTML forms

handler exception
resolver

(Section 19.8, “Handling exceptions”) offers functionality to map exceptions
to views or implement other more complex exception handling code

When a DispatcherPortlet is setup for use and a request comes in for that specific
DispatcherPortlet, it starts processing the request. The list below describes the complete process a
request goes through if handled by a DispatcherPortlet:

1. The locale returned by PortletRequest.getLocale() is bound to the request to let elements in
the process resolve the locale to use when processing the request (rendering the view, preparing data,
etc.).

2. If a multipart resolver is specified and this is an ActionRequest, the request is inspected for
multiparts and if they are found, it is wrapped in a MultipartActionRequest for further
processing by other elements in the process. (See Section 19.7, “Multipart (file upload) support” for
further information about multipart handling).

3. An appropriate handler is searched for. If a handler is found, the execution chain associated with the
handler (pre-processors, post-processors, controllers) will be executed in order to prepare a model.

4. If a model is returned, the view is rendered, using the view resolver that has been configured with the
WebApplicationContext. If no model is returned (which could be due to a pre- or
post-processor intercepting the request, for example, for security reasons), no view is rendered, since
the request could already have been fulfilled.

Exceptions that are thrown during processing of the request get picked up by any of the handler exception

Spring Framework

3.1 Reference Documentation 555

resolvers that are declared in the WebApplicationContext. Using these exception resolvers you can
define custom behavior in case such exceptions get thrown.

You can customize Spring's DispatcherPortlet by adding context parameters in the
portlet.xml file or portlet init-parameters. The possibilities are listed below.

Table 19.2. DispatcherPortlet initialization parameters

Parameter Explanation

contextClass Class that implements WebApplicationContext, which will be used to
instantiate the context used by this portlet. If this parameter isn't specified,
the XmlPortletApplicationContext will be used.

contextConfigLocationString which is passed to the context instance (specified by
contextClass) to indicate where context(s) can be found. The String is
potentially split up into multiple Strings (using a comma as a delimiter) to
support multiple contexts (in case of multiple context locations, for beans that
are defined twice, the latest takes precedence).

namespace The namespace of the WebApplicationContext. Defaults to
[portlet-name]-portlet.

viewRendererUrl The URL at which DispatcherPortlet can access an instance of
ViewRendererServlet (see Section 19.3, “The ViewRendererServlet”).

19.3 The ViewRendererServlet

The rendering process in Portlet MVC is a bit more complex than in Web MVC. In order to reuse all the
view technologies from Spring Web MVC, we must convert the PortletRequest /
PortletResponse to HttpServletRequest / HttpServletResponse and then call the
render method of the View. To do this, DispatcherPortlet uses a special servlet that exists for
just this purpose: the ViewRendererServlet.

In order for DispatcherPortlet rendering to work, you must declare an instance of the
ViewRendererServlet in the web.xml file for your web application as follows:

<servlet>
<servlet-name>ViewRendererServlet</servlet-name>
<servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>ViewRendererServlet</servlet-name>
<url-pattern>/WEB-INF/servlet/view</url-pattern>

</servlet-mapping>

To perform the actual rendering, DispatcherPortlet does the following:

Spring Framework

3.1 Reference Documentation 556

1. Binds the WebApplicationContext to the request as an attribute under the same
WEB_APPLICATION_CONTEXT_ATTRIBUTE key that DispatcherServlet uses.

2. Binds the Model and View objects to the request to make them available to the
ViewRendererServlet.

3. Constructs a PortletRequestDispatcher and performs an include using the /WEB-
INF/servlet/view URL that is mapped to the ViewRendererServlet.

The ViewRendererServlet is then able to call the render method on the View with the
appropriate arguments.

The actual URL for the ViewRendererServlet can be changed using DispatcherPortlet’s
viewRendererUrl configuration parameter.

19.4 Controllers

The controllers in Portlet MVC are very similar to the Web MVC Controllers, and porting code from one
to the other should be simple.

The basis for the Portlet MVC controller architecture is the
org.springframework.web.portlet.mvc.Controller interface, which is listed below.

public interface Controller {

/**
* Process the render request and return a ModelAndView object which the
* DispatcherPortlet will render.
*/
ModelAndView handleRenderRequest(RenderRequest request, RenderResponse response)

throws Exception;

/**
* Process the action request. There is nothing to return.
*/
void handleActionRequest(ActionRequest request, ActionResponse response)

throws Exception;
}

As you can see, the Portlet Controller interface requires two methods that handle the two phases of a
portlet request: the action request and the render request. The action phase should be capable of handling
an action request, and the render phase should be capable of handling a render request and returning an
appropriate model and view. While the Controller interface is quite abstract, Spring Portlet MVC
offers several controllers that already contain a lot of the functionality you might need; most of these are
very similar to controllers from Spring Web MVC. The Controller interface just defines the most
common functionality required of every controller: handling an action request, handling a render request,
and returning a model and a view.

AbstractController and PortletContentGenerator

Spring Framework

3.1 Reference Documentation 557

Of course, just a Controller interface isn't enough. To provide a basic infrastructure, all of Spring
Portlet MVC's Controllers inherit from AbstractController, a class offering access to Spring's
ApplicationContext and control over caching.

Table 19.3. Features offered by the AbstractController

Parameter Explanation

requireSession Indicates whether or not this Controller requires a session to do its work.
This feature is offered to all controllers. If a session is not present when such
a controller receives a request, the user is informed using a
SessionRequiredException.

synchronizeSessionUse this if you want handling by this controller to be synchronized on the
user's session. To be more specific, the extending controller will override the
handleRenderRequestInternal(..) and
handleActionRequestInternal(..) methods, which will be
synchronized on the user’s session if you specify this variable.

renderWhenMinimizedIf you want your controller to actually render the view when the portlet is in a
minimized state, set this to true. By default, this is set to false so that portlets
that are in a minimized state don’t display any content.

cacheSeconds When you want a controller to override the default cache expiration defined
for the portlet, specify a positive integer here. By default it is set to -1,
which does not change the default caching. Setting it to 0 will ensure the
result is never cached.

The requireSession and cacheSeconds properties are declared on the
PortletContentGenerator class, which is the superclass of AbstractController) but are
included here for completeness.

When using the AbstractController as a baseclass for your controllers (which is not recommended
since there are a lot of other controllers that might already do the job for you) you only have to override
either the handleActionRequestInternal(ActionRequest, ActionResponse) method
or the handleRenderRequestInternal(RenderRequest, RenderResponse) method (or
both), implement your logic, and return a ModelAndView object (in the case of
handleRenderRequestInternal).

The default implementations of both handleActionRequestInternal(..) and
handleRenderRequestInternal(..) throw a PortletException. This is consistent with
the behavior of GenericPortlet from the JSR- 168 Specification API. So you only need to override
the method that your controller is intended to handle.

Here is short example consisting of a class and a declaration in the web application context.

package samples;

Spring Framework

3.1 Reference Documentation 558

import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import org.springframework.web.portlet.mvc.AbstractController;
import org.springframework.web.portlet.ModelAndView;

public class SampleController extends AbstractController {

public ModelAndView handleRenderRequestInternal(RenderRequest request, RenderResponse response) {
ModelAndView mav = new ModelAndView("foo");
mav.addObject("message", "Hello World!");
return mav;

}
}

<bean id="sampleController" class="samples.SampleController">
<property name="cacheSeconds" value="120"/>

</bean>

The class above and the declaration in the web application context is all you need besides setting up a
handler mapping (see Section 19.5, “Handler mappings”) to get this very simple controller working.

Other simple controllers

Although you can extend AbstractController, Spring Portlet MVC provides a number of concrete
implementations which offer functionality that is commonly used in simple MVC applications.

The ParameterizableViewController is basically the same as the example above, except for the
fact that you can specify the view name that it will return in the web application context (no need to
hard-code the view name).

The PortletModeNameViewController uses the current mode of the portlet as the view name.
So, if your portlet is in View mode (i.e. PortletMode.VIEW) then it uses "view" as the view name.

Command Controllers

Spring Portlet MVC has the exact same hierarchy of command controllers as Spring Web MVC. They
provide a way to interact with data objects and dynamically bind parameters from the
PortletRequest to the data object specified. Your data objects don't have to implement a
framework-specific interface, so you can directly manipulate your persistent objects if you desire. Let's
examine what command controllers are available, to get an overview of what you can do with them:

• AbstractCommandController - a command controller you can use to create your own command
controller, capable of binding request parameters to a data object you specify. This class does not offer
form functionality, it does however offer validation features and lets you specify in the controller itself
what to do with the command object that has been filled with the parameters from the request.

• AbstractFormController - an abstract controller offering form submission support. Using this
controller you can model forms and populate them using a command object you retrieve in the
controller. After a user has filled the form, AbstractFormController binds the fields, validates,

Spring Framework

3.1 Reference Documentation 559

and hands the object back to the controller to take appropriate action. Supported features are: invalid
form submission (resubmission), validation, and normal form workflow. You implement methods to
determine which views are used for form presentation and success. Use this controller if you need
forms, but don't want to specify what views you're going to show the user in the application context.

• SimpleFormController - a concrete AbstractFormController that provides even more
support when creating a form with a corresponding command object. The
SimpleFormController lets you specify a command object, a viewname for the form, a
viewname for the page you want to show the user when form submission has succeeded, and more.

• AbstractWizardFormController – a concrete AbstractFormController that provides a
wizard-style interface for editing the contents of a command object across multiple display pages.
Supports multiple user actions: finish, cancel, or page change, all of which are easily specified in
request parameters from the view.

These command controllers are quite powerful, but they do require a detailed understanding of how they
operate in order to use them efficiently. Carefully review the Javadocs for this entire hierarchy and then
look at some sample implementations before you start using them.

PortletWrappingController

Instead of developing new controllers, it is possible to use existing portlets and map requests to them
from a DispatcherPortlet. Using the PortletWrappingController, you can instantiate an
existing Portlet as a Controller as follows:

<bean id="myPortlet" class="org.springframework.web.portlet.mvc.PortletWrappingController">
<property name="portletClass" value="sample.MyPortlet"/>
<property name="portletName" value="my-portlet"/>
<property name="initParameters">

<value>config=/WEB-INF/my-portlet-config.xml</value>
</property>

</bean>

This can be very valuable since you can then use interceptors to pre-process and post-process requests
going to these portlets. Since JSR-168 does not support any kind of filter mechanism, this is quite handy.
For example, this can be used to wrap the Hibernate OpenSessionInViewInterceptor around a
MyFaces JSF Portlet.

19.5 Handler mappings

Using a handler mapping you can map incoming portlet requests to appropriate handlers. There are some
handler mappings you can use out of the box, for example, the PortletModeHandlerMapping, but
let's first examine the general concept of a HandlerMapping.

Note: We are intentionally using the term “Handler” here instead of “Controller”.
DispatcherPortlet is designed to be used with other ways to process requests than just Spring

Spring Framework

3.1 Reference Documentation 560

Portlet MVC’s own Controllers. A Handler is any Object that can handle portlet requests. Controllers are
an example of Handlers, and they are of course the default. To use some other framework with
DispatcherPortlet, a corresponding implementation of HandlerAdapter is all that is needed.

The functionality a basic HandlerMapping provides is the delivering of a
HandlerExecutionChain, which must contain the handler that matches the incoming request, and
may also contain a list of handler interceptors that are applied to the request. When a request comes in,
the DispatcherPortlet will hand it over to the handler mapping to let it inspect the request and
come up with an appropriate HandlerExecutionChain. Then the DispatcherPortlet will
execute the handler and interceptors in the chain (if any). These concepts are all exactly the same as in
Spring Web MVC.

The concept of configurable handler mappings that can optionally contain interceptors (executed before
or after the actual handler was executed, or both) is extremely powerful. A lot of supporting functionality
can be built into a custom HandlerMapping. Think of a custom handler mapping that chooses a
handler not only based on the portlet mode of the request coming in, but also on a specific state of the
session associated with the request.

In Spring Web MVC, handler mappings are commonly based on URLs. Since there is really no such thing
as a URL within a Portlet, we must use other mechanisms to control mappings. The two most common
are the portlet mode and a request parameter, but anything available to the portlet request can be used in a
custom handler mapping.

The rest of this section describes three of Spring Portlet MVC's most commonly used handler mappings.
They all extend AbstractHandlerMapping and share the following properties:

• interceptors: The list of interceptors to use. HandlerInterceptors are discussed in the
section called “Adding HandlerInterceptors”.

• defaultHandler: The default handler to use, when this handler mapping does not result in a
matching handler.

• order: Based on the value of the order property (see the
org.springframework.core.Ordered interface), Spring will sort all handler mappings
available in the context and apply the first matching handler.

• lazyInitHandlers: Allows for lazy initialization of singleton handlers (prototype handlers are
always lazily initialized). Default value is false. This property is directly implemented in the three
concrete Handlers.

PortletModeHandlerMapping

This is a simple handler mapping that maps incoming requests based on the current mode of the portlet
(e.g. ‘view’, ‘edit’, ‘help’). An example:

<bean class="org.springframework.web.portlet.handler.PortletModeHandlerMapping">
<property name="portletModeMap">

<map>

Spring Framework

3.1 Reference Documentation 561

<entry key="view" value-ref="viewHandler"/>
<entry key="edit" value-ref="editHandler"/>
<entry key="help" value-ref="helpHandler"/>

</map>
</property>

</bean>

ParameterHandlerMapping

If we need to navigate around to multiple controllers without changing portlet mode, the simplest way to
do this is with a request parameter that is used as the key to control the mapping.

ParameterHandlerMapping uses the value of a specific request parameter to control the mapping.
The default name of the parameter is 'action', but can be changed using the 'parameterName'
property.

The bean configuration for this mapping will look something like this:

<bean class="org.springframework.web.portlet.handler.ParameterHandlerMapping”>
<property name="parameterMap">

<map>
<entry key="add" value-ref="addItemHandler"/>
<entry key="edit" value-ref="editItemHandler"/>
<entry key="delete" value-ref="deleteItemHandler"/>

</map>
</property>

</bean>

PortletModeParameterHandlerMapping

The most powerful built-in handler mapping, PortletModeParameterHandlerMapping
combines the capabilities of the two previous ones to allow different navigation within each portlet mode.

Again the default name of the parameter is "action", but can be changed using the parameterName
property.

By default, the same parameter value may not be used in two different portlet modes. This is so that if the
portal itself changes the portlet mode, the request will no longer be valid in the mapping. This behavior
can be changed by setting the allowDupParameters property to true. However, this is not
recommended.

The bean configuration for this mapping will look something like this:

<bean class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping">
<property name="portletModeParameterMap">

<map>
<entry key="view"> <!-- 'view' portlet mode -->

<map>
<entry key="add" value-ref="addItemHandler"/>
<entry key="edit" value-ref="editItemHandler"/>
<entry key="delete" value-ref="deleteItemHandler"/>

</map>
</entry>

Spring Framework

3.1 Reference Documentation 562

<entry key="edit"> <!-- 'edit' portlet mode -->
<map>

<entry key="prefs" value-ref="prefsHandler"/>
<entry key="resetPrefs" value-ref="resetPrefsHandler"/>

</map>
</entry>

</map>
</property>

</bean>

This mapping can be chained ahead of a PortletModeHandlerMapping, which can then provide
defaults for each mode and an overall default as well.

Adding HandlerInterceptors

Spring's handler mapping mechanism has a notion of handler interceptors, which can be extremely useful
when you want to apply specific functionality to certain requests, for example, checking for a principal.
Again Spring Portlet MVC implements these concepts in the same way as Web MVC.

Interceptors located in the handler mapping must implement HandlerInterceptor from the
org.springframework.web.portlet package. Just like the servlet version, this interface defines
three methods: one that will be called before the actual handler will be executed (preHandle), one that
will be called after the handler is executed (postHandle), and one that is called after the complete
request has finished (afterCompletion). These three methods should provide enough flexibility to do
all kinds of pre- and post- processing.

The preHandle method returns a boolean value. You can use this method to break or continue the
processing of the execution chain. When this method returns true, the handler execution chain will
continue. When it returns false, the DispatcherPortlet assumes the interceptor itself has taken
care of requests (and, for example, rendered an appropriate view) and does not continue executing the
other interceptors and the actual handler in the execution chain.

The postHandle method is only called on a RenderRequest. The preHandle and
afterCompletion methods are called on both an ActionRequest and a RenderRequest. If
you need to execute logic in these methods for just one type of request, be sure to check what kind of
request it is before processing it.

HandlerInterceptorAdapter

As with the servlet package, the portlet package has a concrete implementation of
HandlerInterceptor called HandlerInterceptorAdapter. This class has empty versions of
all the methods so that you can inherit from this class and implement just one or two methods when that is
all you need.

ParameterMappingInterceptor

The portlet package also has a concrete interceptor named ParameterMappingInterceptor that is

Spring Framework

3.1 Reference Documentation 563

meant to be used directly with ParameterHandlerMapping and
PortletModeParameterHandlerMapping. This interceptor will cause the parameter that is being
used to control the mapping to be forwarded from an ActionRequest to the subsequent
RenderRequest. This will help ensure that the RenderRequest is mapped to the same Handler as
the ActionRequest. This is done in the preHandle method of the interceptor, so you can still
modify the parameter value in your handler to change where the RenderRequest will be mapped.

Be aware that this interceptor is calling setRenderParameter on the ActionResponse, which
means that you cannot call sendRedirect in your handler when using this interceptor. If you need to
do external redirects then you will either need to forward the mapping parameter manually or write a
different interceptor to handle this for you.

19.6 Views and resolving them

As mentioned previously, Spring Portlet MVC directly reuses all the view technologies from Spring Web
MVC. This includes not only the various View implementations themselves, but also the
ViewResolver implementations. For more information, refer to Chapter 17, View technologies and
Section 16.5, “Resolving views” respectively.

A few items on using the existing View and ViewResolver implementations are worth mentioning:

• Most portals expect the result of rendering a portlet to be an HTML fragment. So, things like
JSP/JSTL, Velocity, FreeMarker, and XSLT all make sense. But it is unlikely that views that return
other document types will make any sense in a portlet context.

• There is no such thing as an HTTP redirect from within a portlet (the sendRedirect(..) method
of ActionResponse cannot be used to stay within the portal). So, RedirectView and use of the
'redirect:' prefix will not work correctly from within Portlet MVC.

• It may be possible to use the 'forward:' prefix from within Portlet MVC. However, remember that
since you are in a portlet, you have no idea what the current URL looks like. This means you cannot
use a relative URL to access other resources in your web application and that you will have to use an
absolute URL.

Also, for JSP development, the new Spring Taglib and the new Spring Form Taglib both work in portlet
views in exactly the same way that they work in servlet views.

19.7 Multipart (file upload) support

Spring Portlet MVC has built-in multipart support to handle file uploads in portlet applications, just like
Web MVC does. The design for the multipart support is done with pluggable
PortletMultipartResolver objects, defined in the
org.springframework.web.portlet.multipart package. Spring provides a
PortletMultipartResolver for use with Commons FileUpload. How uploading files is supported

Spring Framework

3.1 Reference Documentation 564

http://jakarta.apache.org/commons/fileupload

will be described in the rest of this section.

By default, no multipart handling will be done by Spring Portlet MVC, as some developers will want to
handle multiparts themselves. You will have to enable it yourself by adding a multipart resolver to the
web application's context. After you have done that, DispatcherPortlet will inspect each request to
see if it contains a multipart. If no multipart is found, the request will continue as expected. However, if a
multipart is found in the request, the PortletMultipartResolver that has been declared in your
context will be used. After that, the multipart attribute in your request will be treated like any other
attribute.

Note

Any configured PortletMultipartResolver bean must have the following id (or
name): "portletMultipartResolver". If you have defined your
PortletMultipartResolver with any other name, then the DispatcherPortlet
will not find your PortletMultipartResolver, and consequently no multipart support
will be in effect.

Using the PortletMultipartResolver

The following example shows how to use the CommonsPortletMultipartResolver:

<bean id="portletMultipartResolver"
class="org.springframework.web.portlet.multipart.CommonsPortletMultipartResolver">

<!-- one of the properties available; the maximum file size in bytes -->
<property name="maxUploadSize" value="100000"/>

</bean>

Of course you also need to put the appropriate jars in your classpath for the multipart resolver to work. In
the case of the CommonsMultipartResolver, you need to use commons-fileupload.jar. Be
sure to use at least version 1.1 of Commons FileUpload as previous versions do not support JSR-168
Portlet applications.

Now that you have seen how to set Portlet MVC up to handle multipart requests, let's talk about how to
actually use it. When DispatcherPortlet detects a multipart request, it activates the resolver that
has been declared in your context and hands over the request. What the resolver then does is wrap the
current ActionRequest in a MultipartActionRequest that has support for multipart file
uploads. Using the MultipartActionRequest you can get information about the multiparts
contained by this request and actually get access to the multipart files themselves in your controllers.

Note that you can only receive multipart file uploads as part of an ActionRequest, not as part of a
RenderRequest.

Handling a file upload in a form

Spring Framework

3.1 Reference Documentation 565

After the PortletMultipartResolver has finished doing its job, the request will be processed like
any other. To use the PortletMultipartResolver, create a form with an upload field (see
example below), then let Spring bind the file onto your form (backing object). To actually let the user
upload a file, we have to create a (JSP/HTML) form:

<h1>Please upload a file</h1>
<form method="post" action="<portlet:actionURL/>" enctype="multipart/form-data">

<input type="file" name="file"/>
<input type="submit"/>

</form>

As you can see, we've created a field named “file” that matches the property of the bean that holds the
byte[] array. Furthermore we've added the encoding attribute
(enctype="multipart/form-data"), which is necessary to let the browser know how to encode
the multipart fields (do not forget this!).

Just as with any other property that's not automagically convertible to a string or primitive type, to be able
to put binary data in your objects you have to register a custom editor with the
PortletRequestDataBinder. There are a couple of editors available for handling files and setting
the results on an object. There's a StringMultipartFileEditor capable of converting files to
Strings (using a user-defined character set), and there is a ByteArrayMultipartFileEditor
which converts files to byte arrays. They function analogous to the CustomDateEditor.

So, to be able to upload files using a form, declare the resolver, a mapping to a controller that will process
the bean, and the controller itself.

<bean id="portletMultipartResolver"
class="org.springframework.web.portlet.multipart.CommonsPortletMultipartResolver"/>

<bean class="org.springframework.web.portlet.handler.PortletModeHandlerMapping">
<property name="portletModeMap">

<map>
<entry key="view" value-ref="fileUploadController"/>

</map>
</property>

</bean>

<bean id="fileUploadController" class="examples.FileUploadController">
<property name="commandClass" value="examples.FileUploadBean"/>
<property name="formView" value="fileuploadform"/>
<property name="successView" value="confirmation"/>

</bean>

After that, create the controller and the actual class to hold the file property.

public class FileUploadController extends SimpleFormController {

public void onSubmitAction(ActionRequest request, ActionResponse response,
Object command, BindException errors) throws Exception {

// cast the bean
FileUploadBean bean = (FileUploadBean) command;

// let's see if there's content there
byte[] file = bean.getFile();
if (file == null) {

Spring Framework

3.1 Reference Documentation 566

// hmm, that's strange, the user did not upload anything
}

// do something with the file here
}

protected void initBinder(
PortletRequest request, PortletRequestDataBinder binder) throws Exception {

// to actually be able to convert Multipart instance to byte[]
// we have to register a custom editor
binder.registerCustomEditor(byte[].class, new ByteArrayMultipartFileEditor());
// now Spring knows how to handle multipart object and convert

}
}

public class FileUploadBean {

private byte[] file;

public void setFile(byte[] file) {
this.file = file;

}

public byte[] getFile() {
return file;

}
}

As you can see, the FileUploadBean has a property of type byte[] that holds the file. The
controller registers a custom editor to let Spring know how to actually convert the multipart objects the
resolver has found to properties specified by the bean. In this example, nothing is done with the byte[]
property of the bean itself, but in practice you can do whatever you want (save it in a database, mail it to
somebody, etc).

An equivalent example in which a file is bound straight to a String-typed property on a form backing
object might look like this:

public class FileUploadController extends SimpleFormController {

public void onSubmitAction(ActionRequest request, ActionResponse response,
Object command, BindException errors) throws Exception {

// cast the bean
FileUploadBean bean = (FileUploadBean) command;

// let's see if there's content there
String file = bean.getFile();
if (file == null) {

// hmm, that's strange, the user did not upload anything
}

// do something with the file here
}

protected void initBinder(
PortletRequest request, PortletRequestDataBinder binder) throws Exception {

// to actually be able to convert Multipart instance to a String
// we have to register a custom editor
binder.registerCustomEditor(String.class,

new StringMultipartFileEditor());
// now Spring knows how to handle multipart objects and convert

}

Spring Framework

3.1 Reference Documentation 567

}

public class FileUploadBean {

private String file;

public void setFile(String file) {
this.file = file;

}

public String getFile() {
return file;

}
}

Of course, this last example only makes (logical) sense in the context of uploading a plain text file (it
wouldn't work so well in the case of uploading an image file).

The third (and final) option is where one binds directly to a MultipartFile property declared on the
(form backing) object's class. In this case one does not need to register any custom property editor
because there is no type conversion to be performed.

public class FileUploadController extends SimpleFormController {

public void onSubmitAction(ActionRequest request, ActionResponse response,
Object command, BindException errors) throws Exception {

// cast the bean
FileUploadBean bean = (FileUploadBean) command;

// let's see if there's content there
MultipartFile file = bean.getFile();
if (file == null) {

// hmm, that's strange, the user did not upload anything
}

// do something with the file here
}

}

public class FileUploadBean {

private MultipartFile file;

public void setFile(MultipartFile file) {
this.file = file;

}

public MultipartFile getFile() {
return file;

}
}

19.8 Handling exceptions

Just like Servlet MVC, Portlet MVC provides HandlerExceptionResolvers to ease the pain of
unexpected exceptions that occur while your request is being processed by a handler that matched the
request. Portlet MVC also provides a portlet-specific, concrete

Spring Framework

3.1 Reference Documentation 568

SimpleMappingExceptionResolver that enables you to take the class name of any exception that
might be thrown and map it to a view name.

19.9 Annotation-based controller configuration

Spring 2.5 introduced an annotation-based programming model for MVC controllers, using annotations
such as @RequestMapping, @RequestParam, @ModelAttribute, etc. This annotation support
is available for both Servlet MVC and Portlet MVC. Controllers implemented in this style do not have to
extend specific base classes or implement specific interfaces. Furthermore, they do not usually have direct
dependencies on Servlet or Portlet API's, although they can easily get access to Servlet or Portlet facilities
if desired.

The following sections document these annotations and how they are most commonly used in a Portlet
environment.

Setting up the dispatcher for annotation support

@RequestMapping will only be processed if a corresponding HandlerMapping (for type level
annotations) and/or HandlerAdapter (for method level annotations) is present in the dispatcher. This
is the case by default in both DispatcherServlet and DispatcherPortlet.

However, if you are defining custom HandlerMappings or HandlerAdapters, then you need to
make sure that a corresponding custom DefaultAnnotationHandlerMapping and/or
AnnotationMethodHandlerAdapter is defined as well - provided that you intend to use
@RequestMapping.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean class="org.springframework.web.portlet.mvc.annotation.DefaultAnnotationHandlerMapping"/>

<bean class="org.springframework.web.portlet.mvc.annotation.AnnotationMethodHandlerAdapter"/>

// ... (controller bean definitions) ...

</beans>

Defining a DefaultAnnotationHandlerMapping and/or
AnnotationMethodHandlerAdapter explicitly also makes sense if you would like to customize
the mapping strategy, e.g. specifying a custom WebBindingInitializer (see below).

Defining a controller with @Controller

The @Controller annotation indicates that a particular class serves the role of a controller. There is no
need to extend any controller base class or reference the Portlet API. You are of course still able to

Spring Framework

3.1 Reference Documentation 569

reference Portlet-specific features if you need to.

The basic purpose of the @Controller annotation is to act as a stereotype for the annotated class,
indicating its role. The dispatcher will scan such annotated classes for mapped methods, detecting
@RequestMapping annotations (see the next section).

Annotated controller beans may be defined explicitly, using a standard Spring bean definition in the
dispatcher's context. However, the @Controller stereotype also allows for autodetection, aligned with
Spring 2.5's general support for detecting component classes in the classpath and auto-registering bean
definitions for them.

To enable autodetection of such annotated controllers, you have to add component scanning to your
configuration. This is easily achieved by using the spring-context schema as shown in the following XML
snippet:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:component-scan base-package="org.springframework.samples.petportal.portlet"/>

// ...

</beans>

Mapping requests with @RequestMapping

The @RequestMapping annotation is used to map portlet modes like 'VIEW'/'EDIT' onto an entire
class or a particular handler method. Typically the type-level annotation maps a specific mode (or mode
plus parameter condition) onto a form controller, with additional method-level annotations 'narrowing' the
primary mapping for specific portlet request parameters.

Tip

@RequestMapping at the type level may be used for plain implementations of the
Controller interface as well. In this case, the request processing code would follow the
traditional handle(Action|Render)Request signature, while the controller's
mapping would be expressed through an @RequestMapping annotation. This works for
pre-built Controller base classes, such as SimpleFormController, too.

In the following discussion, we'll focus on controllers that are based on annotated handler
methods.

Spring Framework

3.1 Reference Documentation 570

The following is an example of a form controller from the PetPortal sample application using this
annotation:

@Controller
@RequestMapping("EDIT")
@SessionAttributes("site")
public class PetSitesEditController {

private Properties petSites;

public void setPetSites(Properties petSites) {
this.petSites = petSites;

}

@ModelAttribute("petSites")
public Properties getPetSites() {

return this.petSites;
}

@RequestMapping // default (action=list)
public String showPetSites() {

return "petSitesEdit";
}

@RequestMapping(params = "action=add") // render phase
public String showSiteForm(Model model) {

// Used for the initial form as well as for redisplaying with errors.
if (!model.containsAttribute("site")) {

model.addAttribute("site", new PetSite());
}
return "petSitesAdd";

}

@RequestMapping(params = "action=add") // action phase
public void populateSite(

@ModelAttribute("site") PetSite petSite, BindingResult result,
SessionStatus status, ActionResponse response) {

new PetSiteValidator().validate(petSite, result);
if (!result.hasErrors()) {

this.petSites.put(petSite.getName(), petSite.getUrl());
status.setComplete();
response.setRenderParameter("action", "list");

}
}

@RequestMapping(params = "action=delete")
public void removeSite(@RequestParam("site") String site, ActionResponse response) {

this.petSites.remove(site);
response.setRenderParameter("action", "list");

}
}

Supported handler method arguments

Handler methods which are annotated with @RequestMapping are allowed to have very flexible
signatures. They may have arguments of the following types, in arbitrary order (except for validation
results, which need to follow right after the corresponding command object, if desired):

• Request and/or response objects (Portlet API). You may choose any specific request/response type, e.g.

Spring Framework

3.1 Reference Documentation 571

PortletRequest / ActionRequest / RenderRequest. An explicitly declared action/render argument is also
used for mapping specific request types onto a handler method (in case of no other information given
that differentiates between action and render requests).

• Session object (Portlet API): of type PortletSession. An argument of this type will enforce the presence
of a corresponding session. As a consequence, such an argument will never be null.

• org.springframework.web.context.request.WebRequest or
org.springframework.web.context.request.NativeWebRequest. Allows for
generic request parameter access as well as request/session attribute access, without ties to the native
Servlet/Portlet API.

• java.util.Locale for the current request locale (the portal locale in a Portlet environment).

• java.io.InputStream / java.io.Reader for access to the request's content. This will be the
raw InputStream/Reader as exposed by the Portlet API.

• java.io.OutputStream / java.io.Writer for generating the response's content. This will be
the raw OutputStream/Writer as exposed by the Portlet API.

• @RequestParam annotated parameters for access to specific Portlet request parameters. Parameter
values will be converted to the declared method argument type.

• java.util.Map / org.springframework.ui.Model /
org.springframework.ui.ModelMap for enriching the implicit model that will be exposed to
the web view.

• Command/form objects to bind parameters to: as bean properties or fields, with customizable type
conversion, depending on @InitBinder methods and/or the HandlerAdapter configuration - see the
"webBindingInitializer" property on AnnotationMethodHandlerAdapter. Such
command objects along with their validation results will be exposed as model attributes, by default
using the non-qualified command class name in property notation (e.g. "orderAddress" for type
"mypackage.OrderAddress"). Specify a parameter-level ModelAttribute annotation for declaring a
specific model attribute name.

• org.springframework.validation.Errors /
org.springframework.validation.BindingResult validation results for a preceding
command/form object (the immediate preceding argument).

• org.springframework.web.bind.support.SessionStatus status handle for marking
form processing as complete (triggering the cleanup of session attributes that have been indicated by
the @SessionAttributes annotation at the handler type level).

The following return types are supported for handler methods:

• A ModelAndView object, with the model implicitly enriched with command objects and the results
of @ModelAttribute annotated reference data accessor methods.

Spring Framework

3.1 Reference Documentation 572

• A Model object, with the view name implicitly determined through a
RequestToViewNameTranslator and the model implicitly enriched with command objects and
the results of @ModelAttribute annotated reference data accessor methods.

• A Map object for exposing a model, with the view name implicitly determined through a
RequestToViewNameTranslator and the model implicitly enriched with command objects and
the results of @ModelAttribute annotated reference data accessor methods.

• A View object, with the model implicitly determined through command objects and
@ModelAttribute annotated reference data accessor methods. The handler method may also
programmatically enrich the model by declaring a Model argument (see above).

• A String value which is interpreted as view name, with the model implicitly determined through
command objects and @ModelAttribute annotated reference data accessor methods. The handler
method may also programmatically enrich the model by declaring a Model argument (see above).

• void if the method handles the response itself (e.g. by writing the response content directly).

• Any other return type will be considered a single model attribute to be exposed to the view, using the
attribute name specified through @ModelAttribute at the method level (or the default attribute
name based on the return type's class name otherwise). The model will be implicitly enriched with
command objects and the results of @ModelAttribute annotated reference data accessor methods.

Binding request parameters to method parameters with
@RequestParam

The @RequestParam annotation is used to bind request parameters to a method parameter in your
controller.

The following code snippet from the PetPortal sample application shows the usage:

@Controller
@RequestMapping("EDIT")
@SessionAttributes("site")
public class PetSitesEditController {

// ...

public void removeSite(@RequestParam("site") String site, ActionResponse response) {
this.petSites.remove(site);
response.setRenderParameter("action", "list");

}

// ...
}

Parameters using this annotation are required by default, but you can specify that a parameter is optional
by setting @RequestParam's required attribute to false (e.g.,
@RequestParam(value="id", required=false)).

Spring Framework

3.1 Reference Documentation 573

Providing a link to data from the model with @ModelAttribute

@ModelAttribute has two usage scenarios in controllers. When placed on a method parameter,
@ModelAttribute is used to map a model attribute to the specific, annotated method parameter (see
the populateSite() method below). This is how the controller gets a reference to the object holding
the data entered in the form. In addition, the parameter can be declared as the specific type of the form
backing object rather than as a generic java.lang.Object, thus increasing type safety.

@ModelAttribute is also used at the method level to provide reference data for the model (see the
getPetSites() method below). For this usage the method signature can contain the same types as
documented above for the @RequestMapping annotation.

Note: @ModelAttribute annotated methods will be executed before the chosen
@RequestMapping annotated handler method. They effectively pre-populate the implicit model with
specific attributes, often loaded from a database. Such an attribute can then already be accessed through
@ModelAttribute annotated handler method parameters in the chosen handler method, potentially
with binding and validation applied to it.

The following code snippet shows these two usages of this annotation:

@Controller
@RequestMapping("EDIT")
@SessionAttributes("site")
public class PetSitesEditController {

// ...

@ModelAttribute("petSites")
public Properties getPetSites() {

return this.petSites;
}

@RequestMapping(params = "action=add") // action phase
public void populateSite(

@ModelAttribute("site") PetSite petSite, BindingResult result,
SessionStatus status, ActionResponse response) {

new PetSiteValidator().validate(petSite, result);
if (!result.hasErrors()) {

this.petSites.put(petSite.getName(), petSite.getUrl());
status.setComplete();
response.setRenderParameter("action", "list");

}
}

}

Specifying attributes to store in a Session with @SessionAttributes

The type-level @SessionAttributes annotation declares session attributes used by a specific
handler. This will typically list the names of model attributes or types of model attributes which should be
transparently stored in the session or some conversational storage, serving as form-backing beans
between subsequent requests.

Spring Framework

3.1 Reference Documentation 574

The following code snippet shows the usage of this annotation:

@Controller
@RequestMapping("EDIT")
@SessionAttributes("site")
public class PetSitesEditController {
// ...

}

Customizing WebDataBinder initialization

To customize request parameter binding with PropertyEditors, etc. via Spring's WebDataBinder, you
can either use @InitBinder-annotated methods within your controller or externalize your
configuration by providing a custom WebBindingInitializer.

Customizing data binding with @InitBinder

Annotating controller methods with @InitBinder allows you to configure web data binding directly
within your controller class. @InitBinder identifies methods which initialize the WebDataBinder
which will be used for populating command and form object arguments of annotated handler methods.

Such init-binder methods support all arguments that @RequestMapping supports, except for
command/form objects and corresponding validation result objects. Init-binder methods must not have a
return value. Thus, they are usually declared as void. Typical arguments include WebDataBinder in
combination with WebRequest or java.util.Locale, allowing code to register context-specific
editors.

The following example demonstrates the use of @InitBinder for configuring a
CustomDateEditor for all java.util.Date form properties.

@Controller
public class MyFormController {

@InitBinder
public void initBinder(WebDataBinder binder) {

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
dateFormat.setLenient(false);
binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false));

}

// ...
}

Configuring a custom WebBindingInitializer

To externalize data binding initialization, you can provide a custom implementation of the
WebBindingInitializer interface, which you then enable by supplying a custom bean
configuration for an AnnotationMethodHandlerAdapter, thus overriding the default
configuration.

Spring Framework

3.1 Reference Documentation 575

19.10 Portlet application deployment

The process of deploying a Spring Portlet MVC application is no different than deploying any JSR-168
Portlet application. However, this area is confusing enough in general that it is worth talking about here
briefly.

Generally, the portal/portlet container runs in one webapp in your servlet container and your portlets run
in another webapp in your servlet container. In order for the portlet container webapp to make calls into
your portlet webapp it must make cross-context calls to a well-known servlet that provides access to the
portlet services defined in your portlet.xml file.

The JSR-168 specification does not specify exactly how this should happen, so each portlet container has
its own mechanism for this, which usually involves some kind of “deployment process” that makes
changes to the portlet webapp itself and then registers the portlets within the portlet container.

At a minimum, the web.xml file in your portlet webapp is modified to inject the well-known servlet that
the portlet container will call. In some cases a single servlet will service all portlets in the webapp, in
other cases there will be an instance of the servlet for each portlet.

Some portlet containers will also inject libraries and/or configuration files into the webapp as well. The
portlet container must also make its implementation of the Portlet JSP Tag Library available to your
webapp.

The bottom line is that it is important to understand the deployment needs of your target portal and make
sure they are met (usually by following the automated deployment process it provides). Be sure to
carefully review the documentation from your portal for this process.

Once you have deployed your portlet, review the resulting web.xml file for sanity. Some older portals
have been known to corrupt the definition of the ViewRendererServlet, thus breaking the rendering
of your portlets.

Spring Framework

3.1 Reference Documentation 576

Part VI. Integration
This part of the reference documentation covers the Spring Framework's integration with a number of
Java EE (and related) technologies.

• Chapter 20, Remoting and web services using Spring

• Chapter 21, Enterprise JavaBeans (EJB) integration

• Chapter 22, JMS (Java Message Service)

• Chapter 23, JMX

• Chapter 24, JCA CCI

• Chapter 25, Email

• Chapter 26, Task Execution and Scheduling

• Chapter 27, Dynamic language support

• Chapter 28, Cache Abstraction

20. Remoting and web services using Spring

20.1 Introduction

Spring features integration classes for remoting support using various technologies. The remoting support
eases the development of remote-enabled services, implemented by your usual (Spring) POJOs.
Currently, Spring supports the following remoting technologies:

• Remote Method Invocation (RMI). Through the use of the RmiProxyFactoryBean and the
RmiServiceExporter Spring supports both traditional RMI (with java.rmi.Remote
interfaces and java.rmi.RemoteException) and transparent remoting via RMI invokers (with
any Java interface).

• Spring's HTTP invoker. Spring provides a special remoting strategy which allows for Java serialization
via HTTP, supporting any Java interface (just like the RMI invoker). The corresponding support
classes are HttpInvokerProxyFactoryBean and HttpInvokerServiceExporter.

• Hessian. By using Spring's HessianProxyFactoryBean and the HessianServiceExporter
you can transparently expose your services using the lightweight binary HTTP-based protocol provided
by Caucho.

• Burlap. Burlap is Caucho's XML-based alternative to Hessian. Spring provides support classes such as
BurlapProxyFactoryBean and BurlapServiceExporter.

• JAX-RPC. Spring provides remoting support for web services via JAX-RPC (J2EE 1.4's web service
API).

• JAX-WS. Spring provides remoting support for web services via JAX-WS (the successor of JAX-RPC,
as introduced in Java EE 5 and Java 6).

• JMS. Remoting using JMS as the underlying protocol is supported via the
JmsInvokerServiceExporter and JmsInvokerProxyFactoryBean classes.

While discussing the remoting capabilities of Spring, we'll use the following domain model and
corresponding services:

public class Account implements Serializable{

private String name;

public String getName(){
return name;

}

public void setName(String name) {
this.name = name;

}
}

Spring Framework

3.1 Reference Documentation 578

public interface AccountService {

public void insertAccount(Account account);

public List<Account> getAccounts(String name);
}

public interface RemoteAccountService extends Remote {

public void insertAccount(Account account) throws RemoteException;

public List<Account> getAccounts(String name) throws RemoteException;
}

// the implementation doing nothing at the moment
public class AccountServiceImpl implements AccountService {

public void insertAccount(Account acc) {
// do something...

}

public List<Account> getAccounts(String name) {
// do something...

}
}

We will start exposing the service to a remote client by using RMI and talk a bit about the drawbacks of
using RMI. We'll then continue to show an example using Hessian as the protocol.

20.2 Exposing services using RMI

Using Spring's support for RMI, you can transparently expose your services through the RMI
infrastructure. After having this set up, you basically have a configuration similar to remote EJBs, except
for the fact that there is no standard support for security context propagation or remote transaction
propagation. Spring does provide hooks for such additional invocation context when using the RMI
invoker, so you can for example plug in security frameworks or custom security credentials here.

Exporting the service using the RmiServiceExporter

Using the RmiServiceExporter, we can expose the interface of our AccountService object as RMI
object. The interface can be accessed by using RmiProxyFactoryBean, or via plain RMI in case of a
traditional RMI service. The RmiServiceExporter explicitly supports the exposing of any non-RMI
services via RMI invokers.

Of course, we first have to set up our service in the Spring container:

<bean id="accountService" class="example.AccountServiceImpl">
<!-- any additional properties, maybe a DAO? -->

</bean>

Next we'll have to expose our service using the RmiServiceExporter:

Spring Framework

3.1 Reference Documentation 579

<bean class="org.springframework.remoting.rmi.RmiServiceExporter">
<!-- does not necessarily have to be the same name as the bean to be exported -->
<property name="serviceName" value="AccountService"/>
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>
<!-- defaults to 1099 -->
<property name="registryPort" value="1199"/>

</bean>

As you can see, we're overriding the port for the RMI registry. Often, your application server also
maintains an RMI registry and it is wise to not interfere with that one. Furthermore, the service name is
used to bind the service under. So right now, the service will be bound at
'rmi://HOST:1199/AccountService'. We'll use the URL later on to link in the service at the
client side.

Note

The servicePort property has been omitted (it defaults to 0). This means that an
anonymous port will be used to communicate with the service.

Linking in the service at the client

Our client is a simple object using the AccountService to manage accounts:

public class SimpleObject {

private AccountService accountService;

public void setAccountService(AccountService accountService) {
this.accountService = accountService;

}

// additional methods using the accountService

}

To link in the service on the client, we'll create a separate Spring container, containing the simple object
and the service linking configuration bits:

<bean class="example.SimpleObject">
<property name="accountService" ref="accountService"/>

</bean>

<bean id="accountService" class="org.springframework.remoting.rmi.RmiProxyFactoryBean">
<property name="serviceUrl" value="rmi://HOST:1199/AccountService"/>
<property name="serviceInterface" value="example.AccountService"/>

</bean>

That's all we need to do to support the remote account service on the client. Spring will transparently
create an invoker and remotely enable the account service through the RmiServiceExporter. At the
client we're linking it in using the RmiProxyFactoryBean.

Spring Framework

3.1 Reference Documentation 580

20.3 Using Hessian or Burlap to remotely call services via
HTTP

Hessian offers a binary HTTP-based remoting protocol. It is developed by Caucho and more information
about Hessian itself can be found at http://www.caucho.com.

Wiring up the DispatcherServlet for Hessian and co.

Hessian communicates via HTTP and does so using a custom servlet. Using Spring's
DispatcherServlet principles, as known from Spring Web MVC usage, you can easily wire up
such a servlet exposing your services. First we'll have to create a new servlet in your application (this is
an excerpt from 'web.xml'):

<servlet>
<servlet-name>remoting</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>remoting</servlet-name>
<url-pattern>/remoting/*</url-pattern>

</servlet-mapping>

You're probably familiar with Spring's DispatcherServlet principles and if so, you know that now
you'll have to create a Spring container configuration resource named 'remoting-servlet.xml'
(after the name of your servlet) in the 'WEB-INF' directory. The application context will be used in the
next section.

Alternatively, consider the use of Spring's simpler HttpRequestHandlerServlet. This allows you
to embed the remote exporter definitions in your root application context (by default in
'WEB-INF/applicationContext.xml'), with individual servlet definitions pointing to specific
exporter beans. Each servlet name needs to match the bean name of its target exporter in this case.

Exposing your beans by using the HessianServiceExporter

In the newly created application context called remoting-servlet.xml, we'll create a
HessianServiceExporter exporting your services:

<bean id="accountService" class="example.AccountServiceImpl">
<!-- any additional properties, maybe a DAO? -->

</bean>

<bean name="/AccountService" class="org.springframework.remoting.caucho.HessianServiceExporter">
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>

</bean>

Spring Framework

3.1 Reference Documentation 581

http://www.caucho.com

Now we're ready to link in the service at the client. No explicit handler mapping is specified, mapping
request URLs onto services, so BeanNameUrlHandlerMapping will be used: Hence, the service will
be exported at the URL indicated through its bean name within the containing DispatcherServlet's
mapping (as defined above): 'http://HOST:8080/remoting/AccountService'.

Alternatively, create a HessianServiceExporter in your root application context (e.g. in
'WEB-INF/applicationContext.xml'):

<bean name="accountExporter" class="org.springframework.remoting.caucho.HessianServiceExporter">
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>

</bean>

In the latter case, define a corresponding servlet for this exporter in 'web.xml', with the same end
result: The exporter getting mapped to the request path /remoting/AccountService. Note that the
servlet name needs to match the bean name of the target exporter.

<servlet>
<servlet-name>accountExporter</servlet-name>
<servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>accountExporter</servlet-name>
<url-pattern>/remoting/AccountService</url-pattern>

</servlet-mapping>

Linking in the service on the client

Using the HessianProxyFactoryBean we can link in the service at the client. The same principles
apply as with the RMI example. We'll create a separate bean factory or application context and mention
the following beans where the SimpleObject is using the AccountService to manage accounts:

<bean class="example.SimpleObject">
<property name="accountService" ref="accountService"/>

</bean>

<bean id="accountService" class="org.springframework.remoting.caucho.HessianProxyFactoryBean">
<property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService"/>
<property name="serviceInterface" value="example.AccountService"/>

</bean>

Using Burlap

We won't discuss Burlap, the XML-based equivalent of Hessian, in detail here, since it is configured and
set up in exactly the same way as the Hessian variant explained above. Just replace the word Hessian
with Burlap and you're all set to go.

Applying HTTP basic authentication to a service exposed through

Spring Framework

3.1 Reference Documentation 582

Hessian or Burlap

One of the advantages of Hessian and Burlap is that we can easily apply HTTP basic authentication,
because both protocols are HTTP-based. Your normal HTTP server security mechanism can easily be
applied through using the web.xml security features, for example. Usually, you don't use per-user
security credentials here, but rather shared credentials defined at the
Hessian/BurlapProxyFactoryBean level (similar to a JDBC DataSource).

<bean class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">
<property name="interceptors" ref="authorizationInterceptor"/>

</bean>

<bean id="authorizationInterceptor"
class="org.springframework.web.servlet.handler.UserRoleAuthorizationInterceptor">

<property name="authorizedRoles" value="administrator,operator"/>
</bean>

This is an example where we explicitly mention the BeanNameUrlHandlerMapping and set an
interceptor allowing only administrators and operators to call the beans mentioned in this application
context.

Note

Of course, this example doesn't show a flexible kind of security infrastructure. For more
options as far as security is concerned, have a look at the Spring Security project at
http://static.springsource.org/spring-security/site/.

20.4 Exposing services using HTTP invokers

As opposed to Burlap and Hessian, which are both lightweight protocols using their own slim
serialization mechanisms, Spring HTTP invokers use the standard Java serialization mechanism to expose
services through HTTP. This has a huge advantage if your arguments and return types are complex types
that cannot be serialized using the serialization mechanisms Hessian and Burlap use (refer to the next
section for more considerations when choosing a remoting technology).

Under the hood, Spring uses either the standard facilities provided by J2SE to perform HTTP calls or
Commons HttpClient. Use the latter if you need more advanced and easy-to-use functionality. Refer
to jakarta.apache.org/commons/httpclient for more info.

Exposing the service object

Setting up the HTTP invoker infrastructure for a service object resembles closely the way you would do
the same using Hessian or Burlap. Just as Hessian support provides the HessianServiceExporter,
Spring's HttpInvoker support provides the
org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter.

Spring Framework

3.1 Reference Documentation 583

http://static.springsource.org/spring-security/site/
http://jakarta.apache.org/commons/httpclient

To expose the AccountService (mentioned above) within a Spring Web MVC
DispatcherServlet, the following configuration needs to be in place in the dispatcher's application
context:

<bean name="/AccountService" class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>

</bean>

Such an exporter definition will be exposed through the DispatcherServlet's standard mapping
facilities, as explained in the section on Hessian.

Alternatively, create an HttpInvokerServiceExporter in your root application context (e.g. in
'WEB-INF/applicationContext.xml'):

<bean name="accountExporter" class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>

</bean>

In addition, define a corresponding servlet for this exporter in 'web.xml', with the servlet name
matching the bean name of the target exporter:

<servlet>
<servlet-name>accountExporter</servlet-name>
<servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>accountExporter</servlet-name>
<url-pattern>/remoting/AccountService</url-pattern>

</servlet-mapping>

If you are running outside of a servlet container and are using Sun's Java 6, then you can use the built-in
HTTP server implementation. You can configure the SimpleHttpServerFactoryBean together
with a SimpleHttpInvokerServiceExporter as is shown in this example:

<bean name="accountExporter"
class="org.springframework.remoting.httpinvoker.SimpleHttpInvokerServiceExporter">
<property name="service" ref="accountService"/>
<property name="serviceInterface" value="example.AccountService"/>

</bean>

<bean id="httpServer"
class="org.springframework.remoting.support.SimpleHttpServerFactoryBean">

<property name="contexts">
<util:map>

<entry key="/remoting/AccountService" value-ref="accountExporter"/>
</util:map>

</property>
<property name="port" value="8080" />

</bean>

Linking in the service at the client

Spring Framework

3.1 Reference Documentation 584

Again, linking in the service from the client much resembles the way you would do it when using Hessian
or Burlap. Using a proxy, Spring will be able to translate your calls to HTTP POST requests to the URL
pointing to the exported service.

<bean id="httpInvokerProxy" class="org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean">
<property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService"/>
<property name="serviceInterface" value="example.AccountService"/>

</bean>

As mentioned before, you can choose what HTTP client you want to use. By default, the
HttpInvokerProxy uses the J2SE HTTP functionality, but you can also use the Commons
HttpClient by setting the httpInvokerRequestExecutor property:

<property name="httpInvokerRequestExecutor">
<bean class="org.springframework.remoting.httpinvoker.CommonsHttpInvokerRequestExecutor"/>

</property>

20.5 Web services

Spring provides full support for standard Java web services APIs:

• Exposing web services using JAX-RPC

• Accessing web services using JAX-RPC

• Exposing web services using JAX-WS

• Accessing web services using JAX-WS

Note

Why two standard Java web services APIs?

JAX-RPC 1.1 is the standard web service API in J2EE 1.4. As its name indicates, it focuses
on on RPC bindings, which became less and less popular in the past couple of years. As a
consequence, it has been superseded by JAX-WS 2.0 in Java EE 5, being more flexible in
terms of bindings but also being heavily annotation-based. JAX-WS 2.1 is also included in
Java 6 (or more specifically, in Sun's JDK 1.6.0_04 and above; previous Sun JDK 1.6.0
releases included JAX-WS 2.0), integrated with the JDK's built-in HTTP server.

Spring can work with both standard Java web services APIs. On Java EE 5 / Java 6, the
obvious choice is JAX-WS. On J2EE 1.4 environments that run on Java 5, you might have
the option to plug in a JAX-WS provider; check your Java EE server's documentation.

In addition to stock support for JAX-RPC and JAX-WS in Spring Core, the Spring portfolio also features
Spring Web Services, a solution for contract-first, document-driven web services - highly recommended

Spring Framework

3.1 Reference Documentation 585

http://www.springframework.org/spring-ws

for building modern, future-proof web services.

Exposing servlet-based web services using JAX-RPC

Spring provides a convenience base class for JAX-RPC servlet endpoint implementations -
ServletEndpointSupport. To expose our AccountService we extend Spring's
ServletEndpointSupport class and implement our business logic here, usually delegating the call
to the business layer.

/**
* JAX-RPC compliant RemoteAccountService implementation that simply delegates
* to the AccountService implementation in the root web application context.
*
* This wrapper class is necessary because JAX-RPC requires working with dedicated
* endpoint classes. If an existing service needs to be exported, a wrapper that
* extends ServletEndpointSupport for simple application context access is
* the simplest JAX-RPC compliant way.
*
* This is the class registered with the server-side JAX-RPC implementation.
* In the case of Axis, this happens in "server-config.wsdd" respectively via
* deployment calls. The web service engine manages the lifecycle of instances
* of this class: A Spring application context can just be accessed here.
*/import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

public class AccountServiceEndpoint extends ServletEndpointSupport implements RemoteAccountService {

private AccountService biz;

protected void onInit() {
this.biz = (AccountService) getWebApplicationContext().getBean("accountService");

}

public void insertAccount(Account acc) throws RemoteException {
biz.insertAccount(acc);

}

public Account[] getAccounts(String name) throws RemoteException {
return biz.getAccounts(name);

}
}

Our AccountServletEndpoint needs to run in the same web application as the Spring context to
allow for access to Spring's facilities. In case of Axis, copy the AxisServlet definition into your
'web.xml', and set up the endpoint in 'server-config.wsdd' (or use the deploy tool). See the
sample application JPetStore where the OrderService is exposed as a web service using Axis.

Accessing web services using JAX-RPC

Spring provides two factory beans to create JAX-RPC web service proxies, namely
LocalJaxRpcServiceFactoryBean and JaxRpcPortProxyFactoryBean. The former can
only return a JAX-RPC service class for us to work with. The latter is the full-fledged version that can
return a proxy that implements our business service interface. In this example we use the latter to create a
proxy for the AccountService endpoint we exposed in the previous section. You will see that Spring
has great support for web services requiring little coding efforts - most of the setup is done in the Spring

Spring Framework

3.1 Reference Documentation 586

configuration file as usual:

<bean id="accountWebService" class="org.springframework.remoting.jaxrpc.JaxRpcPortProxyFactoryBean">
<property name="serviceInterface" value="example.RemoteAccountService"/>
<property name="wsdlDocumentUrl" value="http://localhost:8080/account/services/accountService?WSDL"/>
<property name="namespaceUri" value="http://localhost:8080/account/services/accountService"/>
<property name="serviceName" value="AccountService"/>
<property name="portName" value="AccountPort"/>

</bean>

Where serviceInterface is our remote business interface the clients will use.
wsdlDocumentUrl is the URL for the WSDL file. Spring needs this at startup time to create the
JAX-RPC Service. namespaceUri corresponds to the targetNamespace in the .wsdl file.
serviceName corresponds to the service name in the .wsdl file. portName corresponds to the port
name in the .wsdl file.

Accessing the web service is now very easy as we have a bean factory for it that will expose it as
RemoteAccountService interface. We can wire this up in Spring:

<bean id="client" class="example.AccountClientImpl">
...
<property name="service" ref="accountWebService"/>

</bean>

From the client code we can access the web service just as if it was a normal class, except that it throws
RemoteException.

public class AccountClientImpl {

private RemoteAccountService service;

public void setService(RemoteAccountService service) {
this.service = service;

}

public void foo() {
try {

service.insertAccount(...);
}
catch (RemoteException ex) {

// ouch
}

}
}

We can get rid of the checked RemoteException since Spring supports automatic conversion to its
corresponding unchecked RemoteException. This requires that we provide a non-RMI interface also.
Our configuration is now:

<bean id="accountWebService" class="org.springframework.remoting.jaxrpc.JaxRpcPortProxyFactoryBean">
<property name="serviceInterface" value="example.AccountService"/>
<property name="portInterface" value="example.RemoteAccountService"/>
...

</bean>

Where serviceInterface is changed to our non RMI interface. Our RMI interface is now defined

Spring Framework

3.1 Reference Documentation 587

using the property portInterface. Our client code can now avoid handling
java.rmi.RemoteException:

public class AccountClientImpl {

private AccountService service;

public void setService(AccountService service) {
this.service = service;

}

public void foo() {
service.insertAccount(...);

}
}

Note that you can also drop the "portInterface" part and specify a plain business interface as
"serviceInterface". In this case, JaxRpcPortProxyFactoryBean will automatically switch to the
JAX-RPC "Dynamic Invocation Interface", performing dynamic invocations without a fixed port stub.
The advantage is that you don't even need to have an RMI-compliant Java port interface around (e.g. in
case of a non-Java target web service); all you need is a matching business interface. Check out
JaxRpcPortProxyFactoryBean's javadoc for details on the runtime implications.

Registering JAX-RPC Bean Mappings

To transfer complex objects over the wire such as Account we must register bean mappings on the
client side.

Note

On the server side using Axis registering bean mappings is usually done in the
'server-config.wsdd' file.

We will use Axis to register bean mappings on the client side. To do this we need to register the bean
mappings programmatically:

public class AxisPortProxyFactoryBean extends JaxRpcPortProxyFactoryBean {

protected void postProcessJaxRpcService(Service service) {
TypeMappingRegistry registry = service.getTypeMappingRegistry();
TypeMapping mapping = registry.createTypeMapping();
registerBeanMapping(mapping, Account.class, "Account");
registry.register("http://schemas.xmlsoap.org/soap/encoding/", mapping);

}

protected void registerBeanMapping(TypeMapping mapping, Class type, String name) {
QName qName = new QName("http://localhost:8080/account/services/accountService", name);
mapping.register(type, qName,

new BeanSerializerFactory(type, qName),
new BeanDeserializerFactory(type, qName));

}
}

Spring Framework

3.1 Reference Documentation 588

Registering your own JAX-RPC Handler

In this section we will register our own javax.rpc.xml.handler.Handler to the web service
proxy where we can do custom code before the SOAP message is sent over the wire. The Handler is a
callback interface. There is a convenience base class provided in jaxrpc.jar, namely
javax.rpc.xml.handler.GenericHandler that we will extend:

public class AccountHandler extends GenericHandler {

public QName[] getHeaders() {
return null;

}

public boolean handleRequest(MessageContext context) {
SOAPMessageContext smc = (SOAPMessageContext) context;
SOAPMessage msg = smc.getMessage();
try {

SOAPEnvelope envelope = msg.getSOAPPart().getEnvelope();
SOAPHeader header = envelope.getHeader();
...

}
catch (SOAPException ex) {

throw new JAXRPCException(ex);
}
return true;

}
}

What we need to do now is to register our AccountHandler to JAX-RPC Service so it would invoke
handleRequest(..) before the message is sent over the wire. Spring has at this time of writing no
declarative support for registering handlers, so we must use the programmatic approach. However Spring
has made it very easy for us to do this as we can override the postProcessJaxRpcService(..)
method that is designed for this:

public class AccountHandlerJaxRpcPortProxyFactoryBean extends JaxRpcPortProxyFactoryBean {

protected void postProcessJaxRpcService(Service service) {
QName port = new QName(this.getNamespaceUri(), this.getPortName());
List list = service.getHandlerRegistry().getHandlerChain(port);
list.add(new HandlerInfo(AccountHandler.class, null, null));
logger.info("Registered JAX-RPC AccountHandler on port " + port);

}
}

The last thing we must remember to do is to change the Spring configuration to use our factory bean:

<bean id="accountWebService" class="example.AccountHandlerJaxRpcPortProxyFactoryBean">
...

</bean>

Exposing servlet-based web services using JAX-WS

Spring provides a convenient base class for JAX-WS servlet endpoint implementations -
SpringBeanAutowiringSupport. To expose our AccountService we extend Spring's

Spring Framework

3.1 Reference Documentation 589

SpringBeanAutowiringSupport class and implement our business logic here, usually delegating
the call to the business layer. We'll simply use Spring 2.5's @Autowired annotation for expressing such
dependencies on Spring-managed beans.

/**
* JAX-WS compliant AccountService implementation that simply delegates
* to the AccountService implementation in the root web application context.
*
* This wrapper class is necessary because JAX-WS requires working with dedicated
* endpoint classes. If an existing service needs to be exported, a wrapper that
* extends SpringBeanAutowiringSupport for simple Spring bean autowiring (through
* the @Autowired annotation) is the simplest JAX-WS compliant way.
*
* This is the class registered with the server-side JAX-WS implementation.
* In the case of a Java EE 5 server, this would simply be defined as a servlet
* in web.xml, with the server detecting that this is a JAX-WS endpoint and reacting
* accordingly. The servlet name usually needs to match the specified WS service name.
*
* The web service engine manages the lifecycle of instances of this class.
* Spring bean references will just be wired in here.
*/

import org.springframework.web.context.support.SpringBeanAutowiringSupport;

@WebService(serviceName="AccountService")
public class AccountServiceEndpoint extends SpringBeanAutowiringSupport {

@Autowired
private AccountService biz;

@WebMethod
public void insertAccount(Account acc) {

biz.insertAccount(acc);
}

@WebMethod
public Account[] getAccounts(String name) {

return biz.getAccounts(name);
}

}

Our AccountServletEndpoint needs to run in the same web application as the Spring context to
allow for access to Spring's facilities. This is the case by default in Java EE 5 environments, using the
standard contract for JAX-WS servlet endpoint deployment. See Java EE 5 web service tutorials for
details.

Exporting standalone web services using JAX-WS

The built-in JAX-WS provider that comes with Sun's JDK 1.6 supports exposure of web services using
the built-in HTTP server that's included in JDK 1.6 as well. Spring's
SimpleJaxWsServiceExporter detects all @WebService annotated beans in the Spring
application context, exporting them through the default JAX-WS server (the JDK 1.6 HTTP server).

In this scenario, the endpoint instances are defined and managed as Spring beans themselves; they will be
registered with the JAX-WS engine but their lifecycle will be up to the Spring application context. This
means that Spring functionality like explicit dependency injection may be applied to the endpoint
instances. Of course, annotation-driven injection through @Autowired will work as well.

Spring Framework

3.1 Reference Documentation 590

<bean class="org.springframework.remoting.jaxws.SimpleJaxWsServiceExporter">
<property name="baseAddress" value="http://localhost:8080/"/>

</bean>

<bean id="accountServiceEndpoint" class="example.AccountServiceEndpoint">
...

</bean>

...

The AccountServiceEndpoint may derive from Spring's SpringBeanAutowiringSupport
but doesn't have to since the endpoint is a fully Spring-managed bean here. This means that the endpoint
implementation may look like as follows, without any superclass declared - and Spring's @Autowired
configuration annotation still being honored:

@WebService(serviceName="AccountService")
public class AccountServiceEndpoint {

@Autowired
private AccountService biz;

@WebMethod
public void insertAccount(Account acc) {

biz.insertAccount(acc);
}

@WebMethod
public List<Account> getAccounts(String name) {

return biz.getAccounts(name);
}

}

Exporting web services using the JAX-WS RI's Spring support

Sun's JAX-WS RI, developed as part of the GlassFish project, ships Spring support as part of its JAX-WS
Commons project. This allows for defining JAX-WS endpoints as Spring-managed beans, similar to the
standalone mode discussed in the previous section - but this time in a Servlet environment. Note that this
is not portable in a Java EE 5 environment; it is mainly intended for non-EE environments such as
Tomcat, embedding the JAX-WS RI as part of the web application.

The difference to the standard style of exporting servlet-based endpoints is that the lifecycle of the
endpoint instances themselves will be managed by Spring here, and that there will be only one JAX-WS
servlet defined in web.xml. With the standard Java EE 5 style (as illustrated above), you'll have one
servlet definition per service endpoint, with each endpoint typically delegating to Spring beans (through
the use of @Autowired, as shown above).

Check out https://jax-ws-commons.dev.java.net/spring/ for the details on setup and usage style.

Accessing web services using JAX-WS

Analogous to the JAX-RPC support, Spring provides two factory beans to create JAX-WS web service
proxies, namely LocalJaxWsServiceFactoryBean and JaxWsPortProxyFactoryBean. The

Spring Framework

3.1 Reference Documentation 591

https://jax-ws-commons.dev.java.net/spring/

former can only return a JAX-WS service class for us to work with. The latter is the full-fledged version
that can return a proxy that implements our business service interface. In this example we use the latter to
create a proxy for the AccountService endpoint (again):

<bean id="accountWebService" class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">
<property name="serviceInterface" value="example.AccountService"/>
<property name="wsdlDocumentUrl" value="http://localhost:8888/AccountServiceEndpoint?WSDL"/>
<property name="namespaceUri" value="http://example/"/>
<property name="serviceName" value="AccountService"/>
<property name="portName" value="AccountServiceEndpointPort"/>

</bean>

Where serviceInterface is our business interface the clients will use. wsdlDocumentUrl is the
URL for the WSDL file. Spring needs this a startup time to create the JAX-WS Service.
namespaceUri corresponds to the targetNamespace in the .wsdl file. serviceName corresponds to
the service name in the .wsdl file. portName corresponds to the port name in the .wsdl file.

Accessing the web service is now very easy as we have a bean factory for it that will expose it as
AccountService interface. We can wire this up in Spring:

<bean id="client" class="example.AccountClientImpl">
...
<property name="service" ref="accountWebService"/>

</bean>

From the client code we can access the web service just as if it was a normal class:

public class AccountClientImpl {

private AccountService service;

public void setService(AccountService service) {
this.service = service;

}

public void foo() {
service.insertAccount(...);

}
}

NOTE: The above is slightly simplified in that JAX-WS requires endpoint interfaces and implementation
classes to be annotated with @WebService, @SOAPBinding etc annotations. This means that you
cannot (easily) use plain Java interfaces and implementation classes as JAX-WS endpoint artifacts; you
need to annotate them accordingly first. Check the JAX-WS documentation for details on those
requirements.

20.6 JMS

It is also possible to expose services transparently using JMS as the underlying communication protocol.
The JMS remoting support in the Spring Framework is pretty basic - it sends and receives on the same
thread and in the same non-transactional Session, and as such throughput will be very
implementation dependent. Note that these single-threaded and non-transactional constraints apply only

Spring Framework

3.1 Reference Documentation 592

to Spring's JMS remoting support. See Chapter 22, JMS (Java Message Service) for information on
Spring's rich support for JMS-based messaging.

The following interface is used on both the server and the client side.

package com.foo;

public interface CheckingAccountService {

public void cancelAccount(Long accountId);
}

The following simple implementation of the above interface is used on the server-side.

package com.foo;

public class SimpleCheckingAccountService implements CheckingAccountService {

public void cancelAccount(Long accountId) {
System.out.println("Cancelling account [" + accountId + "]");

}
}

This configuration file contains the JMS-infrastructure beans that are shared on both the client and server.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://ep-t43:61616"/>

</bean>

<bean id="queue" class="org.apache.activemq.command.ActiveMQQueue">
<constructor-arg value="mmm"/>

</bean>

</beans>

Server-side configuration

On the server, you just need to expose the service object using the JmsInvokerServiceExporter.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="checkingAccountService"
class="org.springframework.jms.remoting.JmsInvokerServiceExporter">

<property name="serviceInterface" value="com.foo.CheckingAccountService"/>
<property name="service">

<bean class="com.foo.SimpleCheckingAccountService"/>
</property>

</bean>

<bean class="org.springframework.jms.listener.SimpleMessageListenerContainer">

Spring Framework

3.1 Reference Documentation 593

<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="queue"/>
<property name="concurrentConsumers" value="3"/>
<property name="messageListener" ref="checkingAccountService"/>

</bean>

</beans>

package com.foo;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Server {

public static void main(String[] args) throws Exception {
new ClassPathXmlApplicationContext(new String[]{"com/foo/server.xml", "com/foo/jms.xml"});

}
}

Client-side configuration

The client merely needs to create a client-side proxy that will implement the agreed upon interface
(CheckingAccountService). The resulting object created off the back of the following bean
definition can be injected into other client side objects, and the proxy will take care of forwarding the call
to the server-side object via JMS.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="checkingAccountService"
class="org.springframework.jms.remoting.JmsInvokerProxyFactoryBean">

<property name="serviceInterface" value="com.foo.CheckingAccountService"/>
<property name="connectionFactory" ref="connectionFactory"/>
<property name="queue" ref="queue"/>

</bean>

</beans>

package com.foo;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Client {

public static void main(String[] args) throws Exception {
ApplicationContext ctx = new ClassPathXmlApplicationContext(

new String[] {"com/foo/client.xml", "com/foo/jms.xml"});
CheckingAccountService service = (CheckingAccountService) ctx.getBean("checkingAccountService");
service.cancelAccount(new Long(10));

}
}

You may also wish to investigate the support provided by the Lingo project, which (to quote the
homepage blurb) “ ... is a lightweight POJO based remoting and messaging library based on the Spring
Framework's remoting libraries which extends it to support JMS. ”

Spring Framework

3.1 Reference Documentation 594

http://lingo.codehaus.org/

20.7 Auto-detection is not implemented for remote
interfaces

The main reason why auto-detection of implemented interfaces does not occur for remote interfaces is to
avoid opening too many doors to remote callers. The target object might implement internal callback
interfaces like InitializingBean or DisposableBean which one would not want to expose to
callers.

Offering a proxy with all interfaces implemented by the target usually does not matter in the local case.
But when exporting a remote service, you should expose a specific service interface, with specific
operations intended for remote usage. Besides internal callback interfaces, the target might implement
multiple business interfaces, with just one of them intended for remote exposure. For these reasons, we
require such a service interface to be specified.

This is a trade-off between configuration convenience and the risk of accidental exposure of internal
methods. Always specifying a service interface is not too much effort, and puts you on the safe side
regarding controlled exposure of specific methods.

20.8 Considerations when choosing a technology

Each and every technology presented here has its drawbacks. You should carefully consider your needs,
the services you are exposing and the objects you'll be sending over the wire when choosing a technology.

When using RMI, it's not possible to access the objects through the HTTP protocol, unless you're
tunneling the RMI traffic. RMI is a fairly heavy-weight protocol in that it supports full-object
serialization which is important when using a complex data model that needs serialization over the wire.
However, RMI-JRMP is tied to Java clients: It is a Java-to-Java remoting solution.

Spring's HTTP invoker is a good choice if you need HTTP-based remoting but also rely on Java
serialization. It shares the basic infrastructure with RMI invokers, just using HTTP as transport. Note that
HTTP invokers are not only limited to Java-to-Java remoting but also to Spring on both the client and
server side. (The latter also applies to Spring's RMI invoker for non-RMI interfaces.)

Hessian and/or Burlap might provide significant value when operating in a heterogeneous environment,
because they explicitly allow for non-Java clients. However, non-Java support is still limited. Known
issues include the serialization of Hibernate objects in combination with lazily-initialized collections. If
you have such a data model, consider using RMI or HTTP invokers instead of Hessian.

JMS can be useful for providing clusters of services and allowing the JMS broker to take care of load
balancing, discovery and auto-failover. By default: Java serialization is used when using JMS remoting
but the JMS provider could use a different mechanism for the wire formatting, such as XStream to allow
servers to be implemented in other technologies.

Last but not least, EJB has an advantage over RMI in that it supports standard role-based authentication

Spring Framework

3.1 Reference Documentation 595

and authorization and remote transaction propagation. It is possible to get RMI invokers or HTTP
invokers to support security context propagation as well, although this is not provided by core Spring:
There are just appropriate hooks for plugging in third-party or custom solutions here.

20.9 Accessing RESTful services on the Client

The RestTemplate is the core class for client-side access to RESTful services. It is conceptually
similar to other template classes in Spring, such as JdbcTemplate and JmsTemplate and other
template classes found in other Spring portfolio projects. RestTemplate's behavior is customized by
providing callback methods and configuring the HttpMessageConverter used to marshal objects
into the HTTP request body and to unmarshal any response back into an object. As it is common to use
XML as a message format, Spring provides a MarshallingHttpMessageConverter that uses the
Object-to-XML framework that is part of the org.springframework.oxm package. This gives you
a wide range of choices of XML to Object mapping technologies to choose from.

This section describes how to use the RestTemplate and its associated
HttpMessageConverters.

RestTemplate

Invoking RESTful services in Java is typically done using a helper class such as Jakarta Commons
HttpClient. For common REST operations this approach is too low level as shown below.

String uri = "http://example.com/hotels/1/bookings";

PostMethod post = new PostMethod(uri);
String request = // create booking request content
post.setRequestEntity(new StringRequestEntity(request));

httpClient.executeMethod(post);

if (HttpStatus.SC_CREATED == post.getStatusCode()) {
Header location = post.getRequestHeader("Location");
if (location != null) {

System.out.println("Created new booking at :" + location.getValue());
}

}

RestTemplate provides higher level methods that correspond to each of the six main HTTP methods that
make invoking many RESTful services a one-liner and enforce REST best practices.

Table 20.1. Overview of RestTemplate methods

HTTP Method RestTemplate Method

DELETE delete

GET getForObject

getForEntity

Spring Framework

3.1 Reference Documentation 596

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#delete(String,%20Object...)
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#getForObject(String,%20Class,%20Object...)
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#getForEntity(String,%20Class,%20Object...)

HEAD headForHeaders(String url, String… urlVariables)

OPTIONS optionsForAllow(String url, String… urlVariables)

POST postForLocation(String url, Object request,
String… urlVariables)

postForObject(String url, Object request,
Class<T> responseType, String… uriVariables)

PUT put(String url, Object request,
String…urlVariables)

The names of RestTemplate methods follow a naming convention, the first part indicates what HTTP
method is being invoked and the second part indicates what is returned. For example, the method
getForObject() will perform a GET, convert the HTTP response into an object type of your choice
and return that object. The method postForLocation() will do a POST, converting the given object
into a HTTP request and return the response HTTP Location header where the newly created object can
be found. In case of an exception processing the HTTP request, an exception of the type
RestClientException will be thrown; this behavior can be changed by plugging in another
ResponseErrorHandler implementation into the RestTemplate.

Objects passed to and returned from these methods are converted to and from HTTP messages by
HttpMessageConverter instances. Converters for the main mime types are registered by default,
but you can also write your own converter and register it via the messageConverters() bean
property. The default converter instances registered with the template are
ByteArrayHttpMessageConverter, StringHttpMessageConverter,
FormHttpMessageConverter and SourceHttpMessageConverter. You can override these
defaults using the messageConverters() bean property as would be required if using the
MarshallingHttpMessageConverter or MappingJacksonHttpMessageConverter.

Each method takes URI template arguments in two forms, either as a String variable length argument
or a Map<String,String>. For example,

String result = restTemplate.getForObject("http://example.com/hotels/{hotel}/bookings/{booking}",
String.class,"42", "21");

using variable length arguments and

Map<String, String> vars = Collections.singletonMap("hotel", "42");
String result =
restTemplate.getForObject("http://example.com/hotels/{hotel}/rooms/{hotel}", String.class, vars);

using a Map<String,String>.

To create an instance of RestTemplate you can simply call the default no-arg constructor. This will
use standard Java classes from the java.net package as the underlying implementation to create HTTP
requests. This can be overridden by specifying an implementation of ClientHttpRequestFactory.

Spring Framework

3.1 Reference Documentation 597

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#headForHeaders(String,%20Object...)
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#optionsForAllow(String,%20Object...)
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#postForLocation(String,%20Object,%20Object...)
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#postForLocation(String,%20Object,%20Object...)
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#postForObject(java.lang.String,%20java.lang.Object,%20java.lang.Class,%20java.lang.String...)
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#postForObject(java.lang.String,%20java.lang.Object,%20java.lang.Class,%20java.lang.String...)
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#put(String,%20Object,%20Object...)
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/client/RestTemplate.html#put(String,%20Object,%20Object...)

Spring provides the implementation CommonsClientHttpRequestFactory that uses the Jakarta
Commons HttpClient to create requests. CommonsClientHttpRequestFactory is configured
using an instance of org.apache.commons.httpclient.HttpClient which can in turn be
configured with credentials information or connection pooling functionality.

The previous example using Jakarta Commons HttpClient directly rewritten to use the
RestTemplate is shown below

uri = "http://example.com/hotels/{id}/bookings";

RestTemplate template = new RestTemplate();

Booking booking = // create booking object

URI location = template.postForLocation(uri, booking, "1");

The general callback interface is RequestCallback and is called when the execute method is
invoked.

public <T> T execute(String url, HttpMethod method, RequestCallback requestCallback,
ResponseExtractor<T> responseExtractor,
String... urlVariables)

// also has an overload with urlVariables as a Map<String, String>.

The RequestCallback interface is defined as

public interface RequestCallback {
void doWithRequest(ClientHttpRequest request) throws IOException;

}

and allows you to manipulate the request headers and write to the request body. When using the execute
method you do not have to worry about any resource management, the template will always close the
request and handle any errors. Refer to the API documentation for more information on using the execute
method and the meaning of its other method arguments.

Working with the URI

For each of the main HTTP methods, the RestTemplate provides variants that either take a String URI
or java.net.URI as the first argument.

The String URI variants accept template arguments as a String variable length argument or as a
Map<String,String>. They also assume the URL String is not encoded and needs to be encoded.
For example the following:

restTemplate.getForObject("http://example.com/hotel list", String.class);

will perform a GET on http://example.com/hotel%20list. That means if the input URL
String is already encoded, it will be encoded twice -- i.e. http://example.com/hotel%20list
will become http://example.com/hotel%2520list. If this is not the intended effect, use the

Spring Framework

3.1 Reference Documentation 598

java.net.URI method variant, which assumes the URL is already encoded is also generally useful if
you want to reuse a single (fully expanded) URI multiple times.

The UriComponentsBuilder class can be used to build and encode the URI including support for
URI templates. For example you can start with a URL String:

UriComponents uriComponents =
UriComponentsBuilder.fromUriString("http://example.com/hotels/{hotel}/bookings/{booking}").build()

.expand("42", "21")

.encode();

URI uri = uriComponents.toUri();

Or specify each URI component indiviudally:

UriComponents uriComponents =
UriComponentsBuilder.newInstance()

.scheme("http").host("example.com").path("/hotels/{hotel}/bookings/{booking}").build()

.expand("42", "21")

.encode();

URI uri = uriComponents.toUri();

Dealing with request and response headers

Besides the methods described above, the RestTemplate also has the exchange() method, which
can be used for arbitrary HTTP method execution based on the HttpEntity class.

Perhaps most importantly, the exchange() method can be used to add request headers and read
response headers. For example:

HttpHeaders requestHeaders = new HttpHeaders();
requestHeaders.set("MyRequestHeader", "MyValue");
HttpEntity<?> requestEntity = new HttpEntity(requestHeaders);

HttpEntity<String> response = template.exchange("http://example.com/hotels/{hotel}",
HttpMethod.GET, requestEntity, String.class, "42");

String responseHeader = response.getHeaders().getFirst("MyResponseHeader");
String body = response.getBody();

In the above example, we first prepare a request entity that contains the MyRequestHeader header.
We then retrieve the response, and read the MyResponseHeader and body.

HTTP Message Conversion

Objects passed to and returned from the methods getForObject(), postForLocation(), and
put() are converted to HTTP requests and from HTTP responses by HttpMessageConverters.
The HttpMessageConverter interface is shown below to give you a better feel for its functionality

public interface HttpMessageConverter<T> {

// Indicate whether the given class and media type can be read by this converter.
boolean canRead(Class<?> clazz, MediaType mediaType);

Spring Framework

3.1 Reference Documentation 599

// Indicate whether the given class and media type can be written by this converter.
boolean canWrite(Class<?> clazz, MediaType mediaType);

// Return the list of MediaType objects supported by this converter.
List<MediaType> getSupportedMediaTypes();

// Read an object of the given type from the given input message, and returns it.
T read(Class<T> clazz, HttpInputMessage inputMessage) throws IOException,

HttpMessageNotReadableException;

// Write an given object to the given output message.
void write(T t, HttpOutputMessage outputMessage) throws IOException,

HttpMessageNotWritableException;

}

Concrete implementations for the main media (mime) types are provided in the framework and are
registered by default with the RestTemplate on the client-side and with
AnnotationMethodHandlerAdapter on the server-side.

The implementations of HttpMessageConverters are described in the following sections. For all
converters a default media type is used but can be overridden by setting the supportedMediaTypes
bean property

StringHttpMessageConverter

An HttpMessageConverter implementation that can read and write Strings from the HTTP request
and response. By default, this converter supports all text media types (text/*), and writes with a
Content-Type of text/plain.

FormHttpMessageConverter

An HttpMessageConverter implementation that can read and write form data from the HTTP
request and response. By default, this converter reads and writes the media type
application/x-www-form-urlencoded. Form data is read from and written into a
MultiValueMap<String, String>.

ByteArrayMessageConverter

An HttpMessageConverter implementation that can read and write byte arrays from the HTTP
request and response. By default, this converter supports all media types (*/*), and writes with a
Content-Type of application/octet-stream. This can be overridden by setting the
supportedMediaTypes property, and overriding getContentType(byte[]).

MarshallingHttpMessageConverter

An HttpMessageConverter implementation that can read and write XML using Spring's
Marshaller and Unmarshaller abstractions from the org.springframework.oxm package.
This converter requires a Marshaller and Unmarshaller before it can be used. These can be

Spring Framework

3.1 Reference Documentation 600

injected via constructor or bean properties. By default this converter supports (text/xml) and
(application/xml).

MappingJacksonHttpMessageConverter

An HttpMessageConverter implementation that can read and write JSON using Jackson's
ObjectMapper. JSON mapping can be customized as needed through the use of Jackson's provided
annotations. When further control is needed, a custom ObjectMapper can be injected through the
ObjectMapper property for cases where custom JSON serializers/deserializers need to be provided for
specific types. By default this converter supports (application/json).

SourceHttpMessageConverter

An HttpMessageConverter implementation that can read and write
javax.xml.transform.Source from the HTTP request and response. Only DOMSource,
SAXSource, and StreamSource are supported. By default, this converter supports (text/xml) and
(application/xml).

BufferedImageHttpMessageConverter

An HttpMessageConverter implementation that can read and write
java.awt.image.BufferedImage from the HTTP request and response. This converter reads and
writes the media type supported by the Java I/O API.

Spring Framework

3.1 Reference Documentation 601

21. Enterprise JavaBeans (EJB) integration

21.1 Introduction

As a lightweight container, Spring is often considered an EJB replacement. We do believe that for many
if not most applications and use cases, Spring as a container, combined with its rich supporting
functionality in the area of transactions, ORM and JDBC access, is a better choice than implementing
equivalent functionality via an EJB container and EJBs.

However, it is important to note that using Spring does not prevent you from using EJBs. In fact, Spring
makes it much easier to access EJBs and implement EJBs and functionality within them. Additionally,
using Spring to access services provided by EJBs allows the implementation of those services to later
transparently be switched between local EJB, remote EJB, or POJO (plain old Java object) variants,
without the client code having to be changed.

In this chapter, we look at how Spring can help you access and implement EJBs. Spring provides
particular value when accessing stateless session beans (SLSBs), so we'll begin by discussing this.

21.2 Accessing EJBs

Concepts

To invoke a method on a local or remote stateless session bean, client code must normally perform a
JNDI lookup to obtain the (local or remote) EJB Home object, then use a 'create' method call on that
object to obtain the actual (local or remote) EJB object. One or more methods are then invoked on the
EJB.

To avoid repeated low-level code, many EJB applications use the Service Locator and Business Delegate
patterns. These are better than spraying JNDI lookups throughout client code, but their usual
implementations have significant disadvantages. For example:

• Typically code using EJBs depends on Service Locator or Business Delegate singletons, making it hard
to test.

• In the case of the Service Locator pattern used without a Business Delegate, application code still ends
up having to invoke the create() method on an EJB home, and deal with the resulting exceptions. Thus
it remains tied to the EJB API and the complexity of the EJB programming model.

• Implementing the Business Delegate pattern typically results in significant code duplication, where we
have to write numerous methods that simply call the same method on the EJB.

The Spring approach is to allow the creation and use of proxy objects, normally configured inside a

Spring Framework

3.1 Reference Documentation 602

Spring container, which act as codeless business delegates. You do not need to write another Service
Locator, another JNDI lookup, or duplicate methods in a hand-coded Business Delegate unless you are
actually adding real value in such code.

Accessing local SLSBs

Assume that we have a web controller that needs to use a local EJB. We’ll follow best practice and use
the EJB Business Methods Interface pattern, so that the EJB’s local interface extends a non EJB-specific
business methods interface. Let’s call this business methods interface MyComponent.

public interface MyComponent {
...

}

One of the main reasons to use the Business Methods Interface pattern is to ensure that synchronization
between method signatures in local interface and bean implementation class is automatic. Another reason
is that it later makes it much easier for us to switch to a POJO (plain old Java object) implementation of
the service if it makes sense to do so. Of course we’ll also need to implement the local home interface and
provide an implementation class that implements SessionBean and the MyComponent business
methods interface. Now the only Java coding we’ll need to do to hook up our web tier controller to the
EJB implementation is to expose a setter method of type MyComponent on the controller. This will save
the reference as an instance variable in the controller:

private MyComponent myComponent;

public void setMyComponent(MyComponent myComponent) {
this.myComponent = myComponent;

}

We can subsequently use this instance variable in any business method in the controller. Now assuming
we are obtaining our controller object out of a Spring container, we can (in the same context) configure a
LocalStatelessSessionProxyFactoryBean instance, which will be the EJB proxy object. The
configuration of the proxy, and setting of the myComponent property of the controller is done with a
configuration entry such as:

<bean id="myComponent"
class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">

<property name="jndiName" value="ejb/myBean"/>
<property name="businessInterface" value="com.mycom.MyComponent"/>

</bean>

<bean id="myController" class="com.mycom.myController">
<property name="myComponent" ref="myComponent"/>

</bean>

There’s a lot of work happening behind the scenes, courtesy of the Spring AOP framework, although you
aren’t forced to work with AOP concepts to enjoy the results. The myComponent bean definition creates
a proxy for the EJB, which implements the business method interface. The EJB local home is cached on
startup, so there’s only a single JNDI lookup. Each time the EJB is invoked, the proxy invokes the

Spring Framework

3.1 Reference Documentation 603

classname method on the local EJB and invokes the corresponding business method on the EJB.

The myController bean definition sets the myComponent property of the controller class to the EJB
proxy.

Alternatively (and preferably in case of many such proxy definitions), consider using the
<jee:local-slsb> configuration element in Spring's "jee" namespace:

<jee:local-slsb id="myComponent" jndi-name="ejb/myBean"
business-interface="com.mycom.MyComponent"/>

<bean id="myController" class="com.mycom.myController">
<property name="myComponent" ref="myComponent"/>

</bean>

This EJB access mechanism delivers huge simplification of application code: the web tier code (or other
EJB client code) has no dependence on the use of EJB. If we want to replace this EJB reference with a
POJO or a mock object or other test stub, we could simply change the myComponent bean definition
without changing a line of Java code. Additionally, we haven’t had to write a single line of JNDI lookup
or other EJB plumbing code as part of our application.

Benchmarks and experience in real applications indicate that the performance overhead of this approach
(which involves reflective invocation of the target EJB) is minimal, and is typically undetectable in
typical use. Remember that we don’t want to make fine-grained calls to EJBs anyway, as there’s a cost
associated with the EJB infrastructure in the application server.

There is one caveat with regards to the JNDI lookup. In a bean container, this class is normally best used
as a singleton (there simply is no reason to make it a prototype). However, if that bean container
pre-instantiates singletons (as do the various XML ApplicationContext variants) you may have a
problem if the bean container is loaded before the EJB container loads the target EJB. That is because the
JNDI lookup will be performed in the init() method of this class and then cached, but the EJB will not
have been bound at the target location yet. The solution is to not pre-instantiate this factory object, but
allow it to be created on first use. In the XML containers, this is controlled via the lazy-init attribute.

Although this will not be of interest to the majority of Spring users, those doing programmatic AOP work
with EJBs may want to look at LocalSlsbInvokerInterceptor.

Accessing remote SLSBs

Accessing remote EJBs is essentially identical to accessing local EJBs, except that the
SimpleRemoteStatelessSessionProxyFactoryBean or <jee:remote-slsb>
configuration element is used. Of course, with or without Spring, remote invocation semantics apply; a
call to a method on an object in another VM in another computer does sometimes have to be treated
differently in terms of usage scenarios and failure handling.

Spring's EJB client support adds one more advantage over the non-Spring approach. Normally it is
problematic for EJB client code to be easily switched back and forth between calling EJBs locally or
remotely. This is because the remote interface methods must declare that they throw

Spring Framework

3.1 Reference Documentation 604

RemoteException, and client code must deal with this, while the local interface methods don't. Client
code written for local EJBs which needs to be moved to remote EJBs typically has to be modified to add
handling for the remote exceptions, and client code written for remote EJBs which needs to be moved to
local EJBs, can either stay the same but do a lot of unnecessary handling of remote exceptions, or needs
to be modified to remove that code. With the Spring remote EJB proxy, you can instead not declare any
thrown RemoteException in your Business Method Interface and implementing EJB code, have a
remote interface which is identical except that it does throw RemoteException, and rely on the proxy
to dynamically treat the two interfaces as if they were the same. That is, client code does not have to deal
with the checked RemoteException class. Any actual RemoteException that is thrown during the
EJB invocation will be re-thrown as the non-checked RemoteAccessException class, which is a
subclass of RuntimeException. The target service can then be switched at will between a local EJB
or remote EJB (or even plain Java object) implementation, without the client code knowing or caring. Of
course, this is optional; there is nothing stopping you from declaring RemoteExceptions in your
business interface.

Accessing EJB 2.x SLSBs versus EJB 3 SLSBs

Accessing EJB 2.x Session Beans and EJB 3 Session Beans via Spring is largely transparent. Spring's
EJB accessors, including the <jee:local-slsb> and <jee:remote-slsb> facilities,
transparently adapt to the actual component at runtime. They handle a home interface if found (EJB 2.x
style), or perform straight component invocations if no home interface is available (EJB 3 style).

Note: For EJB 3 Session Beans, you could effectively use a JndiObjectFactoryBean /
<jee:jndi-lookup> as well, since fully usable component references are exposed for plain JNDI
lookups there. Defining explicit <jee:local-slsb> / <jee:remote-slsb> lookups simply
provides consistent and more explicit EJB access configuration.

21.3 Using Spring's EJB implementation support classes

EJB 2.x base classes

Spring provides convenience classes to help you implement EJBs. These are designed to encourage the
good practice of putting business logic behind EJBs in POJOs, leaving EJBs responsible for transaction
demarcation and (optionally) remoting.

To implement a Stateless or Stateful session bean, or a Message Driven bean, you need only derive your
implementation class from AbstractStatelessSessionBean,
AbstractStatefulSessionBean, and
AbstractMessageDrivenBean/AbstractJmsMessageDrivenBean, respectively.

Consider an example Stateless Session bean which actually delegates the implementation to a plain java
service object. We have the business interface:

public interface MyComponent {

Spring Framework

3.1 Reference Documentation 605

public void myMethod(...);
...

}

We also have the plain Java implementation object:

public class MyComponentImpl implements MyComponent {
public String myMethod(...) {

...
}
...

}

And finally the Stateless Session Bean itself:

public class MyFacadeEJB extends AbstractStatelessSessionBean
implements MyFacadeLocal {

private MyComponent myComp;

/**
* Obtain our POJO service object from the BeanFactory/ApplicationContext
* @see org.springframework.ejb.support.AbstractStatelessSessionBean#onEjbCreate()
*/
protected void onEjbCreate() throws CreateException {

myComp = (MyComponent) getBeanFactory().getBean(
ServicesConstants.CONTEXT_MYCOMP_ID);

}

// for business method, delegate to POJO service impl.
public String myFacadeMethod(...) {

return myComp.myMethod(...);
}
...

}

The Spring EJB support base classes will by default create and load a Spring IoC container as part of their
lifecycle, which is then available to the EJB (for example, as used in the code above to obtain the POJO
service object). The loading is done via a strategy object which is a subclass of
BeanFactoryLocator. The actual implementation of BeanFactoryLocator used by default is
ContextJndiBeanFactoryLocator, which creates the ApplicationContext from a resource
locations specified as a JNDI environment variable (in the case of the EJB classes, at
java:comp/env/ejb/BeanFactoryPath). If there is a need to change the
BeanFactory/ApplicationContext loading strategy, the default BeanFactoryLocator implementation
used may be overridden by calling the setBeanFactoryLocator() method, either in
setSessionContext(), or in the actual constructor of the EJB. Please see the Javadocs for more
details.

As described in the Javadocs, Stateful Session beans expecting to be passivated and reactivated as part of
their lifecycle, and which use a non-serializable container instance (which is the normal case) will have to
manually call unloadBeanFactory() and loadBeanFactory() from ejbPassivate() and
ejbActivate(), respectively, to unload and reload the BeanFactory on passivation and activation,
since it can not be saved by the EJB container.

The default behavior of the ContextJndiBeanFactoryLocator class is to load an

Spring Framework

3.1 Reference Documentation 606

ApplicationContext for use by an EJB, and is adequate for some situations. However, it is
problematic when the ApplicationContext is loading a number of beans, or the initialization of
those beans is time consuming or memory intensive (such as a Hibernate SessionFactory
initialization, for example), since every EJB will have their own copy. In this case, the user may want to
override the default ContextJndiBeanFactoryLocator usage and use another
BeanFactoryLocator variant, such as the ContextSingletonBeanFactoryLocator which
can load and use a shared container to be used by multiple EJBs or other clients. Doing this is relatively
simple, by adding code similar to this to the EJB:

/**
* Override default BeanFactoryLocator implementation
* @see javax.ejb.SessionBean#setSessionContext(javax.ejb.SessionContext)
*/

public void setSessionContext(SessionContext sessionContext) {
super.setSessionContext(sessionContext);
setBeanFactoryLocator(ContextSingletonBeanFactoryLocator.getInstance());
setBeanFactoryLocatorKey(ServicesConstants.PRIMARY_CONTEXT_ID);

}

You would then need to create a bean definition file named beanRefContext.xml. This file defines
all bean factories (usually in the form of application contexts) that may be used in the EJB. In many cases,
this file will only contain a single bean definition such as this (where
businessApplicationContext.xml contains the bean definitions for all business service
POJOs):

<beans>
<bean id="businessBeanFactory" class="org.springframework.context.support.ClassPathXmlApplicationContext">

<constructor-arg value="businessApplicationContext.xml" />
</bean>

</beans>

In the above example, the ServicesConstants.PRIMARY_CONTEXT_ID constant would be
defined as follows:

public static final String ServicesConstants.PRIMARY_CONTEXT_ID = "businessBeanFactory";

Please see the respective Javadocs for the BeanFactoryLocator and
ContextSingletonBeanFactoryLocator classes for more information on their usage.

EJB 3 injection interceptor

For EJB 3 Session Beans and Message-Driven Beans, Spring provides a convenient interceptor that
resolves Spring 2.5's @Autowired annotation in the EJB component class:
org.springframework.ejb.interceptor.SpringBeanAutowiringInterceptor. This
interceptor can be applied through an @Interceptors annotation in the EJB component class, or
through an interceptor-binding XML element in the EJB deployment descriptor.

@Stateless
@Interceptors(SpringBeanAutowiringInterceptor.class)
public class MyFacadeEJB implements MyFacadeLocal {

// automatically injected with a matching Spring bean

Spring Framework

3.1 Reference Documentation 607

@Autowired
private MyComponent myComp;

// for business method, delegate to POJO service impl.
public String myFacadeMethod(...) {

return myComp.myMethod(...);
}
...

}

SpringBeanAutowiringInterceptor by default obtains target beans from a
ContextSingletonBeanFactoryLocator, with the context defined in a bean definition file
named beanRefContext.xml. By default, a single context definition is expected, which is obtained
by type rather than by name. However, if you need to choose between multiple context definitions, a
specific locator key is required. The locator key (i.e. the name of the context definition in
beanRefContext.xml) can be explicitly specified either through overriding the
getBeanFactoryLocatorKey method in a custom SpringBeanAutowiringInterceptor
subclass.

Alternatively, consider overriding SpringBeanAutowiringInterceptor's getBeanFactory
method, e.g. obtaining a shared ApplicationContext from a custom holder class.

Spring Framework

3.1 Reference Documentation 608

22. JMS (Java Message Service)

22.1 Introduction

Spring provides a JMS integration framework that simplifies the use of the JMS API much like Spring's
integration does for the JDBC API.

JMS can be roughly divided into two areas of functionality, namely the production and consumption of
messages. The JmsTemplate class is used for message production and synchronous message reception.
For asynchronous reception similar to Java EE's message-driven bean style, Spring provides a number of
message listener containers that are used to create Message-Driven POJOs (MDPs).

The package org.springframework.jms.core provides the core functionality for using JMS. It
contains JMS template classes that simplify the use of the JMS by handling the creation and release of
resources, much like the JdbcTemplate does for JDBC. The design principle common to Spring
template classes is to provide helper methods to perform common operations and for more sophisticated
usage, delegate the essence of the processing task to user implemented callback interfaces. The JMS
template follows the same design. The classes offer various convenience methods for the sending of
messages, consuming a message synchronously, and exposing the JMS session and message producer to
the user.

The package org.springframework.jms.support provides JMSException translation
functionality. The translation converts the checked JMSException hierarchy to a mirrored hierarchy of
unchecked exceptions. If there are any provider specific subclasses of the checked
javax.jms.JMSException, this exception is wrapped in the unchecked
UncategorizedJmsException.

The package org.springframework.jms.support.converter provides a
MessageConverter abstraction to convert between Java objects and JMS messages.

The package org.springframework.jms.support.destination provides various strategies
for managing JMS destinations, such as providing a service locator for destinations stored in JNDI.

Finally, the package org.springframework.jms.connection provides an implementation of
the ConnectionFactory suitable for use in standalone applications. It also contains an
implementation of Spring's PlatformTransactionManager for JMS (the cunningly named
JmsTransactionManager). This allows for seamless integration of JMS as a transactional resource
into Spring's transaction management mechanisms.

22.2 Using Spring JMS

JmsTemplate

Spring Framework

3.1 Reference Documentation 609

The JmsTemplate class is the central class in the JMS core package. It simplifies the use of JMS since
it handles the creation and release of resources when sending or synchronously receiving messages.

Code that uses the JmsTemplate only needs to implement callback interfaces giving them a clearly
defined high level contract. The MessageCreator callback interface creates a message given a
Session provided by the calling code in JmsTemplate. In order to allow for more complex usage of
the JMS API, the callback SessionCallback provides the user with the JMS session and the callback
ProducerCallback exposes a Session and MessageProducer pair.

The JMS API exposes two types of send methods, one that takes delivery mode, priority, and time-to-live
as Quality of Service (QOS) parameters and one that takes no QOS parameters which uses default values.
Since there are many send methods in JmsTemplate, the setting of the QOS parameters have been
exposed as bean properties to avoid duplication in the number of send methods. Similarly, the timeout
value for synchronous receive calls is set using the property setReceiveTimeout.

Some JMS providers allow the setting of default QOS values administratively through the configuration
of the ConnectionFactory. This has the effect that a call to MessageProducer's send method
send(Destination destination, Message message) will use different QOS default
values than those specified in the JMS specification. In order to provide consistent management of QOS
values, the JmsTemplate must therefore be specifically enabled to use its own QOS values by setting
the boolean property isExplicitQosEnabled to true.

Note

Instances of the JmsTemplate class are thread-safe once configured. This is important
because it means that you can configure a single instance of a JmsTemplate and then
safely inject this shared reference into multiple collaborators. To be clear, the
JmsTemplate is stateful, in that it maintains a reference to a ConnectionFactory, but
this state is not conversational state.

Connections

The JmsTemplate requires a reference to a ConnectionFactory. The ConnectionFactory is
part of the JMS specification and serves as the entry point for working with JMS. It is used by the client
application as a factory to create connections with the JMS provider and encapsulates various
configuration parameters, many of which are vendor specific such as SSL configuration options.

When using JMS inside an EJB, the vendor provides implementations of the JMS interfaces so that they
can participate in declarative transaction management and perform pooling of connections and sessions.
In order to use this implementation, Java EE containers typically require that you declare a JMS
connection factory as a resource-ref inside the EJB or servlet deployment descriptors. To ensure the use
of these features with the JmsTemplate inside an EJB, the client application should ensure that it
references the managed implementation of the ConnectionFactory.

Spring Framework

3.1 Reference Documentation 610

Caching Messaging Resources

The standard API involves creating many intermediate objects. To send a message the following 'API'
walk is performed

ConnectionFactory->Connection->Session->MessageProducer->send

Between the ConnectionFactory and the Send operation there are three intermediate objects that are
created and destroyed. To optimise the resource usage and increase performance two implementations of
IConnectionFactory are provided.

SingleConnectionFactory

Spring provides an implementation of the ConnectionFactory interface,
SingleConnectionFactory, that will return the same Connection on all
createConnection() calls and ignore calls to close(). This is useful for testing and standalone
environments so that the same connection can be used for multiple JmsTemplate calls that may span
any number of transactions. SingleConnectionFactory takes a reference to a standard
ConnectionFactory that would typically come from JNDI.

CachingConnectionFactory

The CachingConnectionFactory extends the functionality of SingleConnectionFactory
and adds the caching of Sessions, MessageProducers, and MessageConsumers. The initial cache size is
set to 1, use the property SessionCacheSize to increase the number of cached sessions. Note that the
number of actual cached sessions will be more than that number as sessions are cached based on their
acknowledgment mode, so there can be up to 4 cached session instances when SessionCacheSize is set to
one, one for each AcknowledgementMode. MessageProducers and MessageConsumers are cached within
their owning session and also take into account the unique properties of the producers and consumers
when caching. MessageProducers are cached based on their destination. MessageConsumers are cached
based on a key composed of the destination, selector, noLocal delivery flag, and the durable subscription
name (if creating durable consumers).

Destination Management

Destinations, like ConnectionFactories, are JMS administered objects that can be stored and retrieved in
JNDI. When configuring a Spring application context you can use the JNDI factory class
JndiObjectFactoryBean / <jee:jndi-lookup> to perform dependency injection on your
object's references to JMS destinations. However, often this strategy is cumbersome if there are a large
number of destinations in the application or if there are advanced destination management features unique
to the JMS provider. Examples of such advanced destination management would be the creation of
dynamic destinations or support for a hierarchical namespace of destinations. The JmsTemplate
delegates the resolution of a destination name to a JMS destination object to an implementation of the
interface DestinationResolver. DynamicDestinationResolver is the default

Spring Framework

3.1 Reference Documentation 611

implementation used by JmsTemplate and accommodates resolving dynamic destinations. A
JndiDestinationResolver is also provided that acts as a service locator for destinations contained
in JNDI and optionally falls back to the behavior contained in DynamicDestinationResolver.

Quite often the destinations used in a JMS application are only known at runtime and therefore cannot be
administratively created when the application is deployed. This is often because there is shared
application logic between interacting system components that create destinations at runtime according to
a well-known naming convention. Even though the creation of dynamic destinations is not part of the
JMS specification, most vendors have provided this functionality. Dynamic destinations are created with
a name defined by the user which differentiates them from temporary destinations and are often not
registered in JNDI. The API used to create dynamic destinations varies from provider to provider since
the properties associated with the destination are vendor specific. However, a simple implementation
choice that is sometimes made by vendors is to disregard the warnings in the JMS specification and to use
the TopicSession method createTopic(String topicName) or the QueueSession
method createQueue(String queueName) to create a new destination with default destination
properties. Depending on the vendor implementation, DynamicDestinationResolver may then
also create a physical destination instead of only resolving one.

The boolean property pubSubDomain is used to configure the JmsTemplate with knowledge of what
JMS domain is being used. By default the value of this property is false, indicating that the point-to-point
domain, Queues, will be used. This property used by JmsTemplate determines the behavior of
dynamic destination resolution via implementations of the DestinationResolver interface.

You can also configure the JmsTemplate with a default destination via the property defaultDestination.
The default destination will be used with send and receive operations that do not refer to a specific
destination.

Message Listener Containers

One of the most common uses of JMS messages in the EJB world is to drive message-driven beans
(MDBs). Spring offers a solution to create message-driven POJOs (MDPs) in a way that does not tie a
user to an EJB container. (See the section called “Asynchronous Reception - Message-Driven POJOs” for
detailed coverage of Spring's MDP support.)

A message listener container is used to receive messages from a JMS message queue and drive the
MessageListener that is injected into it. The listener container is responsible for all threading of message
reception and dispatches into the listener for processing. A message listener container is the intermediary
between an MDP and a messaging provider, and takes care of registering to receive messages,
participating in transactions, resource acquisition and release, exception conversion and suchlike. This
allows you as an application developer to write the (possibly complex) business logic associated with
receiving a message (and possibly responding to it), and delegates boilerplate JMS infrastructure concerns
to the framework.

There are two standard JMS message listener containers packaged with Spring, each with its specialised
feature set.

Spring Framework

3.1 Reference Documentation 612

SimpleMessageListenerContainer

This message listener container is the simpler of the two standard flavors. It creates a fixed number of
JMS sessions and consumers at startup, registers the listener using the standard JMS
MessageConsumer.setMessageListener() method, and leaves it up the JMS provider to
perform listener callbacks. This variant does not allow for dynamic adaption to runtime demands or for
participation in externally managed transactions. Compatibility-wise, it stays very close to the spirit of the
standalone JMS specification - but is generally not compatible with Java EE's JMS restrictions.

DefaultMessageListenerContainer

This message listener container is the one used in most cases. In contrast to
SimpleMessageListenerContainer, this container variant does allow for dynamic adaption to
runtime demands and is able to participate in externally managed transactions. Each received message is
registered with an XA transaction when configured with a JtaTransactionManager; so processing
may take advantage of XA transaction semantics. This listener container strikes a good balance between
low requirements on the JMS provider, advanced functionality such as transaction participation, and
compatibility with Java EE environments.

Transaction management

Spring provides a JmsTransactionManager that manages transactions for a single JMS
ConnectionFactory. This allows JMS applications to leverage the managed transaction features of
Spring as described in Chapter 11, Transaction Management. The JmsTransactionManager
performs local resource transactions, binding a JMS Connection/Session pair from the specified
ConnectionFactory to the thread. JmsTemplate automatically detects such transactional
resources and operates on them accordingly.

In a Java EE environment, the ConnectionFactory will pool Connections and Sessions, so those
resources are efficiently reused across transactions. In a standalone environment, using Spring's
SingleConnectionFactory will result in a shared JMS Connection, with each transaction
having its own independent Session. Alternatively, consider the use of a provider-specific pooling
adapter such as ActiveMQ's PooledConnectionFactory class.

JmsTemplate can also be used with the JtaTransactionManager and an XA-capable JMS
ConnectionFactory for performing distributed transactions. Note that this requires the use of a JTA
transaction manager as well as a properly XA-configured ConnectionFactory! (Check your Java EE
server's / JMS provider's documentation.)

Reusing code across a managed and unmanaged transactional environment can be confusing when using
the JMS API to create a Session from a Connection. This is because the JMS API has only one
factory method to create a Session and it requires values for the transaction and acknowledgement
modes. In a managed environment, setting these values is the responsibility of the environment's
transactional infrastructure, so these values are ignored by the vendor's wrapper to the JMS Connection.

Spring Framework

3.1 Reference Documentation 613

When using the JmsTemplate in an unmanaged environment you can specify these values through the
use of the properties sessionTransacted and sessionAcknowledgeMode. When using a
PlatformTransactionManager with JmsTemplate, the template will always be given a
transactional JMS Session.

22.3 Sending a Message

The JmsTemplate contains many convenience methods to send a message. There are send methods
that specify the destination using a javax.jms.Destination object and those that specify the
destination using a string for use in a JNDI lookup. The send method that takes no destination argument
uses the default destination. Here is an example that sends a message to a queue using the 1.0.2
implementation.

import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Queue;
import javax.jms.Session;

import org.springframework.jms.core.MessageCreator;
import org.springframework.jms.core.JmsTemplate;

public class JmsQueueSender {

private JmsTemplate jmsTemplate;
private Queue queue;

public void setConnectionFactory(ConnectionFactory cf) {
this.jmsTemplate = new JmsTemplate(cf);

}

public void setQueue(Queue queue) {
this.queue = queue;

}

public void simpleSend() {
this.jmsTemplate.send(this.queue, new MessageCreator() {

public Message createMessage(Session session) throws JMSException {
return session.createTextMessage("hello queue world");

}
});

}
}

This example uses the MessageCreator callback to create a text message from the supplied
Session object. The JmsTemplate is constructed by passing a reference to a
ConnectionFactory. As an alternative, a zero argument constructor and connectionFactory is
provided and can be used for constructing the instance in JavaBean style (using a BeanFactory or plain
Java code). Alternatively, consider deriving from Spring's JmsGatewaySupport convenience base
class, which provides pre-built bean properties for JMS configuration.

The method send(String destinationName, MessageCreator creator) lets you send a
message using the string name of the destination. If these names are registered in JNDI, you should set
the destinationResolver property of the template to an instance of JndiDestinationResolver.

Spring Framework

3.1 Reference Documentation 614

If you created the JmsTemplate and specified a default destination, the send(MessageCreator
c) sends a message to that destination.

Using Message Converters

In order to facilitate the sending of domain model objects, the JmsTemplate has various send methods
that take a Java object as an argument for a message's data content. The overloaded methods
convertAndSend() and receiveAndConvert() in JmsTemplate delegate the conversion
process to an instance of the MessageConverter interface. This interface defines a simple contract to
convert between Java objects and JMS messages. The default implementation
SimpleMessageConverter supports conversion between String and TextMessage, byte[]
and BytesMesssage, and java.util.Map and MapMessage. By using the converter, you and
your application code can focus on the business object that is being sent or received via JMS and not be
concerned with the details of how it is represented as a JMS message.

The sandbox currently includes a MapMessageConverter which uses reflection to convert between a
JavaBean and a MapMessage. Other popular implementation choices you might implement yourself are
Converters that use an existing XML marshalling package, such as JAXB, Castor, XMLBeans, or
XStream, to create a TextMessage representing the object.

To accommodate the setting of a message's properties, headers, and body that can not be generically
encapsulated inside a converter class, the MessagePostProcessor interface gives you access to the
message after it has been converted, but before it is sent. The example below demonstrates how to modify
a message header and a property after a java.util.Map is converted to a message.

public void sendWithConversion() {
Map map = new HashMap();
map.put("Name", "Mark");
map.put("Age", new Integer(47));
jmsTemplate.convertAndSend("testQueue", map, new MessagePostProcessor() {

public Message postProcessMessage(Message message) throws JMSException {
message.setIntProperty("AccountID", 1234);
message.setJMSCorrelationID("123-00001");
return message;

}
});

}

This results in a message of the form:

MapMessage={
Header={

... standard headers ...
CorrelationID={123-00001}

}
Properties={

AccountID={Integer:1234}
}
Fields={

Name={String:Mark}
Age={Integer:47}

}
}

Spring Framework

3.1 Reference Documentation 615

SessionCallback and ProducerCallback

While the send operations cover many common usage scenarios, there are cases when you want to
perform multiple operations on a JMS Session or MessageProducer. The SessionCallback
and ProducerCallback expose the JMS Session and Session / MessageProducer pair
respectively. The execute() methods on JmsTemplate execute these callback methods.

22.4 Receiving a message

Synchronous Reception

While JMS is typically associated with asynchronous processing, it is possible to consume messages
synchronously. The overloaded receive(..) methods provide this functionality. During a
synchronous receive, the calling thread blocks until a message becomes available. This can be a
dangerous operation since the calling thread can potentially be blocked indefinitely. The property
receiveTimeout specifies how long the receiver should wait before giving up waiting for a message.

Asynchronous Reception - Message-Driven POJOs

In a fashion similar to a Message-Driven Bean (MDB) in the EJB world, the Message-Driven POJO
(MDP) acts as a receiver for JMS messages. The one restriction (but see also below for the discussion of
the MessageListenerAdapter class) on an MDP is that it must implement the
javax.jms.MessageListener interface. Please also be aware that in the case where your POJO
will be receiving messages on multiple threads, it is important to ensure that your implementation is
thread-safe.

Below is a simple implementation of an MDP:

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

public class ExampleListener implements MessageListener {

public void onMessage(Message message) {
if (message instanceof TextMessage) {

try {
System.out.println(((TextMessage) message).getText());

}
catch (JMSException ex) {

throw new RuntimeException(ex);
}

}
else {

throw new IllegalArgumentException("Message must be of type TextMessage");
}

}
}

Spring Framework

3.1 Reference Documentation 616

Once you've implemented your MessageListener, it's time to create a message listener container.

Find below an example of how to define and configure one of the message listener containers that ships
with Spring (in this case the DefaultMessageListenerContainer).

<!-- this is the Message Driven POJO (MDP) -->
<bean id="messageListener" class="jmsexample.ExampleListener" />

<!-- and this is the message listener container -->
<bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">

<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="destination"/>
<property name="messageListener" ref="messageListener" />

</bean>

Please refer to the Spring Javadoc of the various message listener containers for a full description of the
features supported by each implementation.

The SessionAwareMessageListener interface

The SessionAwareMessageListener interface is a Spring-specific interface that provides a
similar contract to the JMS MessageListener interface, but also provides the message handling
method with access to the JMS Session from which the Message was received.

package org.springframework.jms.listener;

public interface SessionAwareMessageListener {

void onMessage(Message message, Session session) throws JMSException;
}

You can choose to have your MDPs implement this interface (in preference to the standard JMS
MessageListener interface) if you want your MDPs to be able to respond to any received messages
(using the Session supplied in the onMessage(Message, Session) method). All of the
message listener container implementations that ship with Spring have support for MDPs that implement
either the MessageListener or SessionAwareMessageListener interface. Classes that
implement the SessionAwareMessageListener come with the caveat that they are then tied to
Spring through the interface. The choice of whether or not to use it is left entirely up to you as an
application developer or architect.

Please note that the 'onMessage(..)' method of the SessionAwareMessageListener
interface throws JMSException. In contrast to the standard JMS MessageListener interface,
when using the SessionAwareMessageListener interface, it is the responsibility of the client
code to handle any exceptions thrown.

The MessageListenerAdapter

The MessageListenerAdapter class is the final component in Spring's asynchronous messaging
support: in a nutshell, it allows you to expose almost any class as a MDP (there are of course some

Spring Framework

3.1 Reference Documentation 617

constraints).

Consider the following interface definition. Notice that although the interface extends neither the
MessageListener nor SessionAwareMessageListener interfaces, it can still be used as a
MDP via the use of the MessageListenerAdapter class. Notice also how the various message
handling methods are strongly typed according to the contents of the various Message types that they
can receive and handle.

public interface MessageDelegate {

void handleMessage(String message);

void handleMessage(Map message);

void handleMessage(byte[] message);

void handleMessage(Serializable message);
}

public class DefaultMessageDelegate implements MessageDelegate {
// implementation elided for clarity...

}

In particular, note how the above implementation of the MessageDelegate interface (the above
DefaultMessageDelegate class) has no JMS dependencies at all. It truly is a POJO that we will
make into an MDP via the following configuration.

<!-- this is the Message Driven POJO (MDP) -->
<bean id="messageListener" class="org.springframework.jms.listener.adapter.MessageListenerAdapter">

<constructor-arg>
<bean class="jmsexample.DefaultMessageDelegate"/>

</constructor-arg>
</bean>

<!-- and this is the message listener container... -->
<bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">

<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="destination"/>
<property name="messageListener" ref="messageListener" />

</bean>

Below is an example of another MDP that can only handle the receiving of JMS TextMessage
messages. Notice how the message handling method is actually called 'receive' (the name of the
message handling method in a MessageListenerAdapter defaults to 'handleMessage'), but it
is configurable (as you will see below). Notice also how the 'receive(..)' method is strongly typed
to receive and respond only to JMS TextMessage messages.

public interface TextMessageDelegate {

void receive(TextMessage message);
}

public class DefaultTextMessageDelegate implements TextMessageDelegate {
// implementation elided for clarity...

}

Spring Framework

3.1 Reference Documentation 618

The configuration of the attendant MessageListenerAdapter would look like this:

<bean id="messageListener" class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
<constructor-arg>

<bean class="jmsexample.DefaultTextMessageDelegate"/>
</constructor-arg>
<property name="defaultListenerMethod" value="receive"/>
<!-- we don't want automatic message context extraction -->
<property name="messageConverter">

<null/>
</property>

</bean>

Please note that if the above 'messageListener' receives a JMS Message of a type other than
TextMessage, an IllegalStateException will be thrown (and subsequently swallowed).
Another of the capabilities of the MessageListenerAdapter class is the ability to automatically
send back a response Message if a handler method returns a non-void value. Consider the interface and
class:

public interface ResponsiveTextMessageDelegate {

// notice the return type...
String receive(TextMessage message);

}

public class DefaultResponsiveTextMessageDelegate implements ResponsiveTextMessageDelegate {
// implementation elided for clarity...

}

If the above DefaultResponsiveTextMessageDelegate is used in conjunction with a
MessageListenerAdapter then any non-null value that is returned from the execution of the
'receive(..)' method will (in the default configuration) be converted into a TextMessage. The
resulting TextMessage will then be sent to the Destination (if one exists) defined in the JMS
Reply-To property of the original Message, or the default Destination set on the
MessageListenerAdapter (if one has been configured); if no Destination is found then an
InvalidDestinationException will be thrown (and please note that this exception will not be
swallowed and will propagate up the call stack).

Processing messages within transactions

Invoking a message listener within a transaction only requires reconfiguration of the listener container.

Local resource transactions can simply be activated through the sessionTransacted flag on the
listener container definition. Each message listener invocation will then operate within an active JMS
transaction, with message reception rolled back in case of listener execution failure. Sending a response
message (via SessionAwareMessageListener) will be part of the same local transaction, but any
other resource operations (such as database access) will operate independently. This usually requires
duplicate message detection in the listener implementation, covering the case where database processing
has committed but message processing failed to commit.

<bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">

Spring Framework

3.1 Reference Documentation 619

<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="destination"/>
<property name="messageListener" ref="messageListener"/>
<property name="sessionTransacted" value="true"/>

</bean>

For participating in an externally managed transaction, you will need to configure a transaction manager
and use a listener container which supports externally managed transactions: typically
DefaultMessageListenerContainer.

To configure a message listener container for XA transaction participation, you'll want to configure a
JtaTransactionManager (which, by default, delegates to the Java EE server's transaction
subsystem). Note that the underlying JMS ConnectionFactory needs to be XA-capable and properly
registered with your JTA transaction coordinator! (Check your Java EE server's configuration of JNDI
resources.) This allows message reception as well as e.g. database access to be part of the same
transaction (with unified commit semantics, at the expense of XA transaction log overhead).

<bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager"/>

Then you just need to add it to our earlier container configuration. The container will take care of the rest.

<bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="destination" ref="destination"/>
<property name="messageListener" ref="messageListener"/>
<property name="transactionManager" ref="transactionManager"/>

</bean>

22.5 Support for JCA Message Endpoints

Beginning with version 2.5, Spring also provides support for a JCA-based MessageListener
container. The JmsMessageEndpointManager will attempt to automatically determine the
ActivationSpec class name from the provider's ResourceAdapter class name. Therefore, it is
typically possible to just provide Spring's generic JmsActivationSpecConfig as shown in the
following example.

<bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
<property name="resourceAdapter" ref="resourceAdapter"/>
<property name="activationSpecConfig">

<bean class="org.springframework.jms.listener.endpoint.JmsActivationSpecConfig">
<property name="destinationName" value="myQueue"/>

</bean>
</property>
<property name="messageListener" ref="myMessageListener"/>

</bean>

Alternatively, you may set up a JmsMessageEndpointManager with a given ActivationSpec
object. The ActivationSpec object may also come from a JNDI lookup (using
<jee:jndi-lookup>).

<bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
<property name="resourceAdapter" ref="resourceAdapter"/>

Spring Framework

3.1 Reference Documentation 620

<property name="activationSpec">
<bean class="org.apache.activemq.ra.ActiveMQActivationSpec">

<property name="destination" value="myQueue"/>
<property name="destinationType" value="javax.jms.Queue"/>

</bean>
</property>
<property name="messageListener" ref="myMessageListener"/>

</bean>

Using Spring's ResourceAdapterFactoryBean, the target ResourceAdapter may be
configured locally as depicted in the following example.

<bean id="resourceAdapter" class="org.springframework.jca.support.ResourceAdapterFactoryBean">
<property name="resourceAdapter">

<bean class="org.apache.activemq.ra.ActiveMQResourceAdapter">
<property name="serverUrl" value="tcp://localhost:61616"/>

</bean>
</property>
<property name="workManager">

<bean class="org.springframework.jca.work.SimpleTaskWorkManager"/>
</property>

</bean>

The specified WorkManager may also point to an environment-specific thread pool - typically through
SimpleTaskWorkManager's "asyncTaskExecutor" property. Consider defining a shared thread pool
for all your ResourceAdapter instances if you happen to use multiple adapters.

In some environments (e.g. WebLogic 9 or above), the entire ResourceAdapter object may be
obtained from JNDI instead (using <jee:jndi-lookup>). The Spring-based message listeners can
then interact with the server-hosted ResourceAdapter, also using the server's built-in
WorkManager.

Please consult the JavaDoc for JmsMessageEndpointManager, JmsActivationSpecConfig,
and ResourceAdapterFactoryBean for more details.

Spring also provides a generic JCA message endpoint manager which is not tied to JMS:
org.springframework.jca.endpoint.GenericMessageEndpointManager. This
component allows for using any message listener type (e.g. a CCI MessageListener) and any
provider-specific ActivationSpec object. Check out your JCA provider's documentation to find out about
the actual capabilities of your connector, and consult GenericMessageEndpointManager's
JavaDoc for the Spring-specific configuration details.

Note

JCA-based message endpoint management is very analogous to EJB 2.1 Message-Driven
Beans; it uses the same underlying resource provider contract. Like with EJB 2.1 MDBs, any
message listener interface supported by your JCA provider can be used in the Spring context
as well. Spring nevertheless provides explicit 'convenience' support for JMS, simply because
JMS is the most common endpoint API used with the JCA endpoint management contract.

Spring Framework

3.1 Reference Documentation 621

22.6 JMS Namespace Support

Spring 2.5 introduces an XML namespace for simplifying JMS configuration. To use the JMS namespace
elements you will need to reference the JMS schema:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/jms http://www.springframework.org/schema/jms/spring-jms-3.0.xsd">

<!-- <bean/> definitions here -->

</beans>

The namespace consists of two top-level elements: <listener-container/> and
<jca-listener-container/> both of which may contain one or more <listener/> child
elements. Here is an example of a basic configuration for two listeners.

<jms:listener-container>

<jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

<jms:listener destination="queue.confirmations" ref="confirmationLogger" method="log"/>

</jms:listener-container>

The example above is equivalent to creating two distinct listener container bean definitions and two
distinct MessageListenerAdapter bean definitions as demonstrated in the section called “The
MessageListenerAdapter”. In addition to the attributes shown above, the listener element may
contain several optional ones. The following table describes all available attributes:

Table 22.1. Attributes of the JMS <listener> element

Attribute Description

id
A bean name for the hosting listener container. If not specified, a
bean name will be automatically generated.

destination (required)
The destination name for this listener, resolved through the
DestinationResolver strategy.

ref (required)
The bean name of the handler object.

method
The name of the handler method to invoke. If the ref points to a
MessageListener or Spring
SessionAwareMessageListener, this attribute may be

Spring Framework

3.1 Reference Documentation 622

Attribute Description

omitted.

response-destination
The name of the default response destination to send response
messages to. This will be applied in case of a request message that
does not carry a "JMSReplyTo" field. The type of this destination
will be determined by the listener-container's "destination-type"
attribute. Note: This only applies to a listener method with a return
value, for which each result object will be converted into a response
message.

subscription
The name of the durable subscription, if any.

selector
An optional message selector for this listener.

The <listener-container/> element also accepts several optional attributes. This allows for
customization of the various strategies (for example, taskExecutor and destinationResolver) as well as
basic JMS settings and resource references. Using these attributes, it is possible to define
highly-customized listener containers while still benefiting from the convenience of the namespace.

<jms:listener-container connection-factory="myConnectionFactory"
task-executor="myTaskExecutor"
destination-resolver="myDestinationResolver"
transaction-manager="myTransactionManager"
concurrency="10">

<jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

<jms:listener destination="queue.confirmations" ref="confirmationLogger" method="log"/>

</jms:listener-container>

The following table describes all available attributes. Consult the class-level Javadoc of the
AbstractMessageListenerContainer and its concrete subclasses for more details on the
individual properties. The Javadoc also provides a discussion of transaction choices and message
redelivery scenarios.

Table 22.2. Attributes of the JMS <listener-container> element

Attribute Description

container-type
The type of this listener container. Available options are: default,
simple, default102, or simple102 (the default value is
'default').

connection-factory
A reference to the JMS ConnectionFactory bean (the default

Spring Framework

3.1 Reference Documentation 623

Attribute Description

bean name is 'connectionFactory').

task-executor
A reference to the Spring TaskExecutor for the JMS listener
invokers.

destination-resolver
A reference to the DestinationResolver strategy for
resolving JMS Destinations.

message-converter
A reference to the MessageConverter strategy for converting
JMS Messages to listener method arguments. Default is a
SimpleMessageConverter.

destination-type
The JMS destination type for this listener: queue, topic or
durableTopic. The default is queue.

client-id
The JMS client id for this listener container. Needs to be specified
when using durable subscriptions.

cache
The cache level for JMS resources: none, connection,
session, consumer or auto. By default (auto), the cache
level will effectively be "consumer", unless an external transaction
manager has been specified - in which case the effective default will
be none (assuming Java EE-style transaction management where
the given ConnectionFactory is an XA-aware pool).

acknowledge
The native JMS acknowledge mode: auto, client, dups-ok or
transacted. A value of transacted activates a locally
transacted Session. As an alternative, specify the
transaction-manager attribute described below. Default is
auto.

transaction-manager
A reference to an external PlatformTransactionManager
(typically an XA-based transaction coordinator, e.g. Spring's
JtaTransactionManager). If not specified, native
acknowledging will be used (see "acknowledge" attribute).

concurrency
The number of concurrent sessions/consumers to start for each
listener. Can either be a simple number indicating the maximum
number (e.g. "5") or a range indicating the lower as well as the upper
limit (e.g. "3-5"). Note that a specified minimum is just a hint and

Spring Framework

3.1 Reference Documentation 624

Attribute Description

might be ignored at runtime. Default is 1; keep concurrency limited
to 1 in case of a topic listener or if queue ordering is important;
consider raising it for general queues.

prefetch
The maximum number of messages to load into a single session.
Note that raising this number might lead to starvation of concurrent
consumers!

Configuring a JCA-based listener container with the "jms" schema support is very similar.

<jms:jca-listener-container resource-adapter="myResourceAdapter"
destination-resolver="myDestinationResolver"
transaction-manager="myTransactionManager"
concurrency="10">

<jms:listener destination="queue.orders" ref="myMessageListener"/>

</jms:jca-listener-container>

The available configuration options for the JCA variant are described in the following table:

Table 22.3. Attributes of the JMS <jca-listener-container/> element

Attribute Description

resource-adapter
A reference to the JCA ResourceAdapter bean (the default bean
name is 'resourceAdapter').

activation-spec-factory
A reference to the JmsActivationSpecFactory. The default
is to autodetect the JMS provider and its ActivationSpec class
(see DefaultJmsActivationSpecFactory)

destination-resolver
A reference to the DestinationResolver strategy for
resolving JMS Destinations.

message-converter
A reference to the MessageConverter strategy for converting
JMS Messages to listener method arguments. Default is a
SimpleMessageConverter.

destination-type
The JMS destination type for this listener: queue, topic or
durableTopic. The default is queue.

client-id
The JMS client id for this listener container. Needs to be specified

Spring Framework

3.1 Reference Documentation 625

Attribute Description

when using durable subscriptions.

acknowledge
The native JMS acknowledge mode: auto, client, dups-ok or
transacted. A value of transacted activates a locally
transacted Session. As an alternative, specify the
transaction-manager attribute described below. Default is
auto.

transaction-manager
A reference to a Spring JtaTransactionManager or a
javax.transaction.TransactionManager for kicking
off an XA transaction for each incoming message. If not specified,
native acknowledging will be used (see the "acknowledge"
attribute).

concurrency
The number of concurrent sessions/consumers to start for each
listener. Can either be a simple number indicating the maximum
number (e.g. "5") or a range indicating the lower as well as the upper
limit (e.g. "3-5"). Note that a specified minimum is just a hint and
will typically be ignored at runtime when using a JCA listener
container. Default is 1.

prefetch
The maximum number of messages to load into a single session.
Note that raising this number might lead to starvation of concurrent
consumers!

Spring Framework

3.1 Reference Documentation 626

23. JMX

23.1 Introduction

The JMX support in Spring provides you with the features to easily and transparently integrate your
Spring application into a JMX infrastructure.

JMX?

This chapter is not an introduction to JMX... it doesn't try to explain the motivations of why one
might want to use JMX (or indeed what the letters JMX actually stand for). If you are new to JMX,
check out Section 23.8, “Further Resources” at the end of this chapter.

Specifically, Spring's JMX support provides four core features:

• The automatic registration of any Spring bean as a JMX MBean

• A flexible mechanism for controlling the management interface of your beans

• The declarative exposure of MBeans over remote, JSR-160 connectors

• The simple proxying of both local and remote MBean resources

These features are designed to work without coupling your application components to either Spring or
JMX interfaces and classes. Indeed, for the most part your application classes need not be aware of either
Spring or JMX in order to take advantage of the Spring JMX features.

23.2 Exporting your beans to JMX

The core class in Spring's JMX framework is the MBeanExporter. This class is responsible for taking
your Spring beans and registering them with a JMX MBeanServer. For example, consider the
following class:

package org.springframework.jmx;

public class JmxTestBean implements IJmxTestBean {

private String name;
private int age;
private boolean isSuperman;

public int getAge() {
return age;

}

public void setAge(int age) {

Spring Framework

3.1 Reference Documentation 627

this.age = age;
}

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}

public int add(int x, int y) {
return x + y;

}

public void dontExposeMe() {
throw new RuntimeException();

}
}

To expose the properties and methods of this bean as attributes and operations of an MBean you simply
configure an instance of the MBeanExporter class in your configuration file and pass in the bean as
shown below:

<beans>

<!-- this bean must not be lazily initialized if the exporting is to happen -->
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter" lazy-init="false">

<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>

</map>
</property>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

The pertinent bean definition from the above configuration snippet is the exporter bean. The beans
property tells the MBeanExporter exactly which of your beans must be exported to the JMX
MBeanServer. In the default configuration, the key of each entry in the beans Map is used as the
ObjectName for the bean referenced by the corresponding entry value. This behavior can be changed as
described in Section 23.4, “Controlling the ObjectNames for your beans”.

With this configuration the testBean bean is exposed as an MBean under the ObjectName
bean:name=testBean1. By default, all public properties of the bean are exposed as attributes and all
public methods (bar those inherited from the Object class) are exposed as operations.

Creating an MBeanServer

The above configuration assumes that the application is running in an environment that has one (and only
one) MBeanServer already running. In this case, Spring will attempt to locate the running

Spring Framework

3.1 Reference Documentation 628

MBeanServer and register your beans with that server (if any). This behavior is useful when your
application is running inside a container such as Tomcat or IBM WebSphere that has its own
MBeanServer.

However, this approach is of no use in a standalone environment, or when running inside a container that
does not provide an MBeanServer. To address this you can create an MBeanServer instance
declaratively by adding an instance of the
org.springframework.jmx.support.MBeanServerFactoryBean class to your
configuration. You can also ensure that a specific MBeanServer is used by setting the value of the
MBeanExporter's server property to the MBeanServer value returned by an
MBeanServerFactoryBean; for example:

<beans>

<bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean"/>

<!--
this bean needs to be eagerly pre-instantiated in order for the exporting to occur;
this means that it must not be marked as lazily initialized

-->
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">

<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>

</map>
</property>
<property name="server" ref="mbeanServer"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

Here an instance of MBeanServer is created by the MBeanServerFactoryBean and is supplied to
the MBeanExporter via the server property. When you supply your own MBeanServer instance, the
MBeanExporter will not attempt to locate a running MBeanServer and will use the supplied
MBeanServer instance. For this to work correctly, you must (of course) have a JMX implementation on
your classpath.

Reusing an existing MBeanServer

If no server is specified, the MBeanExporter tries to automatically detect a running MBeanServer.
This works in most environment where only one MBeanServer instance is used, however when
multiple instances exist, the exporter might pick the wrong server. In such cases, one should use the
MBeanServer agentId to indicate which instance to be used:

<beans>
<bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean">
<!-- indicate to first look for a server -->
<property name="locateExistingServerIfPossible" value="true"/>
<!-- search for the MBeanServer instance with the given agentId -->
<property name="agentId" value="<MBeanServer instance agentId>"/>

Spring Framework

3.1 Reference Documentation 629

</bean>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="server" ref="mbeanServer"/>

...
</bean>

</beans>

For platforms/cases where the existing MBeanServer has a dynamic (or unknown) agentId which is
retrieved through lookup methods, one should use factory-method:

<beans>
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="server">
<!-- Custom MBeanServerLocator -->
<bean class="platform.package.MBeanServerLocator" factory-method="locateMBeanServer"/>

</property>

<!-- other beans here -->

</bean>
</beans>

Lazy-initialized MBeans

If you configure a bean with the MBeanExporter that is also configured for lazy initialization, then the
MBeanExporter will not break this contract and will avoid instantiating the bean. Instead, it will
register a proxy with the MBeanServer and will defer obtaining the bean from the container until the
first invocation on the proxy occurs.

Automatic registration of MBeans

Any beans that are exported through the MBeanExporter and are already valid MBeans are registered
as-is with the MBeanServer without further intervention from Spring. MBeans can be automatically
detected by the MBeanExporter by setting the autodetect property to true:

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="autodetect" value="true"/>

</bean>

<bean name="spring:mbean=true" class="org.springframework.jmx.export.TestDynamicMBean"/>

Here, the bean called spring:mbean=true is already a valid JMX MBean and will be automatically
registered by Spring. By default, beans that are autodetected for JMX registration have their bean name
used as the ObjectName. This behavior can be overridden as detailed in Section 23.4, “Controlling the
ObjectNames for your beans”.

Controlling the registration behavior

Consider the scenario where a Spring MBeanExporter attempts to register an MBean with an
MBeanServer using the ObjectName 'bean:name=testBean1'. If an MBean instance has

Spring Framework

3.1 Reference Documentation 630

already been registered under that same ObjectName, the default behavior is to fail (and throw an
InstanceAlreadyExistsException).

It is possible to control the behavior of exactly what happens when an MBean is registered with an
MBeanServer. Spring's JMX support allows for three different registration behaviors to control the
registration behavior when the registration process finds that an MBean has already been registered under
the same ObjectName; these registration behaviors are summarized on the following table:

Table 23.1. Registration Behaviors

Registration behavior Explanation

REGISTRATION_FAIL_ON_EXISTING This is the default registration behavior. If an
MBean instance has already been registered under
the same ObjectName, the MBean that is being
registered will not be registered and an
InstanceAlreadyExistsException will
be thrown. The existing MBean is unaffected.

REGISTRATION_IGNORE_EXISTING If an MBean instance has already been registered
under the same ObjectName, the MBean that is
being registered will not be registered. The
existing MBean is unaffected, and no
Exception will be thrown.

This is useful in settings where multiple
applications want to share a common MBean in a
shared MBeanServer.

REGISTRATION_REPLACE_EXISTING If an MBean instance has already been registered
under the same ObjectName, the existing
MBean that was previously registered will be
unregistered and the new MBean will be registered
in its place (the new MBean effectively replaces
the previous instance).

The above values are defined as constants on the MBeanRegistrationSupport class (the
MBeanExporter class derives from this superclass). If you want to change the default registration
behavior, you simply need to set the value of the registrationBehaviorName property on your
MBeanExporter definition to one of those values.

The following example illustrates how to effect a change from the default registration behavior to the
REGISTRATION_REPLACE_EXISTING behavior:

<beans>

Spring Framework

3.1 Reference Documentation 631

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>

</map>
</property>
<property name="registrationBehaviorName" value="REGISTRATION_REPLACE_EXISTING"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

23.3 Controlling the management interface of your beans

In the previous example, you had little control over the management interface of your bean; all of the
public properties and methods of each exported bean was exposed as JMX attributes and operations
respectively. To exercise finer-grained control over exactly which properties and methods of your
exported beans are actually exposed as JMX attributes and operations, Spring JMX provides a
comprehensive and extensible mechanism for controlling the management interfaces of your beans.

The MBeanInfoAssembler Interface

Behind the scenes, the MBeanExporter delegates to an implementation of the
org.springframework.jmx.export.assembler.MBeanInfoAssembler interface which
is responsible for defining the management interface of each bean that is being exposed. The default
implementation,
org.springframework.jmx.export.assembler.SimpleReflectiveMBeanInfoAssembler,
simply defines a management interface that exposes all public properties and methods (as you saw in the
previous examples). Spring provides two additional implementations of the MBeanInfoAssembler
interface that allow you to control the generated management interface using either source-level metadata
or any arbitrary interface.

Using Source-Level Metadata (JDK 5.0 annotations)

Using the MetadataMBeanInfoAssembler you can define the management interfaces for your
beans using source level metadata. The reading of metadata is encapsulated by the
org.springframework.jmx.export.metadata.JmxAttributeSource interface. Spring
JMX provides a default implementation which uses JDK 5.0 annotations, namely
org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource.
The MetadataMBeanInfoAssembler must be configured with an implementation instance of the
JmxAttributeSource interface for it to function correctly (there is no default).

To mark a bean for export to JMX, you should annotate the bean class with the ManagedResource

Spring Framework

3.1 Reference Documentation 632

annotation. Each method you wish to expose as an operation must be marked with the
ManagedOperation annotation and each property you wish to expose must be marked with the
ManagedAttribute annotation. When marking properties you can omit either the annotation of the
getter or the setter to create a write-only or read-only attribute respectively.

The example below shows the annotated version of the JmxTestBean class that you saw earlier:

package org.springframework.jmx;

import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedAttribute;

@ManagedResource(objectName="bean:name=testBean4", description="My Managed Bean", log=true,
logFile="jmx.log", currencyTimeLimit=15, persistPolicy="OnUpdate", persistPeriod=200,
persistLocation="foo", persistName="bar")

public class AnnotationTestBean implements IJmxTestBean {

private String name;
private int age;

@ManagedAttribute(description="The Age Attribute", currencyTimeLimit=15)
public int getAge() {

return age;
}

public void setAge(int age) {
this.age = age;

}

@ManagedAttribute(description="The Name Attribute",
currencyTimeLimit=20,
defaultValue="bar",
persistPolicy="OnUpdate")

public void setName(String name) {
this.name = name;

}

@ManagedAttribute(defaultValue="foo", persistPeriod=300)
public String getName() {

return name;
}

@ManagedOperation(description="Add two numbers")
@ManagedOperationParameters({

@ManagedOperationParameter(name = "x", description = "The first number"),
@ManagedOperationParameter(name = "y", description = "The second number")})

public int add(int x, int y) {
return x + y;

}

public void dontExposeMe() {
throw new RuntimeException();

}
}

Here you can see that the JmxTestBean class is marked with the ManagedResource annotation and
that this ManagedResource annotation is configured with a set of properties. These properties can be
used to configure various aspects of the MBean that is generated by the MBeanExporter, and are
explained in greater detail later in section entitled the section called “Source-Level Metadata Types”.

You will also notice that both the age and name properties are annotated with the

Spring Framework

3.1 Reference Documentation 633

ManagedAttribute annotation, but in the case of the age property, only the getter is marked. This
will cause both of these properties to be included in the management interface as attributes, but the age
attribute will be read-only.

Finally, you will notice that the add(int, int) method is marked with the ManagedOperation
attribute whereas the dontExposeMe() method is not. This will cause the management interface to
contain only one operation, add(int, int), when using the MetadataMBeanInfoAssembler.

The configuration below shows how you configure the MBeanExporter to use the
MetadataMBeanInfoAssembler:

<beans>
<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">

<property name="assembler" ref="assembler"/>
<property name="namingStrategy" ref="namingStrategy"/>
<property name="autodetect" value="true"/>

</bean>

<bean id="jmxAttributeSource"
class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>

<!-- will create management interface using annotation metadata -->
<bean id="assembler"

class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
<property name="attributeSource" ref="jmxAttributeSource"/>

</bean>

<!-- will pick up the ObjectName from the annotation -->
<bean id="namingStrategy"

class="org.springframework.jmx.export.naming.MetadataNamingStrategy">
<property name="attributeSource" ref="jmxAttributeSource"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.AnnotationTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>
</beans>

Here you can see that an MetadataMBeanInfoAssembler bean has been configured with an
instance of the AnnotationJmxAttributeSource class and passed to the MBeanExporter
through the assembler property. This is all that is required to take advantage of metadata-driven
management interfaces for your Spring-exposed MBeans.

Source-Level Metadata Types

The following source level metadata types are available for use in Spring JMX:

Table 23.2. Source-Level Metadata Types

Purpose Annotation Annotation Type

Mark all instances of a Class as
JMX managed resources

@ManagedResource Class

Spring Framework

3.1 Reference Documentation 634

Purpose Annotation Annotation Type

Mark a method as a JMX
operation

@ManagedOperation Method

Mark a getter or setter as one
half of a JMX attribute

@ManagedAttribute Method (only getters and setters)

Define descriptions for operation
parameters

@ManagedOperationParameter
and
@ManagedOperationParameters

Method

The following configuration parameters are available for use on these source-level metadata types:

Table 23.3. Source-Level Metadata Parameters

Parameter Description Applies to

ObjectName Used by
MetadataNamingStrategy
to determine the ObjectName
of a managed resource

ManagedResource

description Sets the friendly description of
the resource, attribute or
operation

ManagedResource,
ManagedAttribute,
ManagedOperation,
ManagedOperationParameter

currencyTimeLimit Sets the value of the
currencyTimeLimit
descriptor field

ManagedResource,
ManagedAttribute

defaultValue Sets the value of the
defaultValue descriptor
field

ManagedAttribute

log Sets the value of the log
descriptor field

ManagedResource

logFile Sets the value of the logFile
descriptor field

ManagedResource

persistPolicy Sets the value of the
persistPolicy descriptor
field

ManagedResource

persistPeriod Sets the value of the
persistPeriod descriptor

ManagedResource

Spring Framework

3.1 Reference Documentation 635

Parameter Description Applies to

field

persistLocation Sets the value of the
persistLocation descriptor
field

ManagedResource

persistName Sets the value of the
persistName descriptor field

ManagedResource

name Sets the display name of an
operation parameter

ManagedOperationParameter

index Sets the index of an operation
parameter

ManagedOperationParameter

The AutodetectCapableMBeanInfoAssembler interface

To simplify configuration even further, Spring introduces the
AutodetectCapableMBeanInfoAssembler interface which extends the
MBeanInfoAssembler interface to add support for autodetection of MBean resources. If you
configure the MBeanExporter with an instance of AutodetectCapableMBeanInfoAssembler
then it is allowed to "vote" on the inclusion of beans for exposure to JMX.

Out of the box, the only implementation of the AutodetectCapableMBeanInfo interface is the
MetadataMBeanInfoAssembler which will vote to include any bean which is marked with the
ManagedResource attribute. The default approach in this case is to use the bean name as the
ObjectName which results in a configuration like this:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<!-- notice how no 'beans' are explicitly configured here -->
<property name="autodetect" value="true"/>
<property name="assembler" ref="assembler"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

<bean id="assembler" class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
<property name="attributeSource">

<bean class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>
</property>

</bean>

</beans>

Notice that in this configuration no beans are passed to the MBeanExporter; however, the

Spring Framework

3.1 Reference Documentation 636

JmxTestBean will still be registered since it is marked with the ManagedResource attribute and the
MetadataMBeanInfoAssembler detects this and votes to include it. The only problem with this
approach is that the name of the JmxTestBean now has business meaning. You can address this issue
by changing the default behavior for ObjectName creation as defined in Section 23.4, “Controlling the
ObjectNames for your beans”.

Defining management interfaces using Java interfaces

In addition to the MetadataMBeanInfoAssembler, Spring also includes the
InterfaceBasedMBeanInfoAssembler which allows you to constrain the methods and properties
that are exposed based on the set of methods defined in a collection of interfaces.

Although the standard mechanism for exposing MBeans is to use interfaces and a simple naming scheme,
the InterfaceBasedMBeanInfoAssembler extends this functionality by removing the need for
naming conventions, allowing you to use more than one interface and removing the need for your beans
to implement the MBean interfaces.

Consider this interface that is used to define a management interface for the JmxTestBean class that
you saw earlier:

public interface IJmxTestBean {

public int add(int x, int y);

public long myOperation();

public int getAge();

public void setAge(int age);

public void setName(String name);

public String getName();
}

This interface defines the methods and properties that will be exposed as operations and attributes on the
JMX MBean. The code below shows how to configure Spring JMX to use this interface as the definition
for the management interface:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean5" value-ref="testBean"/>

</map>
</property>
<property name="assembler">
<bean class="org.springframework.jmx.export.assembler.InterfaceBasedMBeanInfoAssembler">
<property name="managedInterfaces">

<value>org.springframework.jmx.IJmxTestBean</value>
</property>

</bean>
</property>

</bean>

Spring Framework

3.1 Reference Documentation 637

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

Here you can see that the InterfaceBasedMBeanInfoAssembler is configured to use the
IJmxTestBean interface when constructing the management interface for any bean. It is important to
understand that beans processed by the InterfaceBasedMBeanInfoAssembler are not required
to implement the interface used to generate the JMX management interface.

In the case above, the IJmxTestBean interface is used to construct all management interfaces for all
beans. In many cases this is not the desired behavior and you may want to use different interfaces for
different beans. In this case, you can pass InterfaceBasedMBeanInfoAssembler a
Properties instance via the interfaceMappings property, where the key of each entry is the
bean name and the value of each entry is a comma-separated list of interface names to use for that bean.

If no management interface is specified through either the managedInterfaces or
interfaceMappings properties, then the InterfaceBasedMBeanInfoAssembler will reflect
on the bean and use all of the interfaces implemented by that bean to create the management interface.

Using MethodNameBasedMBeanInfoAssembler

The MethodNameBasedMBeanInfoAssembler allows you to specify a list of method names that
will be exposed to JMX as attributes and operations. The code below shows a sample configuration for
this:

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean5" value-ref="testBean"/>

</map>
</property>
<property name="assembler">
<bean class="org.springframework.jmx.export.assembler.MethodNameBasedMBeanInfoAssembler">
<property name="managedMethods">

<value>add,myOperation,getName,setName,getAge</value>
</property>

</bean>
</property>

</bean>

Here you can see that the methods add and myOperation will be exposed as JMX operations and
getName(), setName(String) and getAge() will be exposed as the appropriate half of a JMX
attribute. In the code above, the method mappings apply to beans that are exposed to JMX. To control
method exposure on a bean-by-bean basis, use the methodMappings property of
MethodNameMBeanInfoAssembler to map bean names to lists of method names.

23.4 Controlling the ObjectNames for your beans

Spring Framework

3.1 Reference Documentation 638

Behind the scenes, the MBeanExporter delegates to an implementation of the
ObjectNamingStrategy to obtain ObjectNames for each of the beans it is registering. The default
implementation, KeyNamingStrategy, will, by default, use the key of the beans Map as the
ObjectName. In addition, the KeyNamingStrategy can map the key of the beans Map to an entry
in a Properties file (or files) to resolve the ObjectName. In addition to the
KeyNamingStrategy, Spring provides two additional ObjectNamingStrategy implementations:
the IdentityNamingStrategy that builds an ObjectName based on the JVM identity of the bean
and the MetadataNamingStrategy that uses source level metadata to obtain the ObjectName.

Reading ObjectNames from Properties

You can configure your own KeyNamingStrategy instance and configure it to read ObjectNames
from a Properties instance rather than use bean key. The KeyNamingStrategy will attempt to
locate an entry in the Properties with a key corresponding to the bean key. If no entry is found or if
the Properties instance is null then the bean key itself is used.

The code below shows a sample configuration for the KeyNamingStrategy:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="testBean" value-ref="testBean"/>

</map>
</property>
<property name="namingStrategy" ref="namingStrategy"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

<bean id="namingStrategy" class="org.springframework.jmx.export.naming.KeyNamingStrategy">
<property name="mappings">
<props>
<prop key="testBean">bean:name=testBean1</prop>

</props>
</property>
<property name="mappingLocations">
<value>names1.properties,names2.properties</value>

</property>
</bean

</beans>

Here an instance of KeyNamingStrategy is configured with a Properties instance that is merged
from the Properties instance defined by the mapping property and the properties files located in the
paths defined by the mappings property. In this configuration, the testBean bean will be given the
ObjectName bean:name=testBean1 since this is the entry in the Properties instance that has
a key corresponding to the bean key.

If no entry in the Properties instance can be found then the bean key name is used as the

Spring Framework

3.1 Reference Documentation 639

ObjectName.

Using the MetadataNamingStrategy

The MetadataNamingStrategy uses the objectName property of the ManagedResource
attribute on each bean to create the ObjectName. The code below shows the configuration for the
MetadataNamingStrategy:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="testBean" value-ref="testBean"/>

</map>
</property>
<property name="namingStrategy" ref="namingStrategy"/>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

<bean id="namingStrategy" class="org.springframework.jmx.export.naming.MetadataNamingStrategy">
<property name="attributeSource" ref="attributeSource"/>

</bean>

<bean id="attributeSource"
class="org.springframework.jmx.export.metadata.AttributesJmxAttributeSource"/>

</beans>

If no objectName has been provided for the ManagedResource attribute, then an ObjectName
will be created with the following format:
[fully-qualified-package-name]:type=[short-classname],name=[bean-name]. For example, the generated
ObjectName for the following bean would be: com.foo:type=MyClass,name=myBean.

<bean id="myBean" class="com.foo.MyClass"/>

The <context:mbean-export/> element

If you are using at least Java 5, then a convenience subclass of MBeanExporter is available:
AnnotationMBeanExporter. When defining an instance of this subclass, the namingStrategy,
assembler, and attributeSource configuration is no longer needed, since it will always use
standard Java annotation-based metadata (autodetection is always enabled as well). In fact, an even
simpler syntax is supported by Spring's 'context' namespace.. Rather than defining an
MBeanExporter bean, just provide this single element:

<context:mbean-export/>

You can provide a reference to a particular MBean server if necessary, and the defaultDomain
attribute (a property of AnnotationMBeanExporter) accepts an alternate value for the generated

Spring Framework

3.1 Reference Documentation 640

MBean ObjectNames' domains. This would be used in place of the fully qualified package name as
described in the previous section on MetadataNamingStrategy.

<context:mbean-export server="myMBeanServer" default-domain="myDomain"/>

.

Note

Do not use interface-based AOP proxies in combination with autodetection of JMX
annotations in your bean classes. Interface-based proxies 'hide' the target class, which also
hides the JMX managed resource annotations. Hence, use target-class proxies in that case:
through setting the 'proxy-target-class' flag on <aop:config/>,
<tx:annotation-driven/>, etc. Otherwise, your JMX beans might be silently ignored
at startup...

23.5 JSR-160 Connectors

For remote access, Spring JMX module offers two FactoryBean implementations inside the
org.springframework.jmx.support package for creating both server- and client-side
connectors.

Server-side Connectors

To have Spring JMX create, start and expose a JSR-160 JMXConnectorServer use the following
configuration:

<bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean"/>

By default ConnectorServerFactoryBean creates a JMXConnectorServer bound to
"service:jmx:jmxmp://localhost:9875". The serverConnector bean thus exposes the
local MBeanServer to clients through the JMXMP protocol on localhost, port 9875. Note that the
JMXMP protocol is marked as optional by the JSR 160 specification: currently, the main open-source
JMX implementation, MX4J, and the one provided with J2SE 5.0 do not support JMXMP.

To specify another URL and register the JMXConnectorServer itself with the MBeanServer use
the serviceUrl and ObjectName properties respectively:

<bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactoryBean">

<property name="objectName" value="connector:name=rmi"/>
<property name="serviceUrl"

value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnector"/>
</bean>

If the ObjectName property is set Spring will automatically register your connector with the
MBeanServer under that ObjectName. The example below shows the full set of parameters which

Spring Framework

3.1 Reference Documentation 641

you can pass to the ConnectorServerFactoryBean when creating a JMXConnector:

<bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactoryBean">

<property name="objectName" value="connector:name=iiop"/>
<property name="serviceUrl"

value="service:jmx:iiop://localhost/jndi/iiop://localhost:900/myconnector"/>
<property name="threaded" value="true"/>
<property name="daemon" value="true"/>
<property name="environment">

<map>
<entry key="someKey" value="someValue"/>

</map>
</property>

</bean>

Note that when using a RMI-based connector you need the lookup service (tnameserv or rmiregistry) to
be started in order for the name registration to complete. If you are using Spring to export remote services
for you via RMI, then Spring will already have constructed an RMI registry. If not, you can easily start a
registry using the following snippet of configuration:

<bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean">
<property name="port" value="1099"/>

</bean>

Client-side Connectors

To create an MBeanServerConnection to a remote JSR-160 enabled MBeanServer use the
MBeanServerConnectionFactoryBean as shown below:

<bean id="clientConnector" class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">
<property name="serviceUrl" value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxrmi"/>

</bean>

JMX over Burlap/Hessian/SOAP

JSR-160 permits extensions to the way in which communication is done between the client and the server.
The examples above are using the mandatory RMI-based implementation required by the JSR-160
specification (IIOP and JRMP) and the (optional) JMXMP. By using other providers or JMX
implementations (such as MX4J) you can take advantage of protocols like SOAP, Hessian, Burlap over
simple HTTP or SSL and others:

<bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean">
<property name="objectName" value="connector:name=burlap"/>
<property name="serviceUrl" value="service:jmx:burlap://localhost:9874"/>

</bean>

In the case of the above example, MX4J 3.0.0 was used; see the official MX4J documentation for more
information.

Spring Framework

3.1 Reference Documentation 642

http://mx4j.sourceforge.net

23.6 Accessing MBeans via Proxies

Spring JMX allows you to create proxies that re-route calls to MBeans registered in a local or remote
MBeanServer. These proxies provide you with a standard Java interface through which you can
interact with your MBeans. The code below shows how to configure a proxy for an MBean running in a
local MBeanServer:

<bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
<property name="objectName" value="bean:name=testBean"/>
<property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>

</bean>

Here you can see that a proxy is created for the MBean registered under the ObjectName:
bean:name=testBean. The set of interfaces that the proxy will implement is controlled by the
proxyInterfaces property and the rules for mapping methods and properties on these interfaces to
operations and attributes on the MBean are the same rules used by the
InterfaceBasedMBeanInfoAssembler.

The MBeanProxyFactoryBean can create a proxy to any MBean that is accessible via an
MBeanServerConnection. By default, the local MBeanServer is located and used, but you can
override this and provide an MBeanServerConnection pointing to a remote MBeanServer to cater
for proxies pointing to remote MBeans:

<bean id="clientConnector"
class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">

<property name="serviceUrl" value="service:jmx:rmi://remotehost:9875"/>
</bean>

<bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
<property name="objectName" value="bean:name=testBean"/>
<property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>
<property name="server" ref="clientConnector"/>

</bean>

Here you can see that we create an MBeanServerConnection pointing to a remote machine using
the MBeanServerConnectionFactoryBean. This MBeanServerConnection is then passed
to the MBeanProxyFactoryBean via the server property. The proxy that is created will forward all
invocations to the MBeanServer via this MBeanServerConnection.

23.7 Notifications

Spring's JMX offering includes comprehensive support for JMX notifications.

Registering Listeners for Notifications

Spring's JMX support makes it very easy to register any number of NotificationListeners with
any number of MBeans (this includes MBeans exported by Spring's MBeanExporter and MBeans

Spring Framework

3.1 Reference Documentation 643

registered via some other mechanism). By way of an example, consider the scenario where one would
like to be informed (via a Notification) each and every time an attribute of a target MBean changes.

package com.example;

import javax.management.AttributeChangeNotification;
import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;

public class ConsoleLoggingNotificationListener
implements NotificationListener, NotificationFilter {

public void handleNotification(Notification notification, Object handback) {
System.out.println(notification);
System.out.println(handback);

}

public boolean isNotificationEnabled(Notification notification) {
return AttributeChangeNotification.class.isAssignableFrom(notification.getClass());

}
}

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>

</map>
</property>
<property name="notificationListenerMappings">
<map>
<entry key="bean:name=testBean1">

<bean class="com.example.ConsoleLoggingNotificationListener"/>
</entry>

</map>
</property>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

With the above configuration in place, every time a JMX Notification is broadcast from the target
MBean (bean:name=testBean1), the ConsoleLoggingNotificationListener bean that
was registered as a listener via the notificationListenerMappings property will be notified.
The ConsoleLoggingNotificationListener bean can then take whatever action it deems
appropriate in response to the Notification.

You can also use straight bean names as the link between exported beans and listeners:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>

</map>

Spring Framework

3.1 Reference Documentation 644

</property>
<property name="notificationListenerMappings">
<map>
<entry key="testBean">

<bean class="com.example.ConsoleLoggingNotificationListener"/>
</entry>

</map>
</property>

</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

If one wants to register a single NotificationListener instance for all of the beans that the
enclosing MBeanExporter is exporting, one can use the special wildcard '*' (sans quotes) as the key
for an entry in the notificationListenerMappings property map; for example:

<property name="notificationListenerMappings">
<map>

<entry key="*">
<bean class="com.example.ConsoleLoggingNotificationListener"/>

</entry>
</map>

</property>

If one needs to do the inverse (that is, register a number of distinct listeners against an MBean), then one
has to use the notificationListeners list property instead (and in preference to the
notificationListenerMappings property). This time, instead of configuring simply a
NotificationListener for a single MBean, one configures NotificationListenerBean
instances... a NotificationListenerBean encapsulates a NotificationListener and the
ObjectName (or ObjectNames) that it is to be registered against in an MBeanServer. The
NotificationListenerBean also encapsulates a number of other properties such as a
NotificationFilter and an arbitrary handback object that can be used in advanced JMX
notification scenarios.

The configuration when using NotificationListenerBean instances is not wildly different to
what was presented previously:

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean"/>

</map>
</property>
<property name="notificationListeners">

<list>
<bean class="org.springframework.jmx.export.NotificationListenerBean">

<constructor-arg>
<bean class="com.example.ConsoleLoggingNotificationListener"/>

</constructor-arg>
<property name="mappedObjectNames">

<list>
<value>bean:name=testBean1</value>

Spring Framework

3.1 Reference Documentation 645

</list>
</property>

</bean>
</list>

</property>
</bean>

<bean id="testBean" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

</beans>

The above example is equivalent to the first notification example. Lets assume then that we want to be
given a handback object every time a Notification is raised, and that additionally we want to filter
out extraneous Notifications by supplying a NotificationFilter. (For a full discussion of
just what a handback object is, and indeed what a NotificationFilter is, please do consult that
section of the JMX specification (1.2) entitled 'The JMX Notification Model'.)

<beans>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=testBean1" value-ref="testBean1"/>
<entry key="bean:name=testBean2" value-ref="testBean2"/>

</map>
</property>
<property name="notificationListeners">

<list>
<bean class="org.springframework.jmx.export.NotificationListenerBean">

<constructor-arg ref="customerNotificationListener"/>
<property name="mappedObjectNames">

<list>
<!-- handles notifications from two distinct MBeans -->
<value>bean:name=testBean1</value>
<value>bean:name=testBean2</value>

</list>
</property>
<property name="handback">

<bean class="java.lang.String">
<constructor-arg value="This could be anything..."/>

</bean>
</property>
<property name="notificationFilter" ref="customerNotificationListener"/>

</bean>
</list>

</property>
</bean>

<!-- implements both the NotificationListener and NotificationFilter interfaces -->
<bean id="customerNotificationListener" class="com.example.ConsoleLoggingNotificationListener"/>

<bean id="testBean1" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="TEST"/>
<property name="age" value="100"/>

</bean>

<bean id="testBean2" class="org.springframework.jmx.JmxTestBean">
<property name="name" value="ANOTHER TEST"/>
<property name="age" value="200"/>

</bean>

Spring Framework

3.1 Reference Documentation 646

</beans>

Publishing Notifications

Spring provides support not just for registering to receive Notifications, but also for publishing
Notifications.

Note

Please note that this section is really only relevant to Spring managed beans that have been
exposed as MBeans via an MBeanExporter; any existing, user-defined MBeans should use
the standard JMX APIs for notification publication.

The key interface in Spring's JMX notification publication support is the NotificationPublisher
interface (defined in the org.springframework.jmx.export.notification package). Any
bean that is going to be exported as an MBean via an MBeanExporter instance can implement the
related NotificationPublisherAware interface to gain access to a
NotificationPublisher instance. The NotificationPublisherAware interface simply
supplies an instance of a NotificationPublisher to the implementing bean via a simple setter
method, which the bean can then use to publish Notifications.

As stated in the Javadoc for the NotificationPublisher class, managed beans that are publishing
events via the NotificationPublisher mechanism are not responsible for the state management of
any notification listeners and the like ... Spring's JMX support will take care of handling all the JMX
infrastructure issues. All one need do as an application developer is implement the
NotificationPublisherAware interface and start publishing events using the supplied
NotificationPublisher instance. Note that the NotificationPublisher will be set after
the managed bean has been registered with an MBeanServer.

Using a NotificationPublisher instance is quite straightforward... one simply creates a JMX
Notification instance (or an instance of an appropriate Notification subclass), populates the
notification with the data pertinent to the event that is to be published, and one then invokes the
sendNotification(Notification) on the NotificationPublisher instance, passing in
the Notification.

Find below a simple example... in this scenario, exported instances of the JmxTestBean are going to
publish a NotificationEvent every time the add(int, int) operation is invoked.

package org.springframework.jmx;

import org.springframework.jmx.export.notification.NotificationPublisherAware;
import org.springframework.jmx.export.notification.NotificationPublisher;
import javax.management.Notification;

public class JmxTestBean implements IJmxTestBean, NotificationPublisherAware {

private String name;
private int age;
private boolean isSuperman;

Spring Framework

3.1 Reference Documentation 647

private NotificationPublisher publisher;

// other getters and setters omitted for clarity

public int add(int x, int y) {
int answer = x + y;
this.publisher.sendNotification(new Notification("add", this, 0));
return answer;

}

public void dontExposeMe() {
throw new RuntimeException();

}

public void setNotificationPublisher(NotificationPublisher notificationPublisher) {
this.publisher = notificationPublisher;

}
}

The NotificationPublisher interface and the machinery to get it all working is one of the nicer
features of Spring's JMX support. It does however come with the price tag of coupling your classes to
both Spring and JMX; as always, the advice here is to be pragmatic... if you need the functionality offered
by the NotificationPublisher and you can accept the coupling to both Spring and JMX, then do
so.

23.8 Further Resources

This section contains links to further resources about JMX.

• The JMX homepage at Sun

• The JMX specification (JSR-000003)

• The JMX Remote API specification (JSR-000160)

• The MX4J homepage (an Open Source implementation of various JMX specs)

• Getting Started with JMX - an introductory article from Sun.

Spring Framework

3.1 Reference Documentation 648

http://java.sun.com/products/JavaManagement/
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://mx4j.sourceforge.net/
http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

24. JCA CCI

24.1 Introduction

Java EE provides a specification to standardize access to enterprise information systems (EIS): the JCA
(J2EE Connector Architecture). This specification is divided into several different parts:

• SPI (Service provider interfaces) that the connector provider must implement. These interfaces
constitute a resource adapter which can be deployed on a Java EE application server. In such a
scenario, the server manages connection pooling, transaction and security (managed mode). The
application server is also responsible for managing the configuration, which is held outside the client
application. A connector can be used without an application server as well; in this case, the application
must configure it directly (non-managed mode).

• CCI (Common Client Interface) that an application can use to interact with the connector and thus
communicate with an EIS. An API for local transaction demarcation is provided as well.

The aim of the Spring CCI support is to provide classes to access a CCI connector in typical Spring style,
leveraging the Spring Framework's general resource and transaction management facilities.

Note

The client side of connectors doesn't alway use CCI. Some connectors expose their own
APIs, only providing JCA resource adapter to use the system contracts of a Java EE container
(connection pooling, global transactions, security). Spring does not offer special support for
such connector-specific APIs.

24.2 Configuring CCI

Connector configuration

The base resource to use JCA CCI is the ConnectionFactory interface. The connector used must
provide an implementation of this interface.

To use your connector, you can deploy it on your application server and fetch the
ConnectionFactory from the server's JNDI environment (managed mode). The connector must be
packaged as a RAR file (resource adapter archive) and contain a ra.xml file to describe its deployment
characteristics. The actual name of the resource is specified when you deploy it. To access it within
Spring, simply use Spring's JndiObjectFactoryBean / <jee:jndi-lookup> fetch the factory
by its JNDI name.

Spring Framework

3.1 Reference Documentation 649

Another way to use a connector is to embed it in your application (non-managed mode), not using an
application server to deploy and configure it. Spring offers the possibility to configure a connector as a
bean, through a provided FactoryBean (LocalConnectionFactoryBean). In this manner, you
only need the connector library in the classpath (no RAR file and no ra.xml descriptor needed). The
library must be extracted from the connector's RAR file, if necessary.

Once you have got access to your ConnectionFactory instance, you can inject it into your
components. These components can either be coded against the plain CCI API or leverage Spring's
support classes for CCI access (e.g. CciTemplate).

Note

When you use a connector in non-managed mode, you can't use global transactions because
the resource is never enlisted / delisted in the current global transaction of the current thread.
The resource is simply not aware of any global Java EE transactions that might be running.

ConnectionFactory configuration in Spring

In order to make connections to the EIS, you need to obtain a ConnectionFactory from the
application server if you are in a managed mode, or directly from Spring if you are in a non-managed
mode.

In a managed mode, you access a ConnectionFactory from JNDI; its properties will be configured
in the application server.

<jee:jndi-lookup id="eciConnectionFactory" jndi-name="eis/cicseci"/>

In non-managed mode, you must configure the ConnectionFactory you want to use in the
configuration of Spring as a JavaBean. The LocalConnectionFactoryBean class offers this setup
style, passing in the ManagedConnectionFactory implementation of your connector, exposing the
application-level CCI ConnectionFactory.

<bean id="eciManagedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
<property name="serverName" value="TXSERIES"/>
<property name="connectionURL" value="tcp://localhost/"/>
<property name="portNumber" value="2006"/>

</bean>

<bean id="eciConnectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean">
<property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/>

</bean>

Note

You can't directly instantiate a specific ConnectionFactory. You need to go through the
corresponding implementation of the ManagedConnectionFactory interface for your
connector. This interface is part of the JCA SPI specification.

Spring Framework

3.1 Reference Documentation 650

Configuring CCI connections

JCA CCI allow the developer to configure the connections to the EIS using the ConnectionSpec
implementation of your connector. In order to configure its properties, you need to wrap the target
connection factory with a dedicated adapter, ConnectionSpecConnectionFactoryAdapter.
So, the dedicated ConnectionSpec can be configured with the property connectionSpec (as an
inner bean).

This property is not mandatory because the CCI ConnectionFactory interface defines two different
methods to obtain a CCI connection. Some of the ConnectionSpec properties can often be configured
in the application server (in managed mode) or on the corresponding local
ManagedConnectionFactory implementation.

public interface ConnectionFactory implements Serializable, Referenceable {
...
Connection getConnection() throws ResourceException;
Connection getConnection(ConnectionSpec connectionSpec) throws ResourceException;
...

}

Spring provides a ConnectionSpecConnectionFactoryAdapter that allows for specifying a
ConnectionSpec instance to use for all operations on a given factory. If the adapter's
connectionSpec property is specified, the adapter uses the getConnection variant without
argument, else the one with the ConnectionSpec argument.

<bean id="managedConnectionFactory"
class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory">

<property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/>
<property name="driverName" value="org.hsqldb.jdbcDriver"/>

</bean>

<bean id="targetConnectionFactory"
class="org.springframework.jca.support.LocalConnectionFactoryBean">

<property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="connectionFactory"
class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">

<property name="targetConnectionFactory" ref="targetConnectionFactory"/>
<property name="connectionSpec">

<bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
<property name="user" value="sa"/>
<property name="password" value=""/>

</bean>
</property>

</bean>

Using a single CCI connection

If you want to use a single CCI connection, Spring provides a further ConnectionFactory adapter to
manage this. The SingleConnectionFactory adapter class will open a single connection lazily and
close it when this bean is destroyed at application shutdown. This class will expose special
Connection proxies that behave accordingly, all sharing the same underlying physical connection.

Spring Framework

3.1 Reference Documentation 651

<bean id="eciManagedConnectionFactory"
class="com.ibm.connector2.cics.ECIManagedConnectionFactory">

<property name="serverName" value="TEST"/>
<property name="connectionURL" value="tcp://localhost/"/>
<property name="portNumber" value="2006"/>

</bean>

<bean id="targetEciConnectionFactory"
class="org.springframework.jca.support.LocalConnectionFactoryBean">

<property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/>
</bean>

<bean id="eciConnectionFactory"
class="org.springframework.jca.cci.connection.SingleConnectionFactory">

<property name="targetConnectionFactory" ref="targetEciConnectionFactory"/>
</bean>

Note

This ConnectionFactory adapter cannot directly be configured with a
ConnectionSpec. Use an intermediary
ConnectionSpecConnectionFactoryAdapter that the
SingleConnectionFactory talks to if you require a single connection for a specific
ConnectionSpec.

24.3 Using Spring's CCI access support

Record conversion

One of the aims of the JCA CCI support is to provide convenient facilities for manipulating CCI records.
The developer can specify the strategy to create records and extract datas from records, for use with
Spring's CciTemplate. The following interfaces will configure the strategy to use input and output
records if you don't want to work with records directly in your application.

In order to create an input Record, the developer can use a dedicated implementation of the
RecordCreator interface.

public interface RecordCreator {

Record createRecord(RecordFactory recordFactory) throws ResourceException, DataAccessException;
}

As you can see, the createRecord(..) method receives a RecordFactory instance as parameter,
which corresponds to the RecordFactory of the ConnectionFactory used. This reference can be
used to create IndexedRecord or MappedRecord instances. The following sample shows how to
use the RecordCreator interface and indexed/mapped records.

public class MyRecordCreator implements RecordCreator {

public Record createRecord(RecordFactory recordFactory) throws ResourceException {

Spring Framework

3.1 Reference Documentation 652

IndexedRecord input = recordFactory.createIndexedRecord("input");
input.add(new Integer(id));
return input;

}
}

An output Record can be used to receive data back from the EIS. Hence, a specific implementation of
the RecordExtractor interface can be passed to Spring's CciTemplate for extracting data from
the output Record.

public interface RecordExtractor {

Object extractData(Record record) throws ResourceException, SQLException, DataAccessException;
}

The following sample shows how to use the RecordExtractor interface.

public class MyRecordExtractor implements RecordExtractor {

public Object extractData(Record record) throws ResourceException {
CommAreaRecord commAreaRecord = (CommAreaRecord) record;
String str = new String(commAreaRecord.toByteArray());
String field1 = string.substring(0,6);
String field2 = string.substring(6,1);
return new OutputObject(Long.parseLong(field1), field2);

}
}

The CciTemplate

The CciTemplate is the central class of the core CCI support package
(org.springframework.jca.cci.core). It simplifies the use of CCI since it handles the
creation and release of resources. This helps to avoid common errors like forgetting to always close the
connection. It cares for the lifecycle of connection and interaction objects, letting application code focus
on generating input records from application data and extracting application data from output records.

The JCA CCI specification defines two distinct methods to call operations on an EIS. The CCI
Interaction interface provides two execute method signatures:

public interface javax.resource.cci.Interaction {
...
boolean execute(InteractionSpec spec, Record input, Record output) throws ResourceException;

Record execute(InteractionSpec spec, Record input) throws ResourceException;
...

}

Depending on the template method called, CciTemplate will know which execute method to call on
the interaction. In any case, a correctly initialized InteractionSpec instance is mandatory.

CciTemplate.execute(..) can be used in two ways:

• With direct Record arguments. In this case, you simply need to pass the CCI input record in, and the

Spring Framework

3.1 Reference Documentation 653

returned object be the corresponding CCI output record.

• With application objects, using record mapping. In this case, you need to provide corresponding
RecordCreator and RecordExtractor instances.

With the first approach, the following methods of the template will be used. These methods directly
correspond to those on the Interaction interface.

public class CciTemplate implements CciOperations {

public Record execute(InteractionSpec spec, Record inputRecord)
throws DataAccessException { ... }

public void execute(InteractionSpec spec, Record inputRecord, Record outputRecord)
throws DataAccessException { ... }

}

With the second approach, we need to specify the record creation and record extraction strategies as
arguments. The interfaces used are those describe in the previous section on record conversion. The
corresponding CciTemplate methods are the following:

public class CciTemplate implements CciOperations {

public Record execute(InteractionSpec spec, RecordCreator inputCreator)
throws DataAccessException { ... }

public Object execute(InteractionSpec spec, Record inputRecord, RecordExtractor outputExtractor)
throws DataAccessException { ... }

public Object execute(InteractionSpec spec, RecordCreator creator, RecordExtractor extractor)
throws DataAccessException { ... }

}

Unless the outputRecordCreator property is set on the template (see the following section), every
method will call the corresponding execute method of the CCI Interaction with two parameters:
InteractionSpec and input Record, receiving an output Record as return value.

CciTemplate also provides methods to create IndexRecord and MappedRecord outside a
RecordCreator implementation, through its createIndexRecord(..) and
createMappedRecord(..) methods. This can be used within DAO implementations to create
Record instances to pass into corresponding CciTemplate.execute(..) methods.

public class CciTemplate implements CciOperations {

public IndexedRecord createIndexedRecord(String name) throws DataAccessException { ... }

public MappedRecord createMappedRecord(String name) throws DataAccessException { ... }

}

DAO support

Spring Framework

3.1 Reference Documentation 654

Spring's CCI support provides a abstract class for DAOs, supporting injection of a
ConnectionFactory or a CciTemplate instances. The name of the class is CciDaoSupport: It
provides simple setConnectionFactory and setCciTemplate methods. Internally, this class
will create a CciTemplate instance for a passed-in ConnectionFactory, exposing it to concrete
data access implementations in subclasses.

public abstract class CciDaoSupport {

public void setConnectionFactory(ConnectionFactory connectionFactory) { ... }
public ConnectionFactory getConnectionFactory() { ... }

public void setCciTemplate(CciTemplate cciTemplate) { ... }
public CciTemplate getCciTemplate() { ... }

}

Automatic output record generation

If the connector used only supports the Interaction.execute(..) method with input and output
records as parameters (that is, it requires the desired output record to be passed in instead of returning an
appropriate output record), you can set the outputRecordCreator property of the CciTemplate
to automatically generate an output record to be filled by the JCA connector when the response is
received. This record will be then returned to the caller of the template.

This property simply holds an implementation of the RecordCreator interface, used for that purpose.
The RecordCreator interface has already been discussed in the section called “Record conversion”.
The outputRecordCreator property must be directly specified on the CciTemplate. This could
be done in the application code like so:

cciTemplate.setOutputRecordCreator(new EciOutputRecordCreator());

Or (recommended) in the Spring configuration, if the CciTemplate is configured as a dedicated bean
instance:

<bean id="eciOutputRecordCreator" class="eci.EciOutputRecordCreator"/>

<bean id="cciTemplate" class="org.springframework.jca.cci.core.CciTemplate">
<property name="connectionFactory" ref="eciConnectionFactory"/>
<property name="outputRecordCreator" ref="eciOutputRecordCreator"/>

</bean>

Note

As the CciTemplate class is thread-safe, it will usually be configured as a shared instance.

Summary

The following table summarizes the mechanisms of the CciTemplate class and the corresponding

Spring Framework

3.1 Reference Documentation 655

methods called on the CCI Interaction interface:

Table 24.1. Usage of Interaction execute methods

CciTemplate method signature CciTemplate
outputRecordCreator property

execute method called on the
CCI Interaction

Record execute(InteractionSpec,
Record)

not set Record execute(InteractionSpec,
Record)

Record execute(InteractionSpec,
Record)

set boolean execute(InteractionSpec,
Record, Record)

void execute(InteractionSpec,
Record, Record)

not set void execute(InteractionSpec,
Record, Record)

void execute(InteractionSpec,
Record, Record)

set void execute(InteractionSpec,
Record, Record)

Record execute(InteractionSpec,
RecordCreator)

not set Record execute(InteractionSpec,
Record)

Record execute(InteractionSpec,
RecordCreator)

set void execute(InteractionSpec,
Record, Record)

Record execute(InteractionSpec,
Record, RecordExtractor)

not set Record execute(InteractionSpec,
Record)

Record execute(InteractionSpec,
Record, RecordExtractor)

set void execute(InteractionSpec,
Record, Record)

Record execute(InteractionSpec,
RecordCreator, RecordExtractor)

not set Record execute(InteractionSpec,
Record)

Record execute(InteractionSpec,
RecordCreator, RecordExtractor)

set void execute(InteractionSpec,
Record, Record)

Using a CCI Connection and Interaction directly

CciTemplate also offers the possibility to work directly with CCI connections and interactions, in the
same manner as JdbcTemplate and JmsTemplate. This is useful when you want to perform
multiple operations on a CCI connection or interaction, for example.

The interface ConnectionCallback provides a CCI Connection as argument, in order to perform
custom operations on it, plus the CCI ConnectionFactory which the Connection was created
with. The latter can be useful for example to get an associated RecordFactory instance and create
indexed/mapped records, for example.

public interface ConnectionCallback {

Spring Framework

3.1 Reference Documentation 656

Object doInConnection(Connection connection, ConnectionFactory connectionFactory)
throws ResourceException, SQLException, DataAccessException;

}

The interface InteractionCallback provides the CCI Interaction, in order to perform custom
operations on it, plus the corresponding CCI ConnectionFactory.

public interface InteractionCallback {

Object doInInteraction(Interaction interaction, ConnectionFactory connectionFactory)
throws ResourceException, SQLException, DataAccessException;

}

Note

InteractionSpec objects can either be shared across multiple template calls or newly
created inside every callback method. This is completely up to the DAO implementation.

Example for CciTemplate usage

In this section, the usage of the CciTemplate will be shown to acces to a CICS with ECI mode, with
the IBM CICS ECI connector.

Firstly, some initializations on the CCI InteractionSpec must be done to specify which CICS
program to access and how to interact with it.

ECIInteractionSpec interactionSpec = new ECIInteractionSpec();
interactionSpec.setFunctionName("MYPROG");
interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);

Then the program can use CCI via Spring's template and specify mappings between custom objects and
CCI Records.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

public OutputObject getData(InputObject input) {
ECIInteractionSpec interactionSpec = ...;

OutputObject output = (ObjectOutput) getCciTemplate().execute(interactionSpec,
new RecordCreator() {

public Record createRecord(RecordFactory recordFactory) throws ResourceException {
return new CommAreaRecord(input.toString().getBytes());

}
},
new RecordExtractor() {

public Object extractData(Record record) throws ResourceException {
CommAreaRecord commAreaRecord = (CommAreaRecord)record;
String str = new String(commAreaRecord.toByteArray());
String field1 = string.substring(0,6);
String field2 = string.substring(6,1);
return new OutputObject(Long.parseLong(field1), field2);

}
});

Spring Framework

3.1 Reference Documentation 657

return output;
}

}

As discussed previously, callbacks can be used to work directly on CCI connections or interactions.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

public OutputObject getData(InputObject input) {
ObjectOutput output = (ObjectOutput) getCciTemplate().execute(

new ConnectionCallback() {
public Object doInConnection(Connection connection, ConnectionFactory factory)

throws ResourceException {

// do something...
}

});
}
return output;

}
}

Note

With a ConnectionCallback, the Connection used will be managed and closed by
the CciTemplate, but any interactions created on the connection must be managed by the
callback implementation.

For a more specific callback, you can implement an InteractionCallback. The passed-in
Interaction will be managed and closed by the CciTemplate in this case.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

public String getData(String input) {
ECIInteractionSpec interactionSpec = ...;

String output = (String) getCciTemplate().execute(interactionSpec,
new InteractionCallback() {

public Object doInInteraction(Interaction interaction, ConnectionFactory factory)
throws ResourceException {

Record input = new CommAreaRecord(inputString.getBytes());
Record output = new CommAreaRecord();
interaction.execute(holder.getInteractionSpec(), input, output);
return new String(output.toByteArray());

}
});

return output;
}

}

For the examples above, the corresponding configuration of the involved Spring beans could look like
this in non-managed mode:

<bean id="managedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
<property name="serverName" value="TXSERIES"/>
<property name="connectionURL" value="local:"/>
<property name="userName" value="CICSUSER"/>
<property name="password" value="CICS"/>

Spring Framework

3.1 Reference Documentation 658

</bean>

<bean id="connectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean">
<property name="managedConnectionFactory" ref="managedConnectionFactory"/>

</bean>

<bean id="component" class="mypackage.MyDaoImpl">
<property name="connectionFactory" ref="connectionFactory"/>

</bean>

In managed mode (that is, in a Java EE environment), the configuration could look as follows:

<jee:jndi-lookup id="connectionFactory" jndi-name="eis/cicseci"/>

<bean id="component" class="MyDaoImpl">
<property name="connectionFactory" ref="connectionFactory"/>

</bean>

24.4 Modeling CCI access as operation objects

The org.springframework.jca.cci.object package contains support classes that allow you
to access the EIS in a different style: through reusable operation objects, analogous to Spring's JDBC
operation objects (see JDBC chapter). This will usually encapsulate the CCI API: an application-level
input object will be passed to the operation object, so it can construct the input record and then convert
the received record data to an application-level output object and return it.

Note: This approach is internally based on the CciTemplate class and the RecordCreator /
RecordExtractor interfaces, reusing the machinery of Spring's core CCI support.

MappingRecordOperation

MappingRecordOperation essentially performs the same work as CciTemplate, but represents a
specific, pre-configured operation as an object. It provides two template methods to specify how to
convert an input object to a input record, and how to convert an output record to an output object (record
mapping):

• createInputRecord(..) to specify how to convert an input object to an input Record

• extractOutputData(..) to specify how to extract an output object from an output Record

Here are the signatures of these methods:

public abstract class MappingRecordOperation extends EisOperation {
...
protected abstract Record createInputRecord(RecordFactory recordFactory, Object inputObject)

throws ResourceException, DataAccessException { ... }

protected abstract Object extractOutputData(Record outputRecord)
throws ResourceException, SQLException, DataAccessException { ... }

...
}

Spring Framework

3.1 Reference Documentation 659

Thereafter, in order to execute an EIS operation, you need to use a single execute method, passing in an
application-level input object and receiving an application-level output object as result:

public abstract class MappingRecordOperation extends EisOperation {
...
public Object execute(Object inputObject) throws DataAccessException {
...

}

As you can see, contrary to the CciTemplate class, this execute(..) method does not have an
InteractionSpec as argument. Instead, the InteractionSpec is global to the operation. The
following constructor must be used to instantiate an operation object with a specific
InteractionSpec:

InteractionSpec spec = ...;
MyMappingRecordOperation eisOperation = new MyMappingRecordOperation(getConnectionFactory(), spec);
...

MappingCommAreaOperation

Some connectors use records based on a COMMAREA which represents an array of bytes containing
parameters to send to the EIS and data returned by it. Spring provides a special operation class for
working directly on COMMAREA rather than on records. The MappingCommAreaOperation class
extends the MappingRecordOperation class to provide such special COMMAREA support. It
implicitly uses the CommAreaRecord class as input and output record type, and provides two new
methods to convert an input object into an input COMMAREA and the output COMMAREA into an
output object.

public abstract class MappingCommAreaOperation extends MappingRecordOperation {
...
protected abstract byte[] objectToBytes(Object inObject)

throws IOException, DataAccessException;

protected abstract Object bytesToObject(byte[] bytes)
throws IOException, DataAccessException;

...
}

Automatic output record generation

As every MappingRecordOperation subclass is based on CciTemplate internally, the same way to
automatically generate output records as with CciTemplate is available. Every operation object
provides a corresponding setOutputRecordCreator(..) method. For further information, see the
section called “Automatic output record generation”.

Summary

The operation object approach uses records in the same manner as the CciTemplate class.

Spring Framework

3.1 Reference Documentation 660

Table 24.2. Usage of Interaction execute methods

MappingRecordOperation
method signature

MappingRecordOperation
outputRecordCreator

property

execute method called on the
CCI Interaction

Object execute(Object) not set Record execute(InteractionSpec,
Record)

Object execute(Object) set boolean execute(InteractionSpec,
Record, Record)

Example for MappingRecordOperation usage

In this section, the usage of the MappingRecordOperation will be shown to access a database with
the Blackbox CCI connector.

Note

The original version of this connector is provided by the Java EE SDK (version 1.3),
available from Sun.

Firstly, some initializations on the CCI InteractionSpec must be done to specify which SQL request
to execute. In this sample, we directly define the way to convert the parameters of the request to a CCI
record and the way to convert the CCI result record to an instance of the Person class.

public class PersonMappingOperation extends MappingRecordOperation {

public PersonMappingOperation(ConnectionFactory connectionFactory) {
setConnectionFactory(connectionFactory);
CciInteractionSpec interactionSpec = new CciConnectionSpec();
interactionSpec.setSql("select * from person where person_id=?");
setInteractionSpec(interactionSpec);

}

protected Record createInputRecord(RecordFactory recordFactory, Object inputObject)
throws ResourceException {

Integer id = (Integer) inputObject;
IndexedRecord input = recordFactory.createIndexedRecord("input");
input.add(new Integer(id));
return input;

}

protected Object extractOutputData(Record outputRecord)
throws ResourceException, SQLException {

ResultSet rs = (ResultSet) outputRecord;
Person person = null;
if (rs.next()) {
Person person = new Person();
person.setId(rs.getInt("person_id"));
person.setLastName(rs.getString("person_last_name"));
person.setFirstName(rs.getString("person_first_name"));

}

Spring Framework

3.1 Reference Documentation 661

return person;
}

}

Then the application can execute the operation object, with the person identifier as argument. Note that
operation object could be set up as shared instance, as it is thread-safe.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

public Person getPerson(int id) {
PersonMappingOperation query = new PersonMappingOperation(getConnectionFactory());
Person person = (Person) query.execute(new Integer(id));
return person;

}
}

The corresponding configuration of Spring beans could look as follows in non-managed mode:

<bean id="managedConnectionFactory"
class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory">

<property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/>
<property name="driverName" value="org.hsqldb.jdbcDriver"/>

</bean>

<bean id="targetConnectionFactory"
class="org.springframework.jca.support.LocalConnectionFactoryBean">

<property name="managedConnectionFactory" ref="managedConnectionFactory"/>
</bean>

<bean id="connectionFactory"
class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">

<property name="targetConnectionFactory" ref="targetConnectionFactory"/>
<property name="connectionSpec">

<bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
<property name="user" value="sa"/>
<property name="password" value=""/>

</bean>
</property>

</bean>

<bean id="component" class="MyDaoImpl">
<property name="connectionFactory" ref="connectionFactory"/>

</bean>

In managed mode (that is, in a Java EE environment), the configuration could look as follows:

<jee:jndi-lookup id="targetConnectionFactory" jndi-name="eis/blackbox"/>

<bean id="connectionFactory"
class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">

<property name="targetConnectionFactory" ref="targetConnectionFactory"/>
<property name="connectionSpec">

<bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
<property name="user" value="sa"/>
<property name="password" value=""/>

</bean>
</property>

</bean>

<bean id="component" class="MyDaoImpl">
<property name="connectionFactory" ref="connectionFactory"/>

</bean>

Spring Framework

3.1 Reference Documentation 662

Example for MappingCommAreaOperation usage

In this section, the usage of the MappingCommAreaOperation will be shown: accessing a CICS with
ECI mode with the IBM CICS ECI connector.

Firstly, the CCI InteractionSpec needs to be initialized to specify which CICS program to access
and how to interact with it.

public abstract class EciMappingOperation extends MappingCommAreaOperation {

public EciMappingOperation(ConnectionFactory connectionFactory, String programName) {
setConnectionFactory(connectionFactory);
ECIInteractionSpec interactionSpec = new ECIInteractionSpec(),
interactionSpec.setFunctionName(programName);
interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);
interactionSpec.setCommareaLength(30);
setInteractionSpec(interactionSpec);
setOutputRecordCreator(new EciOutputRecordCreator());

}

private static class EciOutputRecordCreator implements RecordCreator {
public Record createRecord(RecordFactory recordFactory) throws ResourceException {
return new CommAreaRecord();

}
}

}

The abstract EciMappingOperation class can then be subclassed to specify mappings between
custom objects and Records.

public class MyDaoImpl extends CciDaoSupport implements MyDao {

public OutputObject getData(Integer id) {
EciMappingOperation query = new EciMappingOperation(getConnectionFactory(), "MYPROG") {
protected abstract byte[] objectToBytes(Object inObject) throws IOException {
Integer id = (Integer) inObject;
return String.valueOf(id);

}
protected abstract Object bytesToObject(byte[] bytes) throws IOException;
String str = new String(bytes);
String field1 = str.substring(0,6);
String field2 = str.substring(6,1);
String field3 = str.substring(7,1);
return new OutputObject(field1, field2, field3);

}
});

return (OutputObject) query.execute(new Integer(id));
}

}

The corresponding configuration of Spring beans could look as follows in non-managed mode:

<bean id="managedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
<property name="serverName" value="TXSERIES"/>
<property name="connectionURL" value="local:"/>
<property name="userName" value="CICSUSER"/>
<property name="password" value="CICS"/>

</bean>

Spring Framework

3.1 Reference Documentation 663

<bean id="connectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean">
<property name="managedConnectionFactory" ref="managedConnectionFactory"/>

</bean>

<bean id="component" class="MyDaoImpl">
<property name="connectionFactory" ref="connectionFactory"/>

</bean>

In managed mode (that is, in a Java EE environment), the configuration could look as follows:

<jee:jndi-lookup id="connectionFactory" jndi-name="eis/cicseci"/>

<bean id="component" class="MyDaoImpl">
<property name="connectionFactory" ref="connectionFactory"/>

</bean>

24.5 Transactions

JCA specifies several levels of transaction support for resource adapters. The kind of transactions that
your resource adapter supports is specified in its ra.xml file. There are essentially three options: none
(for example with CICS EPI connector), local transactions (for example with a CICS ECI connector),
global transactions (for example with an IMS connector).

<connector>

<resourceadapter>

<!-- <transaction-support>NoTransaction</transaction-support> -->
<!-- <transaction-support>LocalTransaction</transaction-support> -->
<transaction-support>XATransaction</transaction-support>

<resourceadapter>

<connector>

For global transactions, you can use Spring's generic transaction infrastructure to demarcate transactions,
with JtaTransactionManager as backend (delegating to the Java EE server's distributed transaction
coordinator underneath).

For local transactions on a single CCI ConnectionFactory, Spring provides a specific transaction
management strategy for CCI, analogous to the DataSourceTransactionManager for JDBC. The
CCI API defines a local transaction object and corresponding local transaction demarcation methods.
Spring's CciLocalTransactionManager executes such local CCI transactions, fully compliant
with Spring's generic PlatformTransactionManager abstraction.

<jee:jndi-lookup id="eciConnectionFactory" jndi-name="eis/cicseci"/>

<bean id="eciTransactionManager"
class="org.springframework.jca.cci.connection.CciLocalTransactionManager">

<property name="connectionFactory" ref="eciConnectionFactory"/>
</bean>

Both transaction strategies can be used with any of Spring's transaction demarcation facilities, be it

Spring Framework

3.1 Reference Documentation 664

declarative or programmatic. This is a consequence of Spring's generic
PlatformTransactionManager abstraction, which decouples transaction demarcation from the
actual execution strategy. Simply switch between JtaTransactionManager and
CciLocalTransactionManager as needed, keeping your transaction demarcation as-is.

For more information on Spring's transaction facilities, see the chapter entitled Chapter 11, Transaction
Management.

Spring Framework

3.1 Reference Documentation 665

25. Email

25.1 Introduction

Library dependencies

The following additional jars to be on the classpath of your application in order to be able to use the
Spring Framework's email library.

• The JavaMail mail.jar library

• The JAF activation.jar library

All of these libraries are freely available on the web.

The Spring Framework provides a helpful utility library for sending email that shields the user from the
specifics of the underlying mailing system and is responsible for low level resource handling on behalf of
the client.

The org.springframework.mail package is the root level package for the Spring Framework's
email support. The central interface for sending emails is the MailSender interface; a simple value
object encapsulating the properties of a simple mail such as from and to (plus many others) is the
SimpleMailMessage class. This package also contains a hierarchy of checked exceptions which
provide a higher level of abstraction over the lower level mail system exceptions with the root exception
being MailException. Please refer to the JavaDocs for more information on the rich mail exception
hierarchy.

The org.springframework.mail.javamail.JavaMailSender interface adds specialized
JavaMail features such as MIME message support to the MailSender interface (from which it
inherits). JavaMailSender also provides a callback interface for preparation of JavaMail MIME
messages, called org.springframework.mail.javamail.MimeMessagePreparator

25.2 Usage

Let's assume there is a business interface called OrderManager:

public interface OrderManager {

void placeOrder(Order order);
}

Let us also assume that there is a requirement stating that an email message with an order number needs

Spring Framework

3.1 Reference Documentation 666

http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/jaf/downloads/index.html

to be generated and sent to a customer placing the relevant order.

Basic MailSender and SimpleMailMessage usage

import org.springframework.mail.MailException;
import org.springframework.mail.MailSender;
import org.springframework.mail.SimpleMailMessage;

public class SimpleOrderManager implements OrderManager {

private MailSender mailSender;
private SimpleMailMessage templateMessage;

public void setMailSender(MailSender mailSender) {
this.mailSender = mailSender;

}

public void setTemplateMessage(SimpleMailMessage templateMessage) {
this.templateMessage = templateMessage;

}

public void placeOrder(Order order) {

// Do the business calculations...

// Call the collaborators to persist the order...

// Create a thread safe "copy" of the template message and customize it
SimpleMailMessage msg = new SimpleMailMessage(this.templateMessage);
msg.setTo(order.getCustomer().getEmailAddress());
msg.setText(

"Dear " + order.getCustomer().getFirstName()
+ order.getCustomer().getLastName()
+ ", thank you for placing order. Your order number is "
+ order.getOrderNumber());

try{
this.mailSender.send(msg);

}
catch(MailException ex) {

// simply log it and go on...
System.err.println(ex.getMessage());

}
}

}

Find below the bean definitions for the above code:

<bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
<property name="host" value="mail.mycompany.com"/>

</bean>

<!-- this is a template message that we can pre-load with default state -->
<bean id="templateMessage" class="org.springframework.mail.SimpleMailMessage">
<property name="from" value="customerservice@mycompany.com"/>
<property name="subject" value="Your order"/>

</bean>

<bean id="orderManager" class="com.mycompany.businessapp.support.SimpleOrderManager">
<property name="mailSender" ref="mailSender"/>
<property name="templateMessage" ref="templateMessage"/>

</bean>

Spring Framework

3.1 Reference Documentation 667

Using the JavaMailSender and the MimeMessagePreparator

Here is another implementation of OrderManager using the MimeMessagePreparator callback
interface. Please note in this case that the mailSender property is of type JavaMailSender so that
we are able to use the JavaMail MimeMessage class:

import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

import javax.mail.internet.MimeMessage;
import org.springframework.mail.MailException;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessagePreparator;

public class SimpleOrderManager implements OrderManager {

private JavaMailSender mailSender;

public void setMailSender(JavaMailSender mailSender) {
this.mailSender = mailSender;

}

public void placeOrder(final Order order) {

// Do the business calculations...

// Call the collaborators to persist the order...

MimeMessagePreparator preparator = new MimeMessagePreparator() {

public void prepare(MimeMessage mimeMessage) throws Exception {

mimeMessage.setRecipient(Message.RecipientType.TO,
new InternetAddress(order.getCustomer().getEmailAddress()));

mimeMessage.setFrom(new InternetAddress("mail@mycompany.com"));
mimeMessage.setText(

"Dear " + order.getCustomer().getFirstName() + " "
+ order.getCustomer().getLastName()
+ ", thank you for placing order. Your order number is "
+ order.getOrderNumber());

}
};
try {

this.mailSender.send(preparator);
}
catch (MailException ex) {

// simply log it and go on...
System.err.println(ex.getMessage());

}
}

}

Note

The mail code is a crosscutting concern and could well be a candidate for refactoring into a
custom Spring AOP aspect, which then could be executed at appropriate joinpoints on the
OrderManager target.

Spring Framework

3.1 Reference Documentation 668

The Spring Framework's mail support ships with the standard JavaMail implementation. Please refer to
the relevant JavaDocs for more information.

25.3 Using the JavaMail MimeMessageHelper

A class that comes in pretty handy when dealing with JavaMail messages is the
org.springframework.mail.javamail.MimeMessageHelper class, which shields you
from having to use the verbose JavaMail API. Using the MimeMessageHelper it is pretty easy to
create a MimeMessage:

// of course you would use DI in any real-world cases
JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();
MimeMessageHelper helper = new MimeMessageHelper(message);
helper.setTo("test@host.com");
helper.setText("Thank you for ordering!");

sender.send(message);

Sending attachments and inline resources

Multipart email messages allow for both attachments and inline resources. Examples of inline resources
would be images or a stylesheet you want to use in your message, but that you don't want displayed as an
attachment.

Attachments

The following example shows you how to use the MimeMessageHelper to send an email along with a
single JPEG image attachment.

JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();

// use the true flag to indicate you need a multipart message
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setTo("test@host.com");

helper.setText("Check out this image!");

// let's attach the infamous windows Sample file (this time copied to c:/)
FileSystemResource file = new FileSystemResource(new File("c:/Sample.jpg"));
helper.addAttachment("CoolImage.jpg", file);

sender.send(message);

Inline resources

Spring Framework

3.1 Reference Documentation 669

The following example shows you how to use the MimeMessageHelper to send an email along with
an inline image.

JavaMailSenderImpl sender = new JavaMailSenderImpl();
sender.setHost("mail.host.com");

MimeMessage message = sender.createMimeMessage();

// use the true flag to indicate you need a multipart message
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setTo("test@host.com");

// use the true flag to indicate the text included is HTML
helper.setText("<html><body></body></html>", true);

// let's include the infamous windows Sample file (this time copied to c:/)
FileSystemResource res = new FileSystemResource(new File("c:/Sample.jpg"));
helper.addInline("identifier1234", res);

sender.send(message);

Warning

Inline resources are added to the mime message using the specified Content-ID
(identifier1234 in the above example). The order in which you are adding the text and
the resource are very important. Be sure to first add the text and after that the resources. If
you are doing it the other way around, it won't work!

Creating email content using a templating library

The code in the previous examples explicitly created the content of the email message, using methods
calls such as message.setText(..). This is fine for simple cases, and it is okay in the context of the
aforementioned examples, where the intent was to show you the very basics of the API.

In your typical enterprise application though, you are not going to create the content of your emails using
the above approach for a number of reasons.

• Creating HTML-based email content in Java code is tedious and error prone

• There is no clear separation between display logic and business logic

• Changing the display structure of the email content requires writing Java code, recompiling,
redeploying...

Typically the approach taken to address these issues is to use a template library such as FreeMarker or
Velocity to define the display structure of email content. This leaves your code tasked only with creating
the data that is to be rendered in the email template and sending the email. It is definitely a best practice
for when the content of your emails becomes even moderately complex, and with the Spring Framework's
support classes for FreeMarker and Velocity becomes quite easy to do. Find below an example of using

Spring Framework

3.1 Reference Documentation 670

the Velocity template library to create email content.

A Velocity-based example

To use Velocity to create your email template(s), you will need to have the Velocity libraries available on
your classpath. You will also need to create one or more Velocity templates for the email content that
your application needs. Find below the Velocity template that this example will be using. As you can see
it is HTML-based, and since it is plain text it can be created using your favorite HTML or text editor.

in the com/foo/package
<html>
<body>
<h3>Hi ${user.userName}, welcome to the Chipping Sodbury On-the-Hill message boards!</h3>

<div>
Your email address is ${user.emailAddress}.

</div>
</body>

</html>

Find below some simple code and Spring XML configuration that makes use of the above Velocity
template to create email content and send email(s).

package com.foo;

import org.apache.velocity.app.VelocityEngine;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessageHelper;
import org.springframework.mail.javamail.MimeMessagePreparator;
import org.springframework.ui.velocity.VelocityEngineUtils;

import javax.mail.internet.MimeMessage;
import java.util.HashMap;
import java.util.Map;

public class SimpleRegistrationService implements RegistrationService {

private JavaMailSender mailSender;
private VelocityEngine velocityEngine;

public void setMailSender(JavaMailSender mailSender) {
this.mailSender = mailSender;

}

public void setVelocityEngine(VelocityEngine velocityEngine) {
this.velocityEngine = velocityEngine;

}

public void register(User user) {

// Do the registration logic...

sendConfirmationEmail(user);
}

private void sendConfirmationEmail(final User user) {
MimeMessagePreparator preparator = new MimeMessagePreparator() {

public void prepare(MimeMessage mimeMessage) throws Exception {
MimeMessageHelper message = new MimeMessageHelper(mimeMessage);
message.setTo(user.getEmailAddress());

Spring Framework

3.1 Reference Documentation 671

http://velocity.apache.org

message.setFrom("webmaster@csonth.gov.uk"); // could be parameterized...
Map model = new HashMap();
model.put("user", user);
String text = VelocityEngineUtils.mergeTemplateIntoString(

velocityEngine, "com/dns/registration-confirmation.vm", model);
message.setText(text, true);

}
};
this.mailSender.send(preparator);

}
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
<property name="host" value="mail.csonth.gov.uk"/>

</bean>

<bean id="registrationService" class="com.foo.SimpleRegistrationService">
<property name="mailSender" ref="mailSender"/>
<property name="velocityEngine" ref="velocityEngine"/>

</bean>

<bean id="velocityEngine" class="org.springframework.ui.velocity.VelocityEngineFactoryBean">
<property name="velocityProperties">

<value>
resource.loader=class
class.resource.loader.class=org.apache.velocity.runtime.resource.loader.ClasspathResourceLoader

</value>
</property>

</bean>

</beans>

Spring Framework

3.1 Reference Documentation 672

26. Task Execution and Scheduling

26.1 Introduction

The Spring Framework provides abstractions for asynchronous execution and scheduling of tasks with the
TaskExecutor and TaskScheduler interfaces, respectively. Spring also features implementations
of those interfaces that support thread pools or delegation to CommonJ within an application server
environment. Ultimately the use of these implementations behind the common interfaces abstracts away
the differences between Java SE 5, Java SE 6 and Java EE environments.

Spring also features integration classes for supporting scheduling with the Timer, part of the JDK since
1.3, and the Quartz Scheduler (http://www.opensymphony.com/quartz/). Both of those schedulers are set
up using a FactoryBean with optional references to Timer or Trigger instances, respectively.
Furthermore, a convenience class for both the Quartz Scheduler and the Timer is available that allows
you to invoke a method of an existing target object (analogous to the normal
MethodInvokingFactoryBean operation).

26.2 The Spring TaskExecutor abstraction

Spring 2.0 introduces a new abstraction for dealing with executors. Executors are the Java 5 name for the
concept of thread pools. The "executor" naming is due to the fact that there is no guarantee that the
underlying implementation is actually a pool; an executor may be single-threaded or even synchronous.
Spring's abstraction hides implementation details between Java SE 1.4, Java SE 5 and Java EE
environments.

Spring's TaskExecutor interface is identical to the java.util.concurrent.Executor
interface. In fact, its primary reason for existence is to abstract away the need for Java 5 when using
thread pools. The interface has a single method execute(Runnable task) that accepts a task for
execution based on the semantics and configuration of the thread pool.

The TaskExecutor was originally created to give other Spring components an abstraction for thread
pooling where needed. Components such as the ApplicationEventMulticaster, JMS's
AbstractMessageListenerContainer, and Quartz integration all use the TaskExecutor
abstraction to pool threads. However, if your beans need thread pooling behavior, it is possible to use this
abstraction for your own needs.

TaskExecutor types

There are a number of pre-built implementations of TaskExecutor included with the Spring
distribution. In all likelihood, you shouldn't ever need to implement your own.

Spring Framework

3.1 Reference Documentation 673

http://www.opensymphony.com/quartz/

• SimpleAsyncTaskExecutor

This implementation does not reuse any threads, rather it starts up a new thread for each invocation.
However, it does support a concurrency limit which will block any invocations that are over the limit
until a slot has been freed up. If you're looking for true pooling, keep scrolling further down the page.

• SyncTaskExecutor

This implementation doesn't execute invocations asynchronously. Instead, each invocation takes place
in the calling thread. It is primarily used in situations where multithreading isn't necessary such as
simple test cases.

• ConcurrentTaskExecutor

This implementation is a wrapper for a Java 5 java.util.concurrent.Executor. There is an
alternative, ThreadPoolTaskExecutor, that exposes the Executor configuration parameters as
bean properties. It is rare to need to use the ConcurrentTaskExecutor but if the
ThreadPoolTaskExecutor isn't robust enough for your needs, the
ConcurrentTaskExecutor is an alternative.

• SimpleThreadPoolTaskExecutor

This implementation is actually a subclass of Quartz's SimpleThreadPool which listens to Spring's
lifecycle callbacks. This is typically used when you have a thread pool that may need to be shared by
both Quartz and non-Quartz components.

• ThreadPoolTaskExecutor

It is not possible to use any backport or alternate versions of the java.util.concurrent
package with this implementation. Both Doug Lea's and Dawid Kurzyniec's implementations use
different package structures which will prevent them from working correctly.

This implementation can only be used in a Java 5 environment but is also the most commonly used one
in that environment. It exposes bean properties for configuring a
java.util.concurrent.ThreadPoolExecutor and wraps it in a TaskExecutor. If you
need something advanced such as a ScheduledThreadPoolExecutor, it is recommended that
you use a ConcurrentTaskExecutor instead.

• TimerTaskExecutor

This implementation uses a single TimerTask as its backing implementation. It's different from the
SyncTaskExecutor in that the method invocations are executed in a separate thread, although they
are synchronous in that thread.

• WorkManagerTaskExecutor

Spring Framework

3.1 Reference Documentation 674

CommonJ is a set of specifications jointly developed between BEA and IBM. These specifications
are not Java EE standards, but are standard across BEA's and IBM's Application Server
implementations.

This implementation uses the CommonJ WorkManager as its backing implementation and is the central
convenience class for setting up a CommonJ WorkManager reference in a Spring context. Similar to
the SimpleThreadPoolTaskExecutor, this class implements the WorkManager interface and
therefore can be used directly as a WorkManager as well.

Using a TaskExecutor

Spring's TaskExecutor implementations are used as simple JavaBeans. In the example below, we
define a bean that uses the ThreadPoolTaskExecutor to asynchronously print out a set of
messages.

import org.springframework.core.task.TaskExecutor;

public class TaskExecutorExample {

private class MessagePrinterTask implements Runnable {

private String message;

public MessagePrinterTask(String message) {
this.message = message;

}

public void run() {
System.out.println(message);

}

}

private TaskExecutor taskExecutor;

public TaskExecutorExample(TaskExecutor taskExecutor) {
this.taskExecutor = taskExecutor;

}

public void printMessages() {
for(int i = 0; i < 25; i++) {
taskExecutor.execute(new MessagePrinterTask("Message" + i));

}
}

}

As you can see, rather than retrieving a thread from the pool and executing yourself, you add your
Runnable to the queue and the TaskExecutor uses its internal rules to decide when the task gets
executed.

To configure the rules that the TaskExecutor will use, simple bean properties have been exposed.

Spring Framework

3.1 Reference Documentation 675

<bean id="taskExecutor" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
<property name="corePoolSize" value="5" />
<property name="maxPoolSize" value="10" />
<property name="queueCapacity" value="25" />

</bean>

<bean id="taskExecutorExample" class="TaskExecutorExample">
<constructor-arg ref="taskExecutor" />

</bean>

26.3 The Spring TaskScheduler abstraction

In addition to the TaskExecutor abstraction, Spring 3.0 introduces a TaskScheduler with a variety
of methods for scheduling tasks to run at some point in the future.

public interface TaskScheduler {

ScheduledFuture schedule(Runnable task, Trigger trigger);

ScheduledFuture schedule(Runnable task, Date startTime);

ScheduledFuture scheduleAtFixedRate(Runnable task, Date startTime, long period);

ScheduledFuture scheduleAtFixedRate(Runnable task, long period);

ScheduledFuture scheduleWithFixedDelay(Runnable task, Date startTime, long delay);

ScheduledFuture scheduleWithFixedDelay(Runnable task, long delay);

}

The simplest method is the one named 'schedule' that takes a Runnable and Date only. That will cause
the task to run once after the specified time. All of the other methods are capable of scheduling tasks to
run repeatedly. The fixed-rate and fixed-delay methods are for simple, periodic execution, but the method
that accepts a Trigger is much more flexible.

The Trigger interface

The Trigger interface is essentially inspired by JSR-236, which, as of Spring 3.0, has not yet been
officially implemented. The basic idea of the Trigger is that execution times may be determined based
on past execution outcomes or even arbitrary conditions. If these determinations do take into account the
outcome of the preceding execution, that information is available within a TriggerContext. The
Trigger interface itself is quite simple:

public interface Trigger {

Date nextExecutionTime(TriggerContext triggerContext);

}

As you can see, the TriggerContext is the most important part. It encapsulates all of the relevant
data, and is open for extension in the future if necessary. The TriggerContext is an interface (a

Spring Framework

3.1 Reference Documentation 676

SimpleTriggerContext implementation is used by default). Here you can see what methods are
available for Trigger implementations.

public interface TriggerContext {

Date lastScheduledExecutionTime();

Date lastActualExecutionTime();

Date lastCompletionTime();

}

Trigger implementations

Spring provides two implementations of the Trigger interface. The most interesting one is the
CronTrigger. It enables the scheduling of tasks based on cron expressions. For example the following
task is being scheduled to run 15 minutes past each hour but only during the 9-to-5 "business hours" on
weekdays.

scheduler.schedule(task, new CronTrigger("* 15 9-17 * * MON-FRI"));

The other out-of-the-box implementation is a PeriodicTrigger that accepts a fixed period, an
optional initial delay value, and a boolean to indicate whether the period should be interpreted as a
fixed-rate or a fixed-delay. Since the TaskScheduler interface already defines methods for scheduling
tasks at a fixed-rate or with a fixed-delay, those methods should be used directly whenever possible. The
value of the PeriodicTrigger implementation is that it can be used within components that rely on
the Trigger abstraction. For example, it may be convenient to allow periodic triggers, cron-based
triggers, and even custom trigger implementations to be used interchangeably. Such a component could
take advantage of dependency injection so that such Triggers could be configured externally.

TaskScheduler implementations

As with Spring's TaskExecutor abstraction, the primary benefit of the TaskScheduler is that code
relying on scheduling behavior need not be coupled to a particular scheduler implementation. The
flexibility this provides is particularly relevant when running within Application Server environments
where threads should not be created directly by the application itself. For such cases, Spring provides a
TimerManagerTaskScheduler that delegates to a CommonJ TimerManager instance, typically
configured with a JNDI-lookup.

A simpler alternative, the ThreadPoolTaskScheduler, can be used whenever external thread
management is not a requirement. Internally, it delegates to a ScheduledExecutorService
instance. ThreadPoolTaskScheduler actually implements Spring's TaskExecutor interface as
well, so that a single instance can be used for asynchronous execution as soon as possible as well as
scheduled, and potentially recurring, executions.

Spring Framework

3.1 Reference Documentation 677

26.4 The Task Namespace

Beginning with Spring 3.0, there is an XML namespace for configuring TaskExecutor and
TaskScheduler instances. It also provides a convenient way to configure tasks to be scheduled with a
trigger.

The 'scheduler' element

The following element will create a ThreadPoolTaskScheduler instance with the specified thread
pool size.

<task:scheduler id="scheduler" pool-size="10"/>

The value provided for the 'id' attribute will be used as the prefix for thread names within the pool. The
'scheduler' element is relatively straightforward. If you do not provide a 'pool-size' attribute, the default
thread pool will only have a single thread. There are no other configuration options for the scheduler.

The 'executor' element

The following will create a ThreadPoolTaskExecutor instance:

<task:executor id="executor" pool-size="10"/>

As with the scheduler above, the value provided for the 'id' attribute will be used as the prefix for thread
names within the pool. As far as the pool size is concerned, the 'executor' element supports more
configuration options than the 'scheduler' element. For one thing, the thread pool for a
ThreadPoolTaskExecutor is itself more configurable. Rather than just a single size, an executor's
thread pool may have different values for the core and the max size. If a single value is provided then the
executor will have a fixed-size thread pool (the core and max sizes are the same). However, the 'executor'
element's 'pool-size' attribute also accepts a range in the form of "min-max".

<task:executor id="executorWithPoolSizeRange"
pool-size="5-25"
queue-capacity="100"/>

As you can see from that configuration, a 'queue-capacity' value has also been provided. The
configuration of the thread pool should also be considered in light of the executor's queue capacity. For
the full description of the relationship between pool size and queue capacity, consult the documentation
for ThreadPoolExecutor. The main idea is that when a task is submitted, the executor will first try to use a
free thread if the number of active threads is currently less than the core size. If the core size has been
reached, then the task will be added to the queue as long as its capacity has not yet been reached. Only
then, if the queue's capacity has been reached, will the executor create a new thread beyond the core size.
If the max size has also been reached, then the executor will reject the task.

By default, the queue is unbounded, but this is rarely the desired configuration, because it can lead to

Spring Framework

3.1 Reference Documentation 678

http://java.sun.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.html

OutOfMemoryErrors if enough tasks are added to that queue while all pool threads are busy.
Furthermore, if the queue is unbounded, then the max size has no effect at all. Since the executor will
always try the queue before creating a new thread beyond the core size, a queue must have a finite
capacity for the thread pool to grow beyond the core size (this is why a fixed size pool is the only sensible
case when using an unbounded queue).

In a moment, we will review the effects of the keep-alive setting which adds yet another factor to consider
when providing a pool size configuration. First, let's consider the case, as mentioned above, when a task is
rejected. By default, when a task is rejected, a thread pool executor will throw a
TaskRejectedException. However, the rejection policy is actually configurable. The exception is
thrown when using the default rejection policy which is the AbortPolicy implementation. For
applications where some tasks can be skipped under heavy load, either the DiscardPolicy or
DiscardOldestPolicy may be configured instead. Another option that works well for applications
that need to throttle the submitted tasks under heavy load is the CallerRunsPolicy. Instead of
throwing an exception or discarding tasks, that policy will simply force the thread that is calling the
submit method to run the task itself. The idea is that such a caller will be busy while running that task and
not able to submit other tasks immediately. Therefore it provides a simple way to throttle the incoming
load while maintaining the limits of the thread pool and queue. Typically this allows the executor to
"catch up" on the tasks it is handling and thereby frees up some capacity on the queue, in the pool, or
both. Any of these options can be chosen from an enumeration of values available for the
'rejection-policy' attribute on the 'executor' element.

<task:executor id="executorWithCallerRunsPolicy"
pool-size="5-25"
queue-capacity="100"
rejection-policy="CALLER_RUNS"/>

The 'scheduled-tasks' element

The most powerful feature of Spring's task namespace is the support for configuring tasks to be scheduled
within a Spring Application Context. This follows an approach similar to other "method-invokers" in
Spring, such as that provided by the JMS namespace for configuring Message-driven POJOs. Basically a
"ref" attribute can point to any Spring-managed object, and the "method" attribute provides the name of a
method to be invoked on that object. Here is a simple example.

<task:scheduled-tasks scheduler="myScheduler">
<task:scheduled ref="someObject" method="someMethod" fixed-delay="5000"/>

</task:scheduled-tasks>

<task:scheduler id="myScheduler" pool-size="10"/>

As you can see, the scheduler is referenced by the outer element, and each individual task includes the
configuration of its trigger metadata. In the preceding example, that metadata defines a periodic trigger
with a fixed delay. It could also be configured with a "fixed-rate", or for more control, a "cron" attribute
could be provided instead. Here's an example featuring these other options.

<task:scheduled-tasks scheduler="myScheduler">
<task:scheduled ref="someObject" method="someMethod" fixed-rate="5000"/>
<task:scheduled ref="anotherObject" method="anotherMethod" cron="*/5 * * * * MON-FRI"/>

Spring Framework

3.1 Reference Documentation 679

</task:scheduled-tasks>

<task:scheduler id="myScheduler" pool-size="10"/>

26.5 Annotation Support for Scheduling and Asynchronous
Execution

Spring 3.0 also adds annotation support for both task scheduling and asynchronous method execution.

The @Scheduled Annotation

The @Scheduled annotation can be added to a method along with trigger metadata. For example, the
following method would be invoked every 5 seconds with a fixed delay, meaning that the period will be
measured from the completion time of each preceding invocation.

@Scheduled(fixedDelay=5000)
public void doSomething() {

// something that should execute periodically
}

If a fixed rate execution is desired, simply change the property name specified within the annotation. The
following would be executed every 5 seconds measured between the successive start times of each
invocation.

@Scheduled(fixedRate=5000)
public void doSomething() {

// something that should execute periodically
}

If simple periodic scheduling is not expressive enough, then a cron expression may be provided. For
example, the following will only execute on weekdays.

@Scheduled(cron="*/5 * * * * MON-FRI")
public void doSomething() {

// something that should execute on weekdays only
}

Notice that the methods to be scheduled must have void returns and must not expect any arguments. If the
method needs to interact with other objects from the Application Context, then those would typically have
been provided through dependency injection.

Note

Make sure that you are not initializing multiple instances of the same @Scheduled annotation
class at runtime, unless you do want to schedule callbacks to each such instance. Related to
this, make sure that you do not use @Configurable on bean classes which are annotated with
@Scheduled and registered as regular Spring beans with the container: You would get double
initialization otherwise, once through the container and once through the @Configurable

Spring Framework

3.1 Reference Documentation 680

aspect, with the consequence of each @Scheduled method being invoked twice.

The @Async Annotation

The @Async annotation can be provided on a method so that invocation of that method will occur
asynchronously. In other words, the caller will return immediately upon invocation and the actual
execution of the method will occur in a task that has been submitted to a Spring TaskExecutor. In the
simplest case, the annotation may be applied to a void-returning method.

@Async
void doSomething() {

// this will be executed asynchronously
}

Unlike the methods annotated with the @Scheduled annotation, these methods can expect arguments,
because they will be invoked in the "normal" way by callers at runtime rather than from a scheduled task
being managed by the container. For example, the following is a legitimate application of the @Async
annotation.

@Async
void doSomething(String s) {

// this will be executed asynchronously
}

Even methods that return a value can be invoked asynchronously. However, such methods are required to
have a Future typed return value. This still provides the benefit of asynchronous execution so that the
caller can perform other tasks prior to calling get() on that Future.

@Async
Future<String> returnSomething(int i) {

// this will be executed asynchronously
}

@Async can not be used in conjunction with lifecycle callbacks such as @PostConstruct. To
asynchonously initialize Spring beans you currently have to use a separate initializing Spring bean that
invokes the @Async annotated method on the target then.

public class SampleBeanImpl implements SampleBean {

@Async
void doSomething() { … }

}

public class SampleBeanInititalizer {

private final SampleBean bean;

public SampleBeanInitializer(SampleBean bean) {
this.bean = bean;

}

Spring Framework

3.1 Reference Documentation 681

@PostConstruct
public void initialize() {

bean.doSomething();
}

}

The <annotation-driven> Element

To enable both @Scheduled and @Async annotations, simply include the 'annotation-driven' element
from the task namespace in your configuration.

<task:annotation-driven executor="myExecutor" scheduler="myScheduler"/>

<task:executor id="myExecutor" pool-size="5"/>

<task:scheduler id="myScheduler" pool-size="10"/>}

Notice that an executor reference is provided for handling those tasks that correspond to methods with the
@Async annotation, and the scheduler reference is provided for managing those methods annotated with
@Scheduled.

26.6 Using the OpenSymphony Quartz Scheduler

Quartz uses Trigger, Job and JobDetail objects to realize scheduling of all kinds of jobs. For the
basic concepts behind Quartz, have a look at http://www.opensymphony.com/quartz. For convenience
purposes, Spring offers a couple of classes that simplify the usage of Quartz within Spring-based
applications.

Using the JobDetailBean

JobDetail objects contain all information needed to run a job. The Spring Framework provides a
JobDetailBean that makes the JobDetail more of an actual JavaBean with sensible defaults. Let's
have a look at an example:

<bean name="exampleJob" class="org.springframework.scheduling.quartz.JobDetailBean">
<property name="jobClass" value="example.ExampleJob" />
<property name="jobDataAsMap">

<map>
<entry key="timeout" value="5" />

</map>
</property>

</bean>

The job detail bean has all information it needs to run the job (ExampleJob). The timeout is specified in
the job data map. The job data map is available through the JobExecutionContext (passed to you at
execution time), but the JobDetailBean also maps the properties from the job data map to properties
of the actual job. So in this case, if the ExampleJob contains a property named timeout, the
JobDetailBean will automatically apply it:

Spring Framework

3.1 Reference Documentation 682

http://www.opensymphony.com/quartz

package example;

public class ExampleJob extends QuartzJobBean {

private int timeout;

/**
* Setter called after the ExampleJob is instantiated
* with the value from the JobDetailBean (5)
*/

public void setTimeout(int timeout) {
this.timeout = timeout;

}

protected void executeInternal(JobExecutionContext ctx) throws JobExecutionException {
// do the actual work

}
}

All additional settings from the job detail bean are of course available to you as well.

Note: Using the name and group properties, you can modify the name and the group of the job,
respectively. By default, the name of the job matches the bean name of the job detail bean (in the example
above, this is exampleJob).

Using the MethodInvokingJobDetailFactoryBean

Often you just need to invoke a method on a specific object. Using the
MethodInvokingJobDetailFactoryBean you can do exactly this:

<bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
<property name="targetObject" ref="exampleBusinessObject" />
<property name="targetMethod" value="doIt" />

</bean>

The above example will result in the doIt method being called on the exampleBusinessObject
method (see below):

public class ExampleBusinessObject {

// properties and collaborators

public void doIt() {
// do the actual work

}
}

<bean id="exampleBusinessObject" class="examples.ExampleBusinessObject"/>

Using the MethodInvokingJobDetailFactoryBean, you don't need to create one-line jobs that
just invoke a method, and you only need to create the actual business object and wire up the detail object.

By default, Quartz Jobs are stateless, resulting in the possibility of jobs interfering with each other. If you
specify two triggers for the same JobDetail, it might be possible that before the first job has finished,

Spring Framework

3.1 Reference Documentation 683

the second one will start. If JobDetail classes implement the Stateful interface, this won't happen.
The second job will not start before the first one has finished. To make jobs resulting from the
MethodInvokingJobDetailFactoryBean non-concurrent, set the concurrent flag to false.

<bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
<property name="targetObject" ref="exampleBusinessObject" />
<property name="targetMethod" value="doIt" />
<property name="concurrent" value="false" />

</bean>

Note

By default, jobs will run in a concurrent fashion.

Wiring up jobs using triggers and the SchedulerFactoryBean

We've created job details and jobs. We've also reviewed the convenience bean that allows you to invoke a
method on a specific object. Of course, we still need to schedule the jobs themselves. This is done using
triggers and a SchedulerFactoryBean. Several triggers are available within Quartz. Spring offers
two subclassed triggers with convenient defaults: CronTriggerBean and SimpleTriggerBean.

Triggers need to be scheduled. Spring offers a SchedulerFactoryBean that exposes triggers to be
set as properties. SchedulerFactoryBean schedules the actual jobs with those triggers.

Find below a couple of examples:

<bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean">
<!-- see the example of method invoking job above -->
<property name="jobDetail" ref="jobDetail" />
<!-- 10 seconds -->
<property name="startDelay" value="10000" />
<!-- repeat every 50 seconds -->
<property name="repeatInterval" value="50000" />

</bean>

<bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean">
<property name="jobDetail" ref="exampleJob" />
<!-- run every morning at 6 AM -->
<property name="cronExpression" value="0 0 6 * * ?" />

</bean>

Now we've set up two triggers, one running every 50 seconds with a starting delay of 10 seconds and one
every morning at 6 AM. To finalize everything, we need to set up the SchedulerFactoryBean:

<bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
<property name="triggers">

<list>
<ref bean="cronTrigger" />
<ref bean="simpleTrigger" />

</list>
</property>

</bean>

Spring Framework

3.1 Reference Documentation 684

More properties are available for the SchedulerFactoryBean for you to set, such as the calendars
used by the job details, properties to customize Quartz with, etc. Have a look at the
SchedulerFactoryBean Javadoc for more information.

26.7 Using JDK Timer support

The other way to schedule jobs in Spring is to use JDK Timer objects. You can create custom timers or
use the timer that invokes methods. Wiring timers is done using the TimerFactoryBean.

Creating custom timers

Using the TimerTask you can create customer timer tasks, similar to Quartz jobs:

public class CheckEmailAddresses extends TimerTask {

private List emailAddresses;

public void setEmailAddresses(List emailAddresses) {
this.emailAddresses = emailAddresses;

}

public void run() {
// iterate over all email addresses and archive them

}
}

Wiring it up is simple:

<bean id="checkEmail" class="examples.CheckEmailAddress">
<property name="emailAddresses">

<list>
<value>test@springframework.org</value>
<value>foo@bar.com</value>
<value>john@doe.net</value>

</list>
</property>

</bean>

<bean id="scheduledTask" class="org.springframework.scheduling.timer.ScheduledTimerTask">
<!-- wait 10 seconds before starting repeated execution -->
<property name="delay" value="10000" />
<!-- run every 50 seconds -->
<property name="period" value="50000" />
<property name="timerTask" ref="checkEmail" />

</bean>

Note that letting the task only run once can be done by changing the period property to 0 (or a negative
value).

Using the MethodInvokingTimerTaskFactoryBean

Similar to the Quartz support, the Timer support also features a component that allows you to

Spring Framework

3.1 Reference Documentation 685

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/scheduling/quartz/SchedulerFactoryBean.html

periodically invoke a method:

<bean id="doIt" class="org.springframework.scheduling.timer.MethodInvokingTimerTaskFactoryBean">
<property name="targetObject" ref="exampleBusinessObject" />
<property name="targetMethod" value="doIt" />

</bean>

The above example will result in the doIt method being called on the exampleBusinessObject
(see below):

public class BusinessObject {

// properties and collaborators

public void doIt() {
// do the actual work

}
}

Changing the timerTask reference of the ScheduledTimerTask example to the bean doIt will
result in the doIt method being executed on a fixed schedule.

Wrapping up: setting up the tasks using the TimerFactoryBean

The TimerFactoryBean is similar to the Quartz SchedulerFactoryBean in that it serves the
same purpose: setting up the actual scheduling. The TimerFactoryBean sets up an actual Timer and
schedules the tasks it has references to. You can specify whether or not daemon threads should be used.

<bean id="timerFactory" class="org.springframework.scheduling.timer.TimerFactoryBean">
<property name="scheduledTimerTasks">

<list>
<!-- see the example above -->
<ref bean="scheduledTask" />

</list>
</property>

</bean>

Spring Framework

3.1 Reference Documentation 686

27. Dynamic language support

27.1 Introduction

Why only these languages?

The supported languages were chosen because a) the languages have a lot of traction in the Java
enterprise community, b) no requests were made for other languages within the Spring 2.0
development timeframe, and c) the Spring developers were most familiar with them.

There is nothing stopping the inclusion of further languages though. If you want to see support for
<insert your favourite dynamic language here>, you can always raise an issue on Spring's JIRA
page (or implement such support yourself).

Spring 2.0 introduces comprehensive support for using classes and objects that have been defined using a
dynamic language (such as JRuby) with Spring. This support allows you to write any number of classes in
a supported dynamic language, and have the Spring container transparently instantiate, configure and
dependency inject the resulting objects.

The dynamic languages currently supported are:

• JRuby 0.9 / 1.0

• Groovy 1.0 / 1.5

• BeanShell 2.0

Fully working examples of where this dynamic language support can be immediately useful are described
in Section 27.4, “Scenarios”.

Note: Only the specific versions as listed above are supported in Spring 2.5. In particular, JRuby 1.1
(which introduced many incompatible API changes) is not supported at this point of time.

27.2 A first example

This bulk of this chapter is concerned with describing the dynamic language support in detail. Before
diving into all of the ins and outs of the dynamic language support, let's look at a quick example of a bean
defined in a dynamic language. The dynamic language for this first bean is Groovy (the basis of this
example was taken from the Spring test suite, so if you want to see equivalent examples in any of the
other supported languages, take a look at the source code).

Spring Framework

3.1 Reference Documentation 687

http://opensource.atlassian.com/projects/spring/secure/Dashboard.jspa

Find below the Messenger interface that the Groovy bean is going to be implementing, and note that
this interface is defined in plain Java. Dependent objects that are injected with a reference to the
Messenger won't know that the underlying implementation is a Groovy script.

package org.springframework.scripting;

public interface Messenger {

String getMessage();
}

Here is the definition of a class that has a dependency on the Messenger interface.

package org.springframework.scripting;

public class DefaultBookingService implements BookingService {

private Messenger messenger;

public void setMessenger(Messenger messenger) {
this.messenger = messenger;

}

public void processBooking() {
// use the injected Messenger object...

}
}

Here is an implementation of the Messenger interface in Groovy.

// from the file 'Messenger.groovy'
package org.springframework.scripting.groovy;

// import the Messenger interface (written in Java) that is to be implemented
import org.springframework.scripting.Messenger

// define the implementation in Groovy
class GroovyMessenger implements Messenger {

String message
}

Finally, here are the bean definitions that will effect the injection of the Groovy-defined Messenger
implementation into an instance of the DefaultBookingService class.

Note

To use the custom dynamic language tags to define dynamic-language-backed beans, you
need to have the XML Schema preamble at the top of your Spring XML configuration file.
You also need to be using a Spring ApplicationContext implementation as your IoC
container. Using the dynamic-language-backed beans with a plain BeanFactory
implementation is supported, but you have to manage the plumbing of the Spring internals to
do so.

For more information on schema-based configuration, see Appendix C, XML Schema-based

Spring Framework

3.1 Reference Documentation 688

configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:lang="http://www.springframework.org/schema/lang"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-3.0.xsd">

<!-- this is the bean definition for the Groovy-backed Messenger implementation -->
<lang:groovy id="messenger" script-source="classpath:Messenger.groovy">

<lang:property name="message" value="I Can Do The Frug" />
</lang:groovy>

<!-- an otherwise normal bean that will be injected by the Groovy-backed Messenger -->
<bean id="bookingService" class="x.y.DefaultBookingService">

<property name="messenger" ref="messenger" />
</bean>

</beans>

The bookingService bean (a DefaultBookingService) can now use its private messenger
member variable as normal because the Messenger instance that was injected into it is a Messenger
instance. There is nothing special going on here, just plain Java and plain Groovy.

Hopefully the above XML snippet is self-explanatory, but don't worry unduly if it isn't. Keep reading for
the in-depth detail on the whys and wherefores of the above configuration.

27.3 Defining beans that are backed by dynamic languages

This section describes exactly how you define Spring managed beans in any of the supported dynamic
languages.

Please note that this chapter does not attempt to explain the syntax and idioms of the supported dynamic
languages. For example, if you want to use Groovy to write certain of the classes in your application, then
the assumption is that you already know Groovy. If you need further details about the dynamic languages
themselves, please consult Section 27.6, “Further Resources” at the end of this chapter.

Common concepts

The steps involved in using dynamic-language-backed beans are as follows:

1. Write the test for the dynamic language source code (naturally)

2. Then write the dynamic language source code itself :)

3. Define your dynamic-language-backed beans using the appropriate <lang:language/> element in
the XML configuration (you can of course define such beans programmatically using the Spring API -
although you will have to consult the source code for directions on how to do this as this type of

Spring Framework

3.1 Reference Documentation 689

advanced configuration is not covered in this chapter). Note this is an iterative step. You will need at
least one bean definition per dynamic language source file (although the same dynamic language
source file can of course be referenced by multiple bean definitions).

The first two steps (testing and writing your dynamic language source files) are beyond the scope of this
chapter. Refer to the language specification and / or reference manual for your chosen dynamic language
and crack on with developing your dynamic language source files. You will first want to read the rest of
this chapter though, as Spring's dynamic language support does make some (small) assumptions about the
contents of your dynamic language source files.

The <lang:language/> element

XML Schema

All of the configuration examples in this chapter make use of the new XML Schema support that
was added in Spring 2.0.

It is possible to forego the use of XML Schema and stick with the old-style DTD based validation
of your Spring XML files, but then you lose out on the convenience offered by the
<lang:language/> element. See the Spring test suite for examples of the older style
configuration that doesn't require XML Schema-based validation (it is quite verbose and doesn't
hide any of the underlying Spring implementation from you).

The final step involves defining dynamic-language-backed bean definitions, one for each bean that you
want to configure (this is no different from normal JavaBean configuration). However, instead of
specifying the fully qualified classname of the class that is to be instantiated and configured by the
container, you use the <lang:language/> element to define the dynamic language-backed bean.

Each of the supported languages has a corresponding <lang:language/> element:

• <lang:jruby/> (JRuby)

• <lang:groovy/> (Groovy)

• <lang:bsh/> (BeanShell)

The exact attributes and child elements that are available for configuration depends on exactly which
language the bean has been defined in (the language-specific sections below provide the full lowdown on
this).

Refreshable beans

One of the (if not the) most compelling value adds of the dynamic language support in Spring is the
'refreshable bean' feature.

Spring Framework

3.1 Reference Documentation 690

A refreshable bean is a dynamic-language-backed bean that with a small amount of configuration, a
dynamic-language-backed bean can monitor changes in its underlying source file resource, and then
reload itself when the dynamic language source file is changed (for example when a developer edits and
saves changes to the file on the filesystem).

This allows a developer to deploy any number of dynamic language source files as part of an application,
configure the Spring container to create beans backed by dynamic language source files (using the
mechanisms described in this chapter), and then later, as requirements change or some other external
factor comes into play, simply edit a dynamic language source file and have any change they make
reflected in the bean that is backed by the changed dynamic language source file. There is no need to shut
down a running application (or redeploy in the case of a web application). The dynamic-language-backed
bean so amended will pick up the new state and logic from the changed dynamic language source file.

Note

Please note that this feature is off by default.

Let's take a look at an example to see just how easy it is to start using refreshable beans. To turn on the
refreshable beans feature, you simply have to specify exactly one additional attribute on the
<lang:language/> element of your bean definition. So if we stick with the example from earlier in
this chapter, here's what we would change in the Spring XML configuration to effect refreshable beans:

<beans>

<!-- this bean is now 'refreshable' due to the presence of the 'refresh-check-delay' attribute -->
<lang:groovy id="messenger"

refresh-check-delay="5000" <!-- switches refreshing on with 5 seconds between checks -->
script-source="classpath:Messenger.groovy">

<lang:property name="message" value="I Can Do The Frug" />
</lang:groovy>

<bean id="bookingService" class="x.y.DefaultBookingService">
<property name="messenger" ref="messenger" />

</bean>

</beans>

That really is all you have to do. The 'refresh-check-delay' attribute defined on the
'messenger' bean definition is the number of milliseconds after which the bean will be refreshed with
any changes made to the underlying dynamic language source file. You can turn off the refresh behavior
by assigning a negative value to the 'refresh-check-delay' attribute. Remember that, by default,
the refresh behavior is disabled. If you don't want the refresh behavior, then simply don't define the
attribute.

If we then run the following application we can exercise the refreshable feature; please do excuse the
'jumping-through-hoops-to-pause-the-execution' shenanigans in this next slice of code. The
System.in.read() call is only there so that the execution of the program pauses while I (the author)
go off and edit the underlying dynamic language source file so that the refresh will trigger on the
dynamic-language-backed bean when the program resumes execution.

Spring Framework

3.1 Reference Documentation 691

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.scripting.Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {

ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");
Messenger messenger = (Messenger) ctx.getBean("messenger");
System.out.println(messenger.getMessage());
// pause execution while I go off and make changes to the source file...
System.in.read();
System.out.println(messenger.getMessage());

}
}

Let's assume then, for the purposes of this example, that all calls to the getMessage() method of
Messenger implementations have to be changed such that the message is surrounded by quotes. Below
are the changes that I (the author) make to the Messenger.groovy source file when the execution of
the program is paused.

package org.springframework.scripting

class GroovyMessenger implements Messenger {

private String message = "Bingo"

public String getMessage() {
// change the implementation to surround the message in quotes
return "'" + this.message + "'"

}

public void setMessage(String message) {
this.message = message

}
}

When the program executes, the output before the input pause will be I Can Do The Frug. After the
change to the source file is made and saved, and the program resumes execution, the result of calling the
getMessage() method on the dynamic-language-backed Messenger implementation will be 'I
Can Do The Frug' (notice the inclusion of the additional quotes).

It is important to understand that changes to a script will not trigger a refresh if the changes occur within
the window of the 'refresh-check-delay' value. It is equally important to understand that
changes to the script are not actually 'picked up' until a method is called on the dynamic-language-backed
bean. It is only when a method is called on a dynamic-language-backed bean that it checks to see if its
underlying script source has changed. Any exceptions relating to refreshing the script (such as
encountering a compilation error, or finding that the script file has been deleted) will result in a fatal
exception being propagated to the calling code.

The refreshable bean behavior described above does not apply to dynamic language source files defined
using the <lang:inline-script/> element notation (see the section called “Inline dynamic
language source files”). Additionally, it only applies to beans where changes to the underlying source file
can actually be detected; for example, by code that checks the last modified date of a dynamic language

Spring Framework

3.1 Reference Documentation 692

source file that exists on the filesystem.

Inline dynamic language source files

The dynamic language support can also cater for dynamic language source files that are embedded
directly in Spring bean definitions. More specifically, the <lang:inline-script/> element allows
you to define dynamic language source immediately inside a Spring configuration file. An example will
perhaps make the inline script feature crystal clear:

<lang:groovy id="messenger">
<lang:inline-script>

package org.springframework.scripting.groovy;

import org.springframework.scripting.Messenger

class GroovyMessenger implements Messenger {

String message
}

</lang:inline-script>
<lang:property name="message" value="I Can Do The Frug" />

</lang:groovy>

If we put to one side the issues surrounding whether it is good practice to define dynamic language source
inside a Spring configuration file, the <lang:inline-script/> element can be useful in some
scenarios. For instance, we might want to quickly add a Spring Validator implementation to a Spring
MVC Controller. This is but a moment's work using inline source. (See the section called “Scripted
Validators” for such an example.)

Find below an example of defining the source for a JRuby-based bean directly in a Spring XML
configuration file using the inline: notation. (Notice the use of the < characters to denote a '<'
character. In such a case surrounding the inline source in a <![CDATA[]]> region might be better.)

<lang:jruby id="messenger" script-interfaces="org.springframework.scripting.Messenger">
<lang:inline-script>

require 'java'

include_class 'org.springframework.scripting.Messenger'

class RubyMessenger < Messenger

def setMessage(message)
@@message = message
end

def getMessage
@@message
end

end
</lang:inline-script>
<lang:property name="message" value="Hello World!" />

</lang:jruby>

Understanding Constructor Injection in the context of dynamic-language-backed beans

Spring Framework

3.1 Reference Documentation 693

There is one very important thing to be aware of with regard to Spring's dynamic language support.
Namely, it is not (currently) possible to supply constructor arguments to dynamic-language-backed beans
(and hence constructor-injection is not available for dynamic-language-backed beans). In the interests of
making this special handling of constructors and properties 100% clear, the following mixture of code
and configuration will not work.

// from the file 'Messenger.groovy'
package org.springframework.scripting.groovy;

import org.springframework.scripting.Messenger

class GroovyMessenger implements Messenger {

GroovyMessenger() {}

// this constructor is not available for Constructor Injection
GroovyMessenger(String message) {

this.message = message;
}

String message

String anotherMessage
}

<lang:groovy id="badMessenger"
script-source="classpath:Messenger.groovy">

<!-- this next constructor argument will *not* be injected into the GroovyMessenger -->
<!-- in fact, this isn't even allowed according to the schema -->
<constructor-arg value="This will *not* work" />

<!-- only property values are injected into the dynamic-language-backed object -->
<lang:property name="anotherMessage" value="Passed straight through to the dynamic-language-backed object" />

</lang>

In practice this limitation is not as significant as it first appears since setter injection is the injection style
favored by the overwhelming majority of developers anyway (let's leave the discussion as to whether that
is a good thing to another day).

JRuby beans

The JRuby library dependencies

The JRuby scripting support in Spring requires the following libraries to be on the classpath of your
application. (The versions listed just happen to be the versions that the Spring team used in the
development of the JRuby scripting support; you may well be able to use another version of a
specific library.)

• jruby.jar

• cglib-nodep-2.1_3.jar

Spring Framework

3.1 Reference Documentation 694

From the JRuby homepage...
“ JRuby is an 100% pure-Java implementation of the Ruby programming language. ”

In keeping with the Spring philosophy of offering choice, Spring's dynamic language support also
supports beans defined in the JRuby language. The JRuby language is based on the quite intuitive Ruby
language, and has support for inline regular expressions, blocks (closures), and a whole host of other
features that do make solutions for some domain problems a whole lot easier to develop.

The implementation of the JRuby dynamic language support in Spring is interesting in that what happens
is this: Spring creates a JDK dynamic proxy implementing all of the interfaces that are specified in the
'script-interfaces' attribute value of the <lang:ruby> element (this is why you must supply
at least one interface in the value of the attribute, and (accordingly) program to interfaces when using
JRuby-backed beans).

Let us look at a fully working example of using a JRuby-based bean. Here is the JRuby implementation of
the Messenger interface that was defined earlier in this chapter (for your convenience it is repeated
below).

package org.springframework.scripting;

public interface Messenger {

String getMessage();
}

require 'java'

class RubyMessenger
include org.springframework.scripting.Messenger

def setMessage(message)
@@message = message

end

def getMessage
@@message

end
end

this last line is not essential (but see below)
RubyMessenger.new

And here is the Spring XML that defines an instance of the RubyMessenger JRuby bean.

<lang:jruby id="messageService"
script-interfaces="org.springframework.scripting.Messenger"
script-source="classpath:RubyMessenger.rb">

<lang:property name="message" value="Hello World!" />

</lang:jruby>

Take note of the last line of that JRuby source ('RubyMessenger.new'). When using JRuby in the
context of Spring's dynamic language support, you are encouraged to instantiate and return a new instance

Spring Framework

3.1 Reference Documentation 695

of the JRuby class that you want to use as a dynamic-language-backed bean as the result of the execution
of your JRuby source. You can achieve this by simply instantiating a new instance of your JRuby class on
the last line of the source file like so:

require 'java'

include_class 'org.springframework.scripting.Messenger'

class definition same as above...

instantiate and return a new instance of the RubyMessenger class
RubyMessenger.new

If you forget to do this, it is not the end of the world; this will however result in Spring having to trawl
(reflectively) through the type representation of your JRuby class looking for a class to instantiate. In the
grand scheme of things this will be so fast that you'll never notice it, but it is something that can be
avoided by simply having a line such as the one above as the last line of your JRuby script. If you don't
supply such a line, or if Spring cannot find a JRuby class in your script to instantiate then an opaque
ScriptCompilationException will be thrown immediately after the source is executed by the
JRuby interpreter. The key text that identifies this as the root cause of an exception can be found
immediately below (so if your Spring container throws the following exception when creating your
dynamic-language-backed bean and the following text is there in the corresponding stacktrace, this will
hopefully allow you to identify and then easily rectify the issue):
org.springframework.scripting.ScriptCompilationException: Compilation
of JRuby script returned ''

To rectify this, simply instantiate a new instance of whichever class you want to expose as a
JRuby-dynamic-language-backed bean (as shown above). Please also note that you can actually define as
many classes and objects as you want in your JRuby script; what is important is that the source file as a
whole must return an object (for Spring to configure).

See Section 27.4, “Scenarios” for some scenarios where you might want to use JRuby-based beans.

Groovy beans

The Groovy library dependencies

The Groovy scripting support in Spring requires the following libraries to be on the classpath of
your application.

• groovy-1.5.5.jar

• asm-2.2.2.jar

• antlr-2.7.6.jar

From the Groovy homepage...

Spring Framework

3.1 Reference Documentation 696

“ Groovy is an agile dynamic language for the Java 2 Platform that has many of the features that people
like so much in languages like Python, Ruby and Smalltalk, making them available to Java developers
using a Java-like syntax. ”

If you have read this chapter straight from the top, you will already have seen an example of a
Groovy-dynamic-language-backed bean. Let's look at another example (again using an example from the
Spring test suite).

package org.springframework.scripting;

public interface Calculator {

int add(int x, int y);
}

Here is an implementation of the Calculator interface in Groovy.

// from the file 'calculator.groovy'
package org.springframework.scripting.groovy

class GroovyCalculator implements Calculator {

int add(int x, int y) {
x + y

}
}

<-- from the file 'beans.xml' -->
<beans>

<lang:groovy id="calculator" script-source="classpath:calculator.groovy"/>
</beans>

Lastly, here is a small application to exercise the above configuration.

package org.springframework.scripting;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Main {

public static void Main(String[] args) {
ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");
Calculator calc = (Calculator) ctx.getBean("calculator");
System.out.println(calc.add(2, 8));

}
}

The resulting output from running the above program will be (unsurprisingly) 10. (Exciting example,
huh? Remember that the intent is to illustrate the concept. Please consult the dynamic language showcase
project for a more complex example, or indeed Section 27.4, “Scenarios” later in this chapter).

It is important that you do not define more than one class per Groovy source file. While this is perfectly
legal in Groovy, it is (arguably) a bad practice: in the interests of a consistent approach, you should (in the
opinion of this author) respect the standard Java conventions of one (public) class per source file.

Spring Framework

3.1 Reference Documentation 697

Customising Groovy objects via a callback

The GroovyObjectCustomizer interface is a callback that allows you to hook additional creation
logic into the process of creating a Groovy-backed bean. For example, implementations of this interface
could invoke any required initialization method(s), or set some default property values, or specify a
custom MetaClass.

public interface GroovyObjectCustomizer {

void customize(GroovyObject goo);
}

The Spring Framework will instantiate an instance of your Groovy-backed bean, and will then pass the
created GroovyObject to the specified GroovyObjectCustomizer if one has been defined. You
can do whatever you like with the supplied GroovyObject reference: it is expected that the setting of a
custom MetaClass is what most folks will want to do with this callback, and you can see an example of
doing that below.

public final class SimpleMethodTracingCustomizer implements GroovyObjectCustomizer {

public void customize(GroovyObject goo) {
DelegatingMetaClass metaClass = new DelegatingMetaClass(goo.getMetaClass()) {

public Object invokeMethod(Object object, String methodName, Object[] arguments) {
System.out.println("Invoking '" + methodName + "'.");
return super.invokeMethod(object, methodName, arguments);

}
};
metaClass.initialize();
goo.setMetaClass(metaClass);

}
}

A full discussion of meta-programming in Groovy is beyond the scope of the Spring reference manual.
Consult the relevant section of the Groovy reference manual, or do a search online: there are plenty of
articles concerning this topic. Actually making use of a GroovyObjectCustomizer is easy if you
are using the Spring 2.0 namespace support.

<!-- define the GroovyObjectCustomizer just like any other bean -->
<bean id="tracingCustomizer" class="example.SimpleMethodTracingCustomizer" />

<!-- ... and plug it into the desired Groovy bean via the 'customizer-ref' attribute -->
<lang:groovy id="calculator"

script-source="classpath:org/springframework/scripting/groovy/Calculator.groovy"
customizer-ref="tracingCustomizer" />

If you are not using the Spring 2.0 namespace support, you can still use the
GroovyObjectCustomizer functionality.

<bean id="calculator" class="org.springframework.scripting.groovy.GroovyScriptFactory">
<constructor-arg value="classpath:org/springframework/scripting/groovy/Calculator.groovy"/>
<!-- define the GroovyObjectCustomizer (as an inner bean) -->
<constructor-arg>

<bean id="tracingCustomizer" class="example.SimpleMethodTracingCustomizer" />
</constructor-arg>

Spring Framework

3.1 Reference Documentation 698

</bean>

<bean class="org.springframework.scripting.support.ScriptFactoryPostProcessor"/>

BeanShell beans

The BeanShell library dependencies

The BeanShell scripting support in Spring requires the following libraries to be on the classpath of
your application.

• bsh-2.0b4.jar

• cglib-nodep-2.1_3.jar

From the BeanShell homepage...
“ BeanShell is a small, free, embeddable Java source interpreter with dynamic language features, written
in Java. BeanShell dynamically executes standard Java syntax and extends it with common scripting
conveniences such as loose types, commands, and method closures like those in Perl and JavaScript. ”

In contrast to Groovy, BeanShell-backed bean definitions require some (small) additional configuration.
The implementation of the BeanShell dynamic language support in Spring is interesting in that what
happens is this: Spring creates a JDK dynamic proxy implementing all of the interfaces that are specified
in the 'script-interfaces' attribute value of the <lang:bsh> element (this is why you must
supply at least one interface in the value of the attribute, and (accordingly) program to interfaces when
using BeanShell-backed beans). This means that every method call on a BeanShell-backed object is going
through the JDK dynamic proxy invocation mechanism.

Let's look at a fully working example of using a BeanShell-based bean that implements the Messenger
interface that was defined earlier in this chapter (repeated below for your convenience).

package org.springframework.scripting;

public interface Messenger {

String getMessage();
}

Here is the BeanShell 'implementation' (the term is used loosely here) of the Messenger interface.

String message;

String getMessage() {
return message;

}

void setMessage(String aMessage) {
message = aMessage;

}

Spring Framework

3.1 Reference Documentation 699

And here is the Spring XML that defines an 'instance' of the above 'class' (again, the term is used very
loosely here).

<lang:bsh id="messageService" script-source="classpath:BshMessenger.bsh"
script-interfaces="org.springframework.scripting.Messenger">

<lang:property name="message" value="Hello World!" />
</lang:bsh>

See Section 27.4, “Scenarios” for some scenarios where you might want to use BeanShell-based beans.

27.4 Scenarios

The possible scenarios where defining Spring managed beans in a scripting language would be beneficial
are, of course, many and varied. This section describes two possible use cases for the dynamic language
support in Spring.

Scripted Spring MVC Controllers

One group of classes that may benefit from using dynamic-language-backed beans is that of Spring MVC
controllers. In pure Spring MVC applications, the navigational flow through a web application is to a
large extent determined by code encapsulated within your Spring MVC controllers. As the navigational
flow and other presentation layer logic of a web application needs to be updated to respond to support
issues or changing business requirements, it may well be easier to effect any such required changes by
editing one or more dynamic language source files and seeing those changes being immediately reflected
in the state of a running application.

Remember that in the lightweight architectural model espoused by projects such as Spring, you are
typically aiming to have a really thin presentation layer, with all the meaty business logic of an
application being contained in the domain and service layer classes. Developing Spring MVC controllers
as dynamic-language-backed beans allows you to change presentation layer logic by simply editing and
saving text files; any changes to such dynamic language source files will (depending on the configuration)
automatically be reflected in the beans that are backed by dynamic language source files.

Note

In order to effect this automatic 'pickup' of any changes to dynamic-language-backed beans,
you will have had to enable the 'refreshable beans' functionality. See the section called
“Refreshable beans” for a full treatment of this feature.

Find below an example of an org.springframework.web.servlet.mvc.Controller
implemented using the Groovy dynamic language.

// from the file '/WEB-INF/groovy/FortuneController.groovy'
package org.springframework.showcase.fortune.web

Spring Framework

3.1 Reference Documentation 700

import org.springframework.showcase.fortune.service.FortuneService
import org.springframework.showcase.fortune.domain.Fortune
import org.springframework.web.servlet.ModelAndView
import org.springframework.web.servlet.mvc.Controller

import javax.servlet.http.HttpServletRequest
import javax.servlet.http.HttpServletResponse

class FortuneController implements Controller {

@Property FortuneService fortuneService

ModelAndView handleRequest(
HttpServletRequest request, HttpServletResponse httpServletResponse) {

return new ModelAndView("tell", "fortune", this.fortuneService.tellFortune())
}

}

<lang:groovy id="fortune"
refresh-check-delay="3000"
script-source="/WEB-INF/groovy/FortuneController.groovy">

<lang:property name="fortuneService" ref="fortuneService"/>
</lang:groovy>

Scripted Validators

Another area of application development with Spring that may benefit from the flexibility afforded by
dynamic-language-backed beans is that of validation. It may be easier to express complex validation logic
using a loosely typed dynamic language (that may also have support for inline regular expressions) as
opposed to regular Java.

Again, developing validators as dynamic-language-backed beans allows you to change validation logic by
simply editing and saving a simple text file; any such changes will (depending on the configuration)
automatically be reflected in the execution of a running application and would not require the restart of an
application.

Note

Please note that in order to effect the automatic 'pickup' of any changes to
dynamic-language-backed beans, you will have had to enable the 'refreshable beans' feature.
See the section called “Refreshable beans” for a full and detailed treatment of this feature.

Find below an example of a Spring org.springframework.validation.Validator
implemented using the Groovy dynamic language. (See Section 6.2, “Validation using Spring's Validator
interface” for a discussion of the Validator interface.)

import org.springframework.validation.Validator
import org.springframework.validation.Errors
import org.springframework.beans.TestBean

class TestBeanValidator implements Validator {

Spring Framework

3.1 Reference Documentation 701

boolean supports(Class clazz) {
return TestBean.class.isAssignableFrom(clazz)

}

void validate(Object bean, Errors errors) {
if(bean.name?.trim()?.size() > 0) {

return
}
errors.reject("whitespace", "Cannot be composed wholly of whitespace.")

}
}

27.5 Bits and bobs

This last section contains some bits and bobs related to the dynamic language support.

AOP - advising scripted beans

It is possible to use the Spring AOP framework to advise scripted beans. The Spring AOP framework
actually is unaware that a bean that is being advised might be a scripted bean, so all of the AOP use cases
and functionality that you may be using or aim to use will work with scripted beans. There is just one
(small) thing that you need to be aware of when advising scripted beans... you cannot use class-based
proxies, you must use interface-based proxies.

You are of course not just limited to advising scripted beans... you can also write aspects themselves in a
supported dynamic language and use such beans to advise other Spring beans. This really would be an
advanced use of the dynamic language support though.

Scoping

In case it is not immediately obvious, scripted beans can of course be scoped just like any other bean. The
scope attribute on the various <lang:language/> elements allows you to control the scope of the
underlying scripted bean, just as it does with a regular bean. (The default scope is singleton, just as it is
with 'regular' beans.)

Find below an example of using the scope attribute to define a Groovy bean scoped as a prototype.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:lang="http://www.springframework.org/schema/lang"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-3.0.xsd">

<lang:groovy id="messenger" script-source="classpath:Messenger.groovy" scope="prototype">
<lang:property name="message" value="I Can Do The RoboCop" />

</lang:groovy>

<bean id="bookingService" class="x.y.DefaultBookingService">
<property name="messenger" ref="messenger" />

</bean>

Spring Framework

3.1 Reference Documentation 702

</beans>

See Section 4.5, “Bean scopes” in Chapter 4, The IoC container for a fuller discussion of the scoping
support in the Spring Framework.

27.6 Further Resources

Find below links to further resources about the various dynamic languages described in this chapter.

• The JRuby homepage

• The Groovy homepage

• The BeanShell homepage

Some of the more active members of the Spring community have also added support for a number of
additional dynamic languages above and beyond the ones covered in this chapter. While it is possible that
such third party contributions may be added to the list of languages supported by the main Spring
distribution, your best bet for seeing if your favourite scripting language is supported is the Spring
Modules project.

Spring Framework

3.1 Reference Documentation 703

http://jruby.codehaus.org/
http://groovy.codehaus.org/
http://www.beanshell.org/
https://springmodules.dev.java.net/
https://springmodules.dev.java.net/

28. Cache Abstraction

28.1 Introduction

Since version 3.1, Spring Framework provides support for transparently adding caching into an existing
Spring application. Similar to the transaction support, the caching abstraction allows consistent use of
various caching solutions with minimal impact on the code.

28.2 Understanding the cache abstraction

Cache vs Buffer

The terms "buffer" and "cache" tend to be used interchangeably; note however they represent
different things. A buffer is used traditionally as an intermediate temporary store for data between a
fast and a slow entity. As one party would have to wait for the other affecting performance, the
buffer alleviates this by allowing entire blocks of data to move at once rather then in small chunks.
The data is written and read only once from the buffer. Further more, the buffers are visible to at
least one party which is aware of it.

A cache on the other hand by definition is hidden and neither party is aware that caching occurs.It
as well improves performance but does that by allowing the same data to be read multiple times in a
fast fashion.

A further explanation of the differences between two can be found here.

At its core, the abstraction applies caching to Java methods, reducing thus the number of executions based
on the information available in the cache. That is, each time a targeted method is invoked, the abstraction
will apply a caching behaviour checking whether the method has been already executed for the given
arguments. If it has, then the cached result is returned without having to execute the actual method; if it
has not, then method is executed, the result cached and returned to the user so that, the next time the
method is invoked, the cached result is returned. This way, expensive methods (whether CPU or IO
bound) can be executed only once for a given set of parameters and the result reused without having to
actually execute the method again. The caching logic is applied transparently without any interference to
the invoker.

Important
Obviously this approach works only for methods that are guaranteed to return the same
output (result) for a given input (or arguments) no matter how many times it is being
executed.

Spring Framework

3.1 Reference Documentation 704

http://en.wikipedia.org/wiki/Cache#The_difference_between_buffer_and_cache

To use the cache abstraction, the developer needs to take care of two aspects:

• caching declaration - identify the methods that need to be cached and their policy

• cache configuration - the backing cache where the data is stored and read from

Note that just like other services in Spring Framework, the caching service is an abstraction (not a cache
implementation) and requires the use of an actual storage to store the cache data - that is, the abstraction
frees the developer from having to write the caching logic but does not provide the actual stores. There
are two integrations available out of the box, for JDK java.util.concurrent.ConcurrentMap
and Ehcache - see Section 28.6, “Plugging-in different back-end caches” for more information on
plugging in other cache stores/providers.

28.3 Declarative annotation-based caching

For caching declaration, the abstraction provides two Java annotations: @Cacheable and
@CacheEvict which allow methods to trigger cache population or cache eviction. Let us take a closer
look at each annotation:

@Cacheable annotation

As the name implies, @Cacheable is used to demarcate methods that are cacheable - that is, methods
for whom the result is stored into the cache so on subsequent invocations (with the same arguments), the
value in the cache is returned without having to actually execute the method. In its simplest form, the
annotation declaration requires the name of the cache associated with the annotated method:

@Cacheable("books")
public Book findBook(ISBN isbn) {...}

In the snippet above, the method findBook is associated with the cache named books. Each time the
method is called, the cache is checked to see whether the invocation has been already executed and does
not have to be repeated. While in most cases, only one cache is declared, the annotation allows multiple
names to be specified so that more then one cache are being used. In this case, each of the caches will be
checked before executing the method - if at least one cache is hit, then the associated value will be
returned:

Note
All the other caches that do not contain the method will be updated as well even though the
cached method was not actually executed.

@Cacheable({ "books", "isbns" })
public Book findBook(ISBN isbn) {...}

Spring Framework

3.1 Reference Documentation 705

http://ehcache.org/

Default Key Generation

Since caches are essentially key-value stores, each invocation of a cached method needs to be translated
into a suitable key for cache access. Out of the box, the caching abstraction uses a simple
KeyGenerator based on the following algorithm:

• If no params are given, return 0.

• If only one param is given, return that instance.

• If more the one param is given, return a key computed from the hashes of all parameters.

This approach works well for objects with natural keys as long as the hashCode() reflects that. If that
is not the case then for distributed or persistent environments, the strategy needs to be changed as the
objects hashCode is not preserved. In fact, depending on the JVM implementation or running conditions,
the same hashCode can be reused for different objects, in the same VM instance.

To provide a different default key generator, one needs to implement the
org.springframework.cache.KeyGenerator interface. Once configured, the generator will be
used for each declaration that doesn not specify its own key generation strategy (see below).

Custom Key Generation Declaration

Since caching is generic, it is quite likely the target methods have various signatures that cannot be
simply mapped on top of the cache structure. This tends to become obvious when the target method has
multiple arguments out of which only some are suitable for caching (while the rest are used only by the
method logic). For example:

@Cacheable("books")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed

At first glance, while the two boolean arguments influence the way the book is found, they are no use
for the cache. Further more what if only one of the two is important while the other is not?

For such cases, the @Cacheable annotation allows the user to specify how the key is generated through
its key attribute. The developer can use SpEL to pick the arguments of interest (or their nested
properties), perform operations or even invoke arbitrary methods without having to write any code or
implement any interface. This is the recommended approach over the default generator since methods
tend to be quite different in signatures as the code base grows; while the default strategy might work for
some methods, it rarely does for all methods.

Below are some examples of various SpEL declarations - if you are not familiar with it, do yourself a
favour and read Chapter 7, Spring Expression Language (SpEL):

@Cacheable(value="books", key="#isbn"
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

Spring Framework

3.1 Reference Documentation 706

@Cacheable(value="books", key="#isbn.rawNumber")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

@Cacheable(value="books", key="T(someType).hash(#isbn)")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

The snippets above, show how easy it is to select a certain argument, one of its properties or even an
arbitrary (static) method.

Conditional caching

Sometimes, a method might not be suitable for caching all the time (for example, it might depend on the
given arguments). The cache annotations support such functionality through the conditional
parameter which takes a SpEL expression that is evaluated to either true or false. If true, the
method is cached - if not, it behaves as if the method is not cached, that is executed every since time no
matter what values are in the cache or what arguments are used. A quick example - the following method
will be cached, only if the argument name has a length shorter then 32:

@Cacheable(value="book", condition="#name.length < 32")
public Book findBook(String name)

Available caching SpEL evaluation context

Each SpEL expression evaluates again a dedicated context. In addition to the build in parameters, the
framework provides dedicated caching related metadata such as the argument names. The next table lists
the items made available to the context so one can use them for key and conditional(see next section)
computations:

Table 28.1. Cache SpEL available metadata

Name Location Description Example

methodName root object The name of the method
being invoked #root.methodName

method root object The method being
invoked #root.method.name

target root object The target object being
invoked #root.target

targetClass root object The class of the target
being invoked #root.targetClass

params root object The arguments (as
array) used for invoking
the target

#root.params[0]

caches root object Collection of caches
#root.caches[0].name

Spring Framework

3.1 Reference Documentation 707

Name Location Description Example

against which the
current method is
executed

parameter name evaluation context Name of any of the
method parameter. If for
some reason the names
are not available (ex: no
debug information), the
parameter names are
also available under the
p<#arg> where #arg
stands for the parameter
index (starting from 0).

iban

or

p0

@CachePut annotation

For cases where the cache needs to be updated without interferring with the method execution, one can
use the @CachePut annotation. That is, the method will always be executed and its result placed into the
cache (according to the @CachePut options). It supports the same options as @Cacheable and should
be used for cache population rather then method flow optimization.

Note that using @CachePut and @Cacheable annotations on the same method is generaly discouraged
because they have different behaviours. While the latter causes the method execution to be skipped by
using the cache, the former forces the execution in order to execute a cache update. This leads to
unexpected behaviour and with the exception of specific corner-cases (such as annotations having
conditions that exclude them from each other), such declarations should be avoided.

@CacheEvict annotation

The cache abstraction allows not just population of a cache store but also eviction. This process is useful
for removing stale or unused data from the cache. Opposed to @Cacheable, annotation @CacheEvict
demarcates methods that perform cache eviction, that is methods that act as triggers for removing data
from the cache. Just like its sibling, @CacheEvict requires one to specify one (or multiple) caches that
are affected by the action, allows a key or a condition to be specified but in addition, features an extra
parameter allEntries which indicates whether a cache-wide eviction needs to be performed rather
then just an entry one (based on the key):

@CacheEvict(value = "books", allEntries=true)
public void loadBooks(InputStream batch)

This option comes in handy when an entire cache region needs to be cleared out - rather then evicting

Spring Framework

3.1 Reference Documentation 708

each entry (which would take a long time since it is inefficient), all the entires are removed in one
operation as shown above. Note that the framework will ignore any key specified in this scenario as it
does not apply (the entire cache is evicted not just one entry).

One can also indicate whether the eviction should occur after (the default) or before the method executes
through the beforeInvocation attribute. The former provides the same semantics as the rest of the
annotations - once the method completes successfully, an action (in this case eviction) on the cache is
executed. If the method does not execute (as it might be cached) or an exception is thrown, the eviction
does not occur. The latter (beforeInvocation=true) causes the eviction to occur always, before
the method is invoked - this is useful in cases where the eviction does not need to be tied to the method
outcome.

It is important to note that void methods can be used with @CacheEvict - as the methods act as
triggers, the return values are ignored (as they don't interact with the cache) - this is not the case with
@Cacheable which adds/update data into the cache and thus requires a result.

@Caching annotation

There are cases when multiple annotations of the same type, such as @CacheEvict or @CachePut
need to be specified, for example because the condition or the key expression is different between
different caches. Unfortunately Java does not support such declarations however there is a workaround -
using a enclosing annotation, in this case, @Caching. @Caching allows multiple nested
@Cacheable, @CachePut and @CacheEvict to be used on the same method:

@Caching(evict = { @CacheEvict("primary"), @CacheEvict(value = "secondary", key = "#p0") })
public Book importBooks(String deposit, Date date)

Enable caching annotations

It is important to note that even though declaring the cache annotations does not automatically triggers
their actions - like many things in Spring, the feature has to be declaratively enabled (which means if you
ever suspect caching is to blame, you can disable it by removing only one configuration line rather then
all the annotations in your code). In practice, this translates to one line that informs Spring that it should
process the cache annotations, namely:

<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cache="http://www.springframework.org/schema/cache"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/cache http://www.springframework.org/schema/cache/spring-cache.xsd">
<cache:annotation-driven />

</beans>

The namespace allows various options to be specified that influence the way the caching behaviour is
added to the application through AOP. The configuration is similar (on purpose) with that of
tx:annotation-driven:

Spring Framework

3.1 Reference Documentation 709

tx-annotation-driven-settings

Table 28.2. <cache:annotation-driven/> settings

Attribute Default Description

cache-manager cacheManager
Name of cache manager to use.
Only required if the name of the
cache manager is not
cacheManager, as in the
example above.

mode proxy
The default mode "proxy"
processes annotated beans to be
proxied using Spring's AOP
framework (following proxy
semantics, as discussed above,
applying to method calls coming
in through the proxy only). The
alternative mode "aspectj"
instead weaves the affected
classes with Spring's AspectJ
caching aspect, modifying the
target class byte code to apply to
any kind of method call. AspectJ
weaving requires
spring-aspects.jar in the classpath
as well as load-time weaving (or
compile-time weaving) enabled.
(See the section called “Spring
configuration” for details on how
to set up load-time weaving.)

proxy-target-class false
Applies to proxy mode only.
Controls what type of caching
proxies are created for classes
annotated with the
@Cacheable or
@CacheEvict annotations. If
the proxy-target-class
attribute is set to true, then
class-based proxies are created.
If proxy-target-class is
false or if the attribute is
omitted, then standard JDK

Spring Framework

3.1 Reference Documentation 710

Attribute Default Description

interface-based proxies are
created. (See Section 8.6,
“Proxying mechanisms” for a
detailed examination of the
different proxy types.)

order Ordered.LOWEST_PRECEDENCE
Defines the order of the cache
advice that is applied to beans
annotated with @Cacheable or
@CacheEvict. (For more
information about the rules
related to ordering of AOP
advice, see the section called
“Advice ordering”.) No specified
ordering means that the AOP
subsystem determines the order
of the advice.

Note

<cache:annotation-driven/> only looks for @Cacheable/@CacheEvict on
beans in the same application context it is defined in. This means that, if you put
<cache:annotation-driven/> in a WebApplicationContext for a
DispatcherServlet, it only checks for @Cacheable/@CacheEvict beans in your
controllers, and not your services. See Section 16.2, “The DispatcherServlet” for more
information.

Method visibility and @Cacheable/@CachePut/@CacheEvict

When using proxies, you should apply the @Cache* annotations only to methods with public
visibility. If you do annotate protected, private or package-visible methods with these annotations,
no error is raised, but the annotated method does not exhibit the configured caching settings.
Consider the use of AspectJ (see below) if you need to annotate non-public methods as it changes
the bytecode itself.

Tip

Spring recommends that you only annotate concrete classes (and methods of concrete classes)

Spring Framework

3.1 Reference Documentation 711

with the @Cache* annotation, as opposed to annotating interfaces. You certainly can place
the @Cache* annotation on an interface (or an interface method), but this works only as you
would expect it to if you are using interface-based proxies. The fact that Java annotations are
not inherited from interfaces means that if you are using class-based proxies
(proxy-target-class="true") or the weaving-based aspect (mode="aspectj"),
then the caching settings are not recognized by the proxying and weaving infrastructure, and
the object will not be wrapped in a caching proxy, which would be decidedly bad.

Note

In proxy mode (which is the default), only external method calls coming in through the proxy
are intercepted. This means that self-invocation, in effect, a method within the target object
calling another method of the target object, will not lead to an actual caching at runtime even
if the invoked method is marked with @Cacheable - considering using the aspectj mode in
this case.

Using custom annotations

The caching abstraction allows one to use her own annotations to identify what method trigger cache
population or eviction. This is quite handy as a template mechanism as it eliminates the need to duplicate
cache annotation declarations (especially useful if the key or condition are specified) or if the foreign
imports (org.springframework) are not allowed in your code base. Similar to the rest of the
stereotype annotations, both @Cacheable and @CacheEvict can be used as meta-annotations, that is
annotations that can annotate other annotations. To wit, let us replace a common @Cacheable
declaration with our own, custom annotation:

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
@Cacheable(value=“books”, key="#isbn")
public @interface SlowService {
}

Above, we have defined our own SlowService annotation which itself is annotated with
@Cacheable - now we can replace the following code:

@Cacheable(value="books", key="#isbn")
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

with:

@SlowService
public Book findBook(ISBN isbn, boolean checkWarehouse, boolean includeUsed)

Even though @SlowService is not a Spring annotation, the container automatically picks up its

Spring Framework

3.1 Reference Documentation 712

declaration at runtime and understands its meaning. Note that as mentined above, the annotation-driven
behaviour needs to be enabled.

28.4 Declarative XML-based caching

If annotations are not an option (no access to the sources or no external code), one can use XML for
declarative caching. So instead of annotating the methods for caching, one specifies the target method and
the caching directives externally (similar to the declarative transaction management advice). The previous
example can be translated into:

<!-- the service we want to make cacheable -->
<bean id="bookService" class="x.y.service.DefaultBookService"/>

<!-- cache definitions -->
<cache:advice id="cacheAdvice" cache-manager="cacheManager">

<cache:caching cache="books">
<cache:cacheable method="findBook" key="#isbn"/>
<cache:cache-evict method="loadBooks" all-entries="true"/>

</cache:caching>
</cache:advice>

<!-- apply the cacheable behaviour to all BookService interfaces -->
<aop:config>

<aop:advisor advice-ref="cacheAdvice" pointcut="execution(* x.y.BookService.*(..))"/>
</aop:config>
...
// cache manager definition omitted

In the configuration above, the bookService is made cacheable. The caching semantics to apply are
encapsulated in the cache:advice definition which instructs method findBooks to be used for
putting data into the cache while method loadBooks for evicting data. Both definitions are working
against the books cache.

The aop:config definition applies the cache advice to the appropriate points in the program by using
the AspectJ pointcut expression (more information is available in Chapter 8, Aspect Oriented
Programming with Spring). In the example above, all methods from the BookService are considered
and the cache advice applied to them.

The declarative XML caching supports all of the annotation-based model so moving between the two
should be fairly easy - further more both can be used inside the same application. The XML based
approach does not touch the target code however it is inherently more verbose; when dealing with classes
with overloaded methods that are targeted for caching, identifying the proper methods does take an extra
effort since the method argument is not a good discriminator - in these cases, the AspectJ pointcut can
be used to cherry pick the target methods and apply the appropriate caching functionality. Howeve
through XML, it is easier to apply a package/group/interface-wide caching (again due to the AspectJ
poincut) and to create template-like definitions (as we did in the example above by defining the target
cache through the cache:definitions cache attribute).

Spring Framework

3.1 Reference Documentation 713

28.5 Configuring the cache storage

Out of the box, the cache abstraction provides integration with two storages - one on top of the JDK
ConcurrentMap and one for ehcache library. To use them, one needs to simply declare an appropriate
CacheManager - an entity that controls and manages Caches and can be used to retrieve these for
storage.

JDK ConcurrentMap-based Cache

The JDK-based Cache implementation resides under
org.springframework.cache.concurrent package. It allows one to use
ConcurrentHashMap as a backing Cache store.

<!-- generic cache manager -->
<bean id="cacheManager" class="org.springframework.cache.support.SimpleCacheManager">
<property name="caches">

<set>
<bean class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean" p:name="default"/>
<bean class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean" p:name="books"/>

</set>
</property>

</bean>

The snippet above uses the SimpleCacheManager to create a CacheManager for the two, nested
Concurrent Cache implementations named default and books. Note that the names are configured
directly for each cache.

As the cache is created by the application, it is bound to its lifecycle, making it suitable for basic use
cases, tests or simple applications. The cache scales well and is very fast but it does not provide any
management or persistence capabilities nor eviction contracts.

Ehcache-based Cache

The Ehcache implementation is located under org.springframework.cache.ehcache package.
Again, to use it, one simply needs to declare the appropriate CacheManager:

<bean id="cacheManager" class="org.springframework.cache.ehcache.EhCacheCacheManager" p:cache-manager-ref="ehcache"/>

<!-- Ehcache library setup -->
<bean id="ehcache" class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean" p:config-location="ehcache.xml"/>

This setup bootstraps ehcache library inside Spring IoC (through bean ehcache) which is then wired
into the dedicated CacheManager implementation. Note the entire ehcache-specific configuration is
read from the resource ehcache.xml.

Dealing with caches without a backing store

Spring Framework

3.1 Reference Documentation 714

ehcache.org

Sometimes when switching environments or doing testing, one might have cache declarations without an
actual backing cache configured. As this is an invalid configuration, at runtime an exception will be
through since the caching infrastructure is unable to find a suitable store. In situations like this, rather then
removing the cache declarations (which can prove tedious), one can wire in a simple, dummy cache that
performs no caching - that is, forces the cached methods to be executed every time:

<bean id="cacheManager" class="org.springframework.cache.support.CompositeCacheManager">
<property name="cacheManagers"><list>

<ref bean="jdkCache"/>
<ref bean="gemfireCache"/>

</list></property>
<property name="addNoOpCache" value="true"/>

</bean>

The CompositeCacheManager above chains multiple CacheManagers and aditionally, through
the addNoOpManager flag, adds a no op cache that for all the definitions not handled by the configured
cache managers. That is, every cache definition not found in either jdkCache or gemfireCache
(configured above) will be handled by the no op cache, which will not store any information causing the
target method to be executed every time.

28.6 Plugging-in different back-end caches

Clearly there are plenty of caching products out there that can be used as a backing store. To plug them
in, one needs to provide a CacheManager and Cache implementation since unfortunately there is no
available standard that we can use instead. This may sound harder then it is since in practice, the classes
tend to be simple adapters that map the caching abstraction framework on top of the storage API as the
ehcache classes can show. Most CacheManager classes can use the classes in
org.springframework.cache.support package, such as AbstractCacheManager which
takes care of the boiler-plate code leaving only the actual mapping to be completed. We hope that in time,
the libraries that provide integration with Spring can fill in this small configuration gap.

28.7 How can I set the TTL/TTI/Eviction policy/XXX feature?

Directly through your cache provider. The cache abstraction is... well, an abstraction not a cache
implementation. The solution you are using might support various data policies and different topologies
which other solutions do not (take for example the JDK ConcurrentHashMap) - exposing that in the
cache abstraction would be useless simply because there would no backing support. Such functionality
should be controlled directly through the backing cache, when configuring it or through its native API.

Spring Framework

3.1 Reference Documentation 715

http://en.wikipedia.org/wiki/Adapter_pattern

Part VII. Appendices

Appendix A. Classic Spring Usage
This appendix discusses some classic Spring usage patterns as a reference for developers maintaining
legacy Spring applications. These usage patterns no longer reflect the recommended way of using these
features and the current recommended usage is covered in the respective sections of the reference manual.

A.1 Classic ORM usage

This section documents the classic usage patterns that you might encounter in a legacy Spring application.
For the currently recommended usage patterns, please refer to the Chapter 14, Object Relational Mapping
(ORM) Data Access chapter.

Hibernate

For the currently recommended usage patterns for Hibernate see Section 14.3, “Hibernate”

The HibernateTemplate

The basic programming model for templating looks as follows, for methods that can be part of any
custom data access object or business service. There are no restrictions on the implementation of the
surrounding object at all, it just needs to provide a Hibernate SessionFactory. It can get the latter
from anywhere, but preferably as bean reference from a Spring IoC container - via a simple
setSessionFactory(..) bean property setter. The following snippets show a DAO definition in a
Spring container, referencing the above defined SessionFactory, and an example for a DAO method
implementation.

<beans>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="sessionFactory" ref="mySessionFactory"/>

</bean>

</beans>

public class ProductDaoImpl implements ProductDao {

private HibernateTemplate hibernateTemplate;

public void setSessionFactory(SessionFactory sessionFactory) {
this.hibernateTemplate = new HibernateTemplate(sessionFactory);

}

public Collection loadProductsByCategory(String category) throws DataAccessException {
return this.hibernateTemplate.find("from test.Product product where product.category=?", category);

}
}

The HibernateTemplate class provides many methods that mirror the methods exposed on the

Spring Framework

3.1 Reference Documentation 717

Hibernate Session interface, in addition to a number of convenience methods such as the one shown
above. If you need access to the Session to invoke methods that are not exposed on the
HibernateTemplate, you can always drop down to a callback-based approach like so.

public class ProductDaoImpl implements ProductDao {

private HibernateTemplate hibernateTemplate;

public void setSessionFactory(SessionFactory sessionFactory) {
this.hibernateTemplate = new HibernateTemplate(sessionFactory);

}

public Collection loadProductsByCategory(final String category) throws DataAccessException {
return this.hibernateTemplate.execute(new HibernateCallback() {

public Object doInHibernate(Session session) {
Criteria criteria = session.createCriteria(Product.class);
criteria.add(Expression.eq("category", category));
criteria.setMaxResults(6);
return criteria.list();

}
};

}
}

A callback implementation effectively can be used for any Hibernate data access.
HibernateTemplate will ensure that Session instances are properly opened and closed, and
automatically participate in transactions. The template instances are thread-safe and reusable, they can
thus be kept as instance variables of the surrounding class. For simple single step actions like a single
find, load, saveOrUpdate, or delete call, HibernateTemplate offers alternative convenience methods
that can replace such one line callback implementations. Furthermore, Spring provides a convenient
HibernateDaoSupport base class that provides a setSessionFactory(..) method for
receiving a SessionFactory, and getSessionFactory() and
getHibernateTemplate()for use by subclasses. In combination, this allows for very simple DAO
implementations for typical requirements:

public class ProductDaoImpl extends HibernateDaoSupport implements ProductDao {

public Collection loadProductsByCategory(String category) throws DataAccessException {
return this.getHibernateTemplate().find(

"from test.Product product where product.category=?", category);
}

}

Implementing Spring-based DAOs without callbacks

As alternative to using Spring's HibernateTemplate to implement DAOs, data access code can also
be written in a more traditional fashion, without wrapping the Hibernate access code in a callback, while
still respecting and participating in Spring's generic DataAccessException hierarchy. The
HibernateDaoSupport base class offers methods to access the current transactional Session and
to convert exceptions in such a scenario; similar methods are also available as static helpers on the
SessionFactoryUtils class. Note that such code will usually pass 'false' as the value of the
getSession(..) methods 'allowCreate' argument, to enforce running within a transaction (which
avoids the need to close the returned Session, as its lifecycle is managed by the transaction).

Spring Framework

3.1 Reference Documentation 718

public class HibernateProductDao extends HibernateDaoSupport implements ProductDao {

public Collection loadProductsByCategory(String category) throws DataAccessException, MyException {
Session session = getSession(false);
try {

Query query = session.createQuery("from test.Product product where product.category=?");
query.setString(0, category);
List result = query.list();
if (result == null) {

throw new MyException("No search results.");
}
return result;

}
catch (HibernateException ex) {

throw convertHibernateAccessException(ex);
}

}
}

The advantage of such direct Hibernate access code is that it allows any checked application exception to
be thrown within the data access code; contrast this to the HibernateTemplate class which is
restricted to throwing only unchecked exceptions within the callback. Note that you can often defer the
corresponding checks and the throwing of application exceptions to after the callback, which still allows
working with HibernateTemplate. In general, the HibernateTemplate class' convenience
methods are simpler and more convenient for many scenarios.

JDO

For the currently recommended usage patterns for JDO see Section 14.4, “JDO”

JdoTemplate and JdoDaoSupport

Each JDO-based DAO will then receive the PersistenceManagerFactory through dependency
injection. Such a DAO could be coded against plain JDO API, working with the given
PersistenceManagerFactory, but will usually rather be used with the Spring Framework's
JdoTemplate:

<beans>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="persistenceManagerFactory" ref="myPmf"/>

</bean>

</beans>

public class ProductDaoImpl implements ProductDao {

private JdoTemplate jdoTemplate;

public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) {
this.jdoTemplate = new JdoTemplate(pmf);

}

public Collection loadProductsByCategory(final String category) throws DataAccessException {
return (Collection) this.jdoTemplate.execute(new JdoCallback() {

public Object doInJdo(PersistenceManager pm) throws JDOException {

Spring Framework

3.1 Reference Documentation 719

Query query = pm.newQuery(Product.class, "category = pCategory");
query.declareParameters("String pCategory");
List result = query.execute(category);
// do some further stuff with the result list
return result;

}
});

}
}

A callback implementation can effectively be used for any JDO data access. JdoTemplate will ensure
that PersistenceManagers are properly opened and closed, and automatically participate in
transactions. The template instances are thread-safe and reusable, they can thus be kept as instance
variables of the surrounding class. For simple single-step actions such as a single find, load,
makePersistent, or delete call, JdoTemplate offers alternative convenience methods that can
replace such one line callback implementations. Furthermore, Spring provides a convenient
JdoDaoSupport base class that provides a setPersistenceManagerFactory(..) method for
receiving a PersistenceManagerFactory, and getPersistenceManagerFactory() and
getJdoTemplate() for use by subclasses. In combination, this allows for very simple DAO
implementations for typical requirements:

public class ProductDaoImpl extends JdoDaoSupport implements ProductDao {

public Collection loadProductsByCategory(String category) throws DataAccessException {
return getJdoTemplate().find(

Product.class, "category = pCategory", "String category", new Object[] {category});
}

}

As alternative to working with Spring's JdoTemplate, you can also code Spring-based DAOs at the
JDO API level, explicitly opening and closing a PersistenceManager. As elaborated in the
corresponding Hibernate section, the main advantage of this approach is that your data access code is able
to throw checked exceptions. JdoDaoSupport offers a variety of support methods for this scenario, for
fetching and releasing a transactional PersistenceManager as well as for converting exceptions.

JPA

For the currently recommended usage patterns for JPA see Section 14.5, “JPA”

JpaTemplate and JpaDaoSupport

Each JPA-based DAO will then receive a EntityManagerFactory via dependency injection. Such a
DAO can be coded against plain JPA and work with the given EntityManagerFactory or through
Spring's JpaTemplate:

<beans>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="entityManagerFactory" ref="myEmf"/>

</bean>

</beans>

Spring Framework

3.1 Reference Documentation 720

public class JpaProductDao implements ProductDao {

private JpaTemplate jpaTemplate;

public void setEntityManagerFactory(EntityManagerFactory emf) {
this.jpaTemplate = new JpaTemplate(emf);

}

public Collection loadProductsByCategory(final String category) throws DataAccessException {
return (Collection) this.jpaTemplate.execute(new JpaCallback() {

public Object doInJpa(EntityManager em) throws PersistenceException {
Query query = em.createQuery("from Product as p where p.category = :category");
query.setParameter("category", category);
List result = query.getResultList();
// do some further processing with the result list
return result;

}
});

}
}

The JpaCallback implementation allows any type of JPA data access. The JpaTemplate will
ensure that EntityManagers are properly opened and closed and automatically participate in
transactions. Moreover, the JpaTemplate properly handles exceptions, making sure resources are
cleaned up and the appropriate transactions rolled back. The template instances are thread-safe and
reusable and they can be kept as instance variable of the enclosing class. Note that JpaTemplate offers
single-step actions such as find, load, merge, etc along with alternative convenience methods that can
replace one line callback implementations.

Furthermore, Spring provides a convenient JpaDaoSupport base class that provides the
get/setEntityManagerFactory and getJpaTemplate() to be used by subclasses:

public class ProductDaoImpl extends JpaDaoSupport implements ProductDao {

public Collection loadProductsByCategory(String category) throws DataAccessException {
Map<String, String> params = new HashMap<String, String>();
params.put("category", category);
return getJpaTemplate().findByNamedParams("from Product as p where p.category = :category", params);

}
}

Besides working with Spring's JpaTemplate, one can also code Spring-based DAOs against the JPA,
doing one's own explicit EntityManager handling. As also elaborated in the corresponding Hibernate
section, the main advantage of this approach is that your data access code is able to throw checked
exceptions. JpaDaoSupport offers a variety of support methods for this scenario, for retrieving and
releasing a transaction EntityManager, as well as for converting exceptions.

JpaTemplate mainly exists as a sibling of JdoTemplate and HibernateTemplate, offering the same style
for people used to it.

A.2 Classic Spring MVC

...

Spring Framework

3.1 Reference Documentation 721

A.3 JMS Usage

One of the benefits of Spring's JMS support is to shield the user from differences between the JMS 1.0.2
and 1.1 APIs. (For a description of the differences between the two APIs see sidebar on Domain
Unification). Since it is now common to encounter only the JMS 1.1 API the use of classes that are based
on the JMS 1.0.2 API has been deprecated in Spring 3.0. This section describes Spring JMS support for
the JMS 1.0.2 deprecated classes.

Domain Unification

There are two major releases of the JMS specification, 1.0.2 and 1.1.

JMS 1.0.2 defined two types of messaging domains, point-to-point (Queues) and publish/subscribe
(Topics). The 1.0.2 API reflected these two messaging domains by providing a parallel class
hierarchy for each domain. As a result, a client application became domain specific in its use of the
JMS API. JMS 1.1 introduced the concept of domain unification that minimized both the functional
differences and client API differences between the two domains. As an example of a functional
difference that was removed, if you use a JMS 1.1 provider you can transactionally consume a
message from one domain and produce a message on the other using the same Session.

Note

The JMS 1.1 specification was released in April 2002 and incorporated as part of J2EE
1.4 in November 2003. As a result, common J2EE 1.3 application servers which are
still in widespread use (such as BEA WebLogic 8.1 and IBM WebSphere 5.1) are based
on JMS 1.0.2.

JmsTemplate

Located in the package org.springframework.jms.core the class JmsTemplate102 provides
all of the features of the JmsTemplate described the JMS chapter, but is based on the JMS 1.0.2 API
instead of the JMS 1.1 API. As a consequence, if you are using JmsTemplate102 you need to set the
boolean property pubSubDomain to configure the JmsTemplate with knowledge of what JMS domain
is being used. By default the value of this property is false, indicating that the point-to-point domain,
Queues, will be used.

Asynchronous Message Reception

MessageListenerAdapter's are used in conjunction with Spring's message listener containers to support
asynchronous message reception by exposing almost any class as a Message-driven POJO. If you are
using the JMS 1.0.2 API, you will want to use the 1.0.2 specific classes such as

Spring Framework

3.1 Reference Documentation 722

MessageListenerAdapter102, SimpleMessageListenerContainer102, and
DefaultMessageListenerContainer102. These classes provide the same functionality as the
JMS 1.1 based counterparts but rely only on the JMS 1.0.2 API.

Connections

The ConnectionFactory interface is part of the JMS specification and serves as the entry point for
working with JMS. Spring provides an implementation of the ConnectionFactory interface,
SingleConnectionFactory102, based on the JMS 1.0.2 API that will return the same
Connection on all createConnection() calls and ignore calls to close(). You will need to set
the boolean property pubSubDomain to indicate which messaging domain is used as
SingleConnectionFactory102 will always explicitly differentiate between a
javax.jms.QueueConnection and a javax.jmsTopicConnection.

Transaction Management

In a JMS 1.0.2 environment the class JmsTransactionManager102 provides support for managing
JMS transactions for a single Connection Factory. Please refer to the reference documentation on JMS
Transaction Management for more information on this functionality.

Spring Framework

3.1 Reference Documentation 723

Appendix B. Classic Spring AOP Usage
In this appendix we discuss the lower-level Spring AOP APIs and the AOP support used in Spring 1.2
applications. For new applications, we recommend the use of the Spring 2.0 AOP support described in the
AOP chapter, but when working with existing applications, or when reading books and articles, you may
come across Spring 1.2 style examples. Spring 2.0 is fully backwards compatible with Spring 1.2 and
everything described in this appendix is fully supported in Spring 2.0.

B.1 Pointcut API in Spring

Let's look at how Spring handles the crucial pointcut concept.

Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target
different advice using the same pointcut.

The org.springframework.aop.Pointcut interface is the central interface, used to target
advices to particular classes and methods. The complete interface is shown below:

public interface Pointcut {

ClassFilter getClassFilter();

MethodMatcher getMethodMatcher();

}

Splitting the Pointcut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a "union" with another method matcher).

The ClassFilter interface is used to restrict the pointcut to a given set of target classes. If the
matches() method always returns true, all target classes will be matched:

public interface ClassFilter {

boolean matches(Class clazz);
}

The MethodMatcher interface is normally more important. The complete interface is shown below:

public interface MethodMatcher {

boolean matches(Method m, Class targetClass);

boolean isRuntime();

boolean matches(Method m, Class targetClass, Object[] args);
}

Spring Framework

3.1 Reference Documentation 724

The matches(Method, Class) method is used to test whether this pointcut will ever match a
given method on a target class. This evaluation can be performed when an AOP proxy is created, to avoid
the need for a test on every method invocation. If the 2-argument matches method returns true for a given
method, and the isRuntime() method for the MethodMatcher returns true, the 3-argument matches
method will be invoked on every method invocation. This enables a pointcut to look at the arguments
passed to the method invocation immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their isRuntime() method returns false. In this case,
the 3-argument matches method will never be invoked.

Tip

If possible, try to make pointcuts static, allowing the AOP framework to cache the results of
pointcut evaluation when an AOP proxy is created.

Operations on pointcuts

Spring supports operations on pointcuts: notably, union and intersection.

• Union means the methods that either pointcut matches.

• Intersection means the methods that both pointcuts match.

• Union is usually more useful.

• Pointcuts can be composed using the static methods in the org.springframework.aop.support.Pointcuts
class, or using the ComposablePointcut class in the same package. However, using AspectJ pointcut
expressions is usually a simpler approach.

AspectJ expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
org.springframework.aop.aspectj.AspectJExpressionPointcut. This is a pointcut
that uses an AspectJ supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.

Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box; others are
intended to be subclassed in application-specific pointcuts.

Static pointcuts

Spring Framework

3.1 Reference Documentation 725

Static pointcuts are based on method and target class, and cannot take into account the method's
arguments. Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate a
static pointcut only once, when a method is first invoked: after that, there is no need to evaluate the
pointcut again with each method invocation.

Let's consider some static pointcut implementations included with Spring.

Regular expression pointcuts

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides
Spring make this possible.
org.springframework.aop.support.Perl5RegexpMethodPointcut is a generic regular
expression pointcut, using Perl 5 regular expression syntax. The Perl5RegexpMethodPointcut
class depends on Jakarta ORO for regular expression matching. Spring also provides the
JdkRegexpMethodPointcut class that uses the regular expression support in JDK 1.4+.

Using the Perl5RegexpMethodPointcut class, you can provide a list of pattern Strings. If any of
these is a match, the pointcut will evaluate to true. (So the result is effectively the union of these
pointcuts.)

The usage is shown below:

<bean id="settersAndAbsquatulatePointcut"
class="org.springframework.aop.support.Perl5RegexpMethodPointcut">
<property name="patterns">

<list>
<value>.*set.*</value>
<value>.*absquatulate</value>

</list>
</property>

</bean>

Spring provides a convenience class, RegexpMethodPointcutAdvisor, that allows us to also
reference an Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.).
Behind the scenes, Spring will use a JdkRegexpMethodPointcut. Using
RegexpMethodPointcutAdvisor simplifies wiring, as the one bean encapsulates both pointcut and
advice, as shown below:

<bean id="settersAndAbsquatulateAdvisor"
class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
<property name="advice">

<ref local="beanNameOfAopAllianceInterceptor"/>
</property>
<property name="patterns">

<list>
<value>.*set.*</value>
<value>.*absquatulate</value>

</list>
</property>

</bean>

Spring Framework

3.1 Reference Documentation 726

RegexpMethodPointcutAdvisor can be used with any Advice type.

Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata
attributes: typically, source-level metadata.

Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method
arguments, as well as static information. This means that they must be evaluated with every method
invocation; the result cannot be cached, as arguments will vary.

The main example is the control flow pointcut.

Control flow pointcuts

Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less powerful.
(There is currently no way to specify that a pointcut executes below a join point matched by another
pointcut.) A control flow pointcut matches the current call stack. For example, it might fire if the join
point was invoked by a method in the com.mycompany.web package, or by the SomeCaller class.
Control flow pointcuts are specified using the
org.springframework.aop.support.ControlFlowPointcut class.

Note

Control flow pointcuts are significantly more expensive to evaluate at runtime than even
other dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic
pointcuts.

Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticMethodMatcherPointcut, as
shown below. This requires implementing just one abstract method (although it's possible to override
other methods to customize behavior):

class TestStaticPointcut extends StaticMethodMatcherPointcut {

public boolean matches(Method m, Class targetClass) {
// return true if custom criteria match

}
}

There are also superclasses for dynamic pointcuts.

Spring Framework

3.1 Reference Documentation 727

You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ) it's
possible to declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be
arbitrarily complex. However, using the AspectJ pointcut expression language is recommended if
possible.

Note

Later versions of Spring may offer support for "semantic pointcuts" as offered by JAC: for
example, "all methods that change instance variables in the target object."

B.2 Advice API in Spring

Let's now look at how Spring AOP handles advice.

Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique to
each advised object. This corresponds to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors.
These do not depend on the state of the proxied object or add new state; they merely act on the method
and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state
to the proxied object.

It's possible to use a mix of shared and per-instance advice in the same AOP proxy.

Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice types.
Let us look at the basic concepts and standard advice types.

Interception around advice

The most fundamental advice type in Spring is interception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.

Spring Framework

3.1 Reference Documentation 728

MethodInterceptors implementing around advice should implement the following interface:

public interface MethodInterceptor extends Interceptor {

Object invoke(MethodInvocation invocation) throws Throwable;
}

The MethodInvocation argument to the invoke() method exposes the method being invoked; the
target join point; the AOP proxy; and the arguments to the method. The invoke() method should return
the invocation's result: the return value of the join point.

A simple MethodInterceptor implementation looks as follows:

public class DebugInterceptor implements MethodInterceptor {

public Object invoke(MethodInvocation invocation) throws Throwable {
System.out.println("Before: invocation=[" + invocation + "]");
Object rval = invocation.proceed();
System.out.println("Invocation returned");
return rval;

}
}

Note the call to the MethodInvocation's proceed() method. This proceeds down the interceptor chain
towards the join point. Most interceptors will invoke this method, and return its return value. However, a
MethodInterceptor, like any around advice, can return a different value or throw an exception rather than
invoke the proceed method. However, you don't want to do this without good reason!

Note

MethodInterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section implement
common AOP concepts, but in a Spring-specific way. While there is an advantage in using
the most specific advice type, stick with MethodInterceptor around advice if you are likely to
want to run the aspect in another AOP framework. Note that pointcuts are not currently
interoperable between frameworks, and the AOP Alliance does not currently define pointcut
interfaces.

Before advice

A simpler advice type is a before advice. This does not need a MethodInvocation object, since it
will only be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed() method, and
therefore no possibility of inadvertently failing to proceed down the interceptor chain.

The MethodBeforeAdvice interface is shown below. (Spring's API design would allow for field
before advice, although the usual objects apply to field interception and it's unlikely that Spring will ever
implement it).

Spring Framework

3.1 Reference Documentation 729

public interface MethodBeforeAdvice extends BeforeAdvice {

void before(Method m, Object[] args, Object target) throws Throwable;
}

Note the return type is void. Before advice can insert custom behavior before the join point executes, but
cannot change the return value. If a before advice throws an exception, this will abort further execution of
the interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on
the signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped
in an unchecked exception by the AOP proxy.

An example of a before advice in Spring, which counts all method invocations:

public class CountingBeforeAdvice implements MethodBeforeAdvice {

private int count;

public void before(Method m, Object[] args, Object target) throws Throwable {
++count;

}

public int getCount() {
return count;

}
}

Tip

Before advice can be used with any pointcut.

Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception. Spring
offers typed throws advice. Note that this means that the
org.springframework.aop.ThrowsAdvice interface does not contain any methods: It is a tag
interface identifying that the given object implements one or more typed throws advice methods. These
should be in the form of:

afterThrowing([Method, args, target], subclassOfThrowable)

Only the last argument is required. The method signatures may have either one or four arguments,
depending on whether the advice method is interested in the method and arguments. The following
classes are examples of throws advice.

The advice below is invoked if a RemoteException is thrown (including subclasses):

public class RemoteThrowsAdvice implements ThrowsAdvice {

public void afterThrowing(RemoteException ex) throws Throwable {
// Do something with remote exception

}
}

Spring Framework

3.1 Reference Documentation 730

The following advice is invoked if a ServletException is thrown. Unlike the above advice, it
declares 4 arguments, so that it has access to the invoked method, method arguments and target object:

public class ServletThrowsAdviceWithArguments implements ThrowsAdvice {

public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
// Do something with all arguments

}
}

The final example illustrates how these two methods could be used in a single class, which handles both
RemoteException and ServletException. Any number of throws advice methods can be
combined in a single class.

public static class CombinedThrowsAdvice implements ThrowsAdvice {

public void afterThrowing(RemoteException ex) throws Throwable {
// Do something with remote exception

}

public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
// Do something with all arguments

}
}

Note: If a throws-advice method throws an exception itself, it will override the original exception (i.e.
change the exception thrown to the user). The overriding exception will typically be a RuntimeException;
this is compatible with any method signature. However, if a throws-advice method throws a checked
exception, it will have to match the declared exceptions of the target method and is hence to some degree
coupled to specific target method signatures. Do not throw an undeclared checked exception that is
incompatible with the target method's signature!

Tip

Throws advice can be used with any pointcut.

After Returning advice

An after returning advice in Spring must implement the org.springframework.aop.AfterReturningAdvice
interface, shown below:

public interface AfterReturningAdvice extends Advice {

void afterReturning(Object returnValue, Method m, Object[] args, Object target)
throws Throwable;

}

An after returning advice has access to the return value (which it cannot modify), invoked method,
methods arguments and target.

The following after returning advice counts all successful method invocations that have not thrown

Spring Framework

3.1 Reference Documentation 731

exceptions:

public class CountingAfterReturningAdvice implements AfterReturningAdvice {

private int count;

public void afterReturning(Object returnValue, Method m, Object[] args, Object target)
throws Throwable {

++count;
}

public int getCount() {
return count;

}
}

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the
interceptor chain instead of the return value.

Tip

After returning advice can be used with any pointcut.

Introduction advice

Spring treats introduction advice as a special kind of interception advice.

Introduction requires an IntroductionAdvisor, and an IntroductionInterceptor,
implementing the following interface:

public interface IntroductionInterceptor extends MethodInterceptor {

boolean implementsInterface(Class intf);
}

The invoke() method inherited from the AOP Alliance MethodInterceptor interface must
implement the introduction: that is, if the invoked method is on an introduced interface, the introduction
interceptor is responsible for handling the method call - it cannot invoke proceed().

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method, level.
You can only use introduction advice with the IntroductionAdvisor, which has the following
methods:

public interface IntroductionAdvisor extends Advisor, IntroductionInfo {

ClassFilter getClassFilter();

void validateInterfaces() throws IllegalArgumentException;
}

public interface IntroductionInfo {

Class[] getInterfaces();
}

Spring Framework

3.1 Reference Documentation 732

There is no MethodMatcher, and hence no Pointcut, associated with introduction advice. Only
class filtering is logical.

The getInterfaces() method returns the interfaces introduced by this advisor.
The validateInterfaces() method is used internally to see whether or not the introduced
interfaces can be implemented by the configured IntroductionInterceptor .

Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the
following interface to one or more objects:

public interface Lockable {
void lock();
void unlock();
boolean locked();

}

This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type, and
call lock and unlock methods. If we call the lock() method, we want all setter methods to throw a
LockedException. Thus we can add an aspect that provides the ability to make objects immutable,
without them having any knowledge of it: a good example of AOP.

Firstly, we'll need an IntroductionInterceptor that does the heavy lifting. In this case, we
extend the
org.springframework.aop.support.DelegatingIntroductionInterceptor
convenience class. We could implement IntroductionInterceptor directly, but using
DelegatingIntroductionInterceptor is best for most cases.

The DelegatingIntroductionInterceptor is designed to delegate an introduction to an actual
implementation of the introduced interface(s), concealing the use of interception to do so. The delegate
can be set to any object using a constructor argument; the default delegate (when the no-arg constructor is
used) is this. Thus in the example below, the delegate is the LockMixin subclass of
DelegatingIntroductionInterceptor. Given a delegate (by default itself), a
DelegatingIntroductionInterceptor instance looks for all interfaces implemented by the
delegate (other than IntroductionInterceptor), and will support introductions against any of them. It's
possible for subclasses such as LockMixin to call the suppressInterface(Class intf)
method to suppress interfaces that should not be exposed. However, no matter how many interfaces an
IntroductionInterceptor is prepared to support, the IntroductionAdvisor used will
control which interfaces are actually exposed. An introduced interface will conceal any implementation of
the same interface by the target.

Thus LockMixin subclasses DelegatingIntroductionInterceptor and implements Lockable
itself. The superclass automatically picks up that Lockable can be supported for introduction, so we don't
need to specify that. We could introduce any number of interfaces in this way.

Note the use of the locked instance variable. This effectively adds additional state to that held in the
target object.

Spring Framework

3.1 Reference Documentation 733

public class LockMixin extends DelegatingIntroductionInterceptor
implements Lockable {

private boolean locked;

public void lock() {
this.locked = true;

}

public void unlock() {
this.locked = false;

}

public boolean locked() {
return this.locked;

}

public Object invoke(MethodInvocation invocation) throws Throwable {
if (locked() && invocation.getMethod().getName().indexOf("set") == 0)

throw new LockedException();
return super.invoke(invocation);

}

}

Often it isn't necessary to override the invoke() method: the
DelegatingIntroductionInterceptor implementation - which calls the delegate method if the
method is introduced, otherwise proceeds towards the join point - is usually sufficient. In the present case,
we need to add a check: no setter method can be invoked if in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct LockMixin instance,
and specify the introduced interfaces - in this case, just Lockable. A more complex example might take
a reference to the introduction interceptor (which would be defined as a prototype): in this case, there's no
configuration relevant for a LockMixin, so we simply create it using new.

public class LockMixinAdvisor extends DefaultIntroductionAdvisor {

public LockMixinAdvisor() {
super(new LockMixin(), Lockable.class);

}
}

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It's
impossible to use an IntroductionInterceptor without an IntroductionAdvisor.) As usual with
introductions, the advisor must be per-instance, as it is stateful. We need a different instance of
LockMixinAdvisor, and hence LockMixin, for each advised object. The advisor comprises part of
the advised object's state.

We can apply this advisor programmatically, using the Advised.addAdvisor() method, or (the
recommended way) in XML configuration, like any other advisor. All proxy creation choices discussed
below, including "auto proxy creators," correctly handle introductions and stateful mixins.

Spring Framework

3.1 Reference Documentation 734

B.3 Advisor API in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut
expression.

Apart from the special case of introductions, any advisor can be used with any advice.
org.springframework.aop.support.DefaultPointcutAdvisor is the most commonly
used advisor class. For example, it can be used with a MethodInterceptor, BeforeAdvice or
ThrowsAdvice.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could
use a interception around advice, throws advice and before advice in one proxy configuration: Spring will
automatically create the necessary interceptor chain.

B.4 Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring IoC container (an ApplicationContext or BeanFactory) for your business
objects - and you should be! - you will want to use one of Spring's AOP FactoryBeans. (Remember that a
factory bean introduces a layer of indirection, enabling it to create objects of a different type.)

Note

The Spring 2.0 AOP support also uses factory beans under the covers.

The basic way to create an AOP proxy in Spring is to use the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts
and advice that will apply, and their ordering. However, there are simpler options that are preferable if
you don't need such control.

Basics

The ProxyFactoryBean, like other Spring FactoryBean implementations, introduces a level of
indirection. If you define a ProxyFactoryBean with name foo, what objects referencing foo see is
not the ProxyFactoryBean instance itself, but an object created by the ProxyFactoryBean's
implementation of the getObject() method. This method will create an AOP proxy wrapping a target
object.

One of the most important benefits of using a ProxyFactoryBean or another IoC-aware class to
create AOP proxies, is that it means that advices and pointcuts can also be managed by IoC. This is a
powerful feature, enabling certain approaches that are hard to achieve with other AOP frameworks. For
example, an advice may itself reference application objects (besides the target, which should be available
in any AOP framework), benefiting from all the pluggability provided by Dependency Injection.

Spring Framework

3.1 Reference Documentation 735

JavaBean properties

In common with most FactoryBean implementations provided with Spring, the
ProxyFactoryBean class is itself a JavaBean. Its properties are used to:

• Specify the target you want to proxy.

• Specify whether to use CGLIB (see below and also the section called “JDK- and CGLIB-based
proxies”).

Some key properties are inherited from
org.springframework.aop.framework.ProxyConfig (the superclass for all AOP proxy
factories in Spring). These key properties include:

• proxyTargetClass: true if the target class is to be proxied, rather than the target class'
interfaces. If this property value is set to true, then CGLIB proxies will be created (but see also below
the section called “JDK- and CGLIB-based proxies”).

• optimize: controls whether or not aggressive optimizations are applied to proxies created via
CGLIB. One should not blithely use this setting unless one fully understands how the relevant AOP
proxy handles optimization. This is currently used only for CGLIB proxies; it has no effect with JDK
dynamic proxies.

• frozen: if a proxy configuration is frozen, then changes to the configuration are no longer allowed.
This is useful both as a slight optimization and for those cases when you don't want callers to be able to
manipulate the proxy (via the Advised interface) after the proxy has been created. The default value
of this property is false, so changes such as adding additional advice are allowed.

• exposeProxy: determines whether or not the current proxy should be exposed in a ThreadLocal
so that it can be accessed by the target. If a target needs to obtain the proxy and the exposeProxy
property is set to true, the target can use the AopContext.currentProxy() method.

• aopProxyFactory: the implementation of AopProxyFactory to use. Offers a way of
customizing whether to use dynamic proxies, CGLIB or any other proxy strategy. The default
implementation will choose dynamic proxies or CGLIB appropriately. There should be no need to use
this property; it is intended to allow the addition of new proxy types in Spring 1.1.

Other properties specific to ProxyFactoryBean include:

• proxyInterfaces: array of String interface names. If this isn't supplied, a CGLIB proxy for the
target class will be used (but see also below the section called “JDK- and CGLIB-based proxies”).

• interceptorNames: String array of Advisor, interceptor or other advice names to apply.
Ordering is significant, on a first come-first served basis. That is to say that the first interceptor in the
list will be the first to be able to intercept the invocation.

The names are bean names in the current factory, including bean names from ancestor factories. You

Spring Framework

3.1 Reference Documentation 736

can't mention bean references here since doing so would result in the ProxyFactoryBean ignoring
the singleton setting of the advice.

You can append an interceptor name with an asterisk (*). This will result in the application of all
advisor beans with names starting with the part before the asterisk to be applied. An example of using
this feature can be found in the section called “Using 'global' advisors”.

• singleton: whether or not the factory should return a single object, no matter how often the
getObject() method is called. Several FactoryBean implementations offer such a method. The
default value is true. If you want to use stateful advice - for example, for stateful mixins - use
prototype advices along with a singleton value of false.

JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the ProxyFactoryBean chooses to create
one of either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

Note

The behavior of the ProxyFactoryBean with regard to creating JDK- or CGLIB-based
proxies changed between versions 1.2.x and 2.0 of Spring. The ProxyFactoryBean now
exhibits similar semantics with regard to auto-detecting interfaces as those of the
TransactionProxyFactoryBean class.

If the class of a target object that is to be proxied (hereafter simply referred to as the target class) doesn't
implement any interfaces, then a CGLIB-based proxy will be created. This is the easiest scenario, because
JDK proxies are interface based, and no interfaces means JDK proxying isn't even possible. One simply
plugs in the target bean, and specifies the list of interceptors via the interceptorNames property.
Note that a CGLIB-based proxy will be created even if the proxyTargetClass property of the
ProxyFactoryBean has been set to false. (Obviously this makes no sense, and is best removed
from the bean definition because it is at best redundant, and at worst confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created depends on
the configuration of the ProxyFactoryBean.

If the proxyTargetClass property of the ProxyFactoryBean has been set to true, then a
CGLIB-based proxy will be created. This makes sense, and is in keeping with the principle of least
surprise. Even if the proxyInterfaces property of the ProxyFactoryBean has been set to one or
more fully qualified interface names, the fact that the proxyTargetClass property is set to true will
cause CGLIB-based proxying to be in effect.

If the proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully
qualified interface names, then a JDK-based proxy will be created. The created proxy will implement all
of the interfaces that were specified in the proxyInterfaces property; if the target class happens to

Spring Framework

3.1 Reference Documentation 737

implement a whole lot more interfaces than those specified in the proxyInterfaces property, that is
all well and good but those additional interfaces will not be implemented by the returned proxy.

If the proxyInterfaces property of the ProxyFactoryBean has not been set, but the target class
does implement one (or more) interfaces, then the ProxyFactoryBean will auto-detect the fact that
the target class does actually implement at least one interface, and a JDK-based proxy will be created.
The interfaces that are actually proxied will be all of the interfaces that the target class implements; in
effect, this is the same as simply supplying a list of each and every interface that the target class
implements to the proxyInterfaces property. However, it is significantly less work, and less prone
to typos.

Proxying interfaces

Let's look at a simple example of ProxyFactoryBean in action. This example involves:

• A target bean that will be proxied. This is the "personTarget" bean definition in the example below.

• An Advisor and an Interceptor used to provide advice.

• An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces
to proxy, along with the advices to apply.

<bean id="personTarget" class="com.mycompany.PersonImpl">
<property name="name"><value>Tony</value></property>
<property name="age"><value>51</value></property>

</bean>

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
<property name="someProperty"><value>Custom string property value</value></property>

</bean>

<bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor">
</bean>

<bean id="person"
class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces"><value>com.mycompany.Person</value></property>

<property name="target"><ref local="personTarget"/></property>
<property name="interceptorNames">

<list>
<value>myAdvisor</value>
<value>debugInterceptor</value>

</list>
</property>

</bean>

Note that the interceptorNames property takes a list of String: the bean names of the interceptor or
advisors in the current factory. Advisors, interceptors, before, after returning and throws advice objects
can be used. The ordering of advisors is significant.

Note

Spring Framework

3.1 Reference Documentation 738

You might be wondering why the list doesn't hold bean references. The reason for this is that
if the ProxyFactoryBean's singleton property is set to false, it must be able to return
independent proxy instances. If any of the advisors is itself a prototype, an independent
instance would need to be returned, so it's necessary to be able to obtain an instance of the
prototype from the factory; holding a reference isn't sufficient.

The "person" bean definition above can be used in place of a Person implementation, as follows:

Person person = (Person) factory.getBean("person");

Other beans in the same IoC context can express a strongly typed dependency on it, as with an ordinary
Java object:

<bean id="personUser" class="com.mycompany.PersonUser">
<property name="person"><ref local="person" /></property>

</bean>

The PersonUser class in this example would expose a property of type Person. As far as it's concerned,
the AOP proxy can be used transparently in place of a "real" person implementation. However, its class
would be a dynamic proxy class. It would be possible to cast it to the Advised interface (discussed
below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as
follows. Only the ProxyFactoryBean definition is different; the advice is included only for
completeness:

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">
<property name="someProperty"><value>Custom string property value</value></property>

</bean>

<bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor"/>

<bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces"><value>com.mycompany.Person</value></property>
<!-- Use inner bean, not local reference to target -->
<property name="target">

<bean class="com.mycompany.PersonImpl">
<property name="name"><value>Tony</value></property>
<property name="age"><value>51</value></property>

</bean>
</property>
<property name="interceptorNames">

<list>
<value>myAdvisor</value>
<value>debugInterceptor</value>

</list>
</property>

</bean>

This has the advantage that there's only one object of type Person: useful if we want to prevent users of

Spring Framework

3.1 Reference Documentation 739

the application context from obtaining a reference to the un-advised object, or need to avoid any
ambiguity with Spring IoC autowiring. There's also arguably an advantage in that the ProxyFactoryBean
definition is self-contained. However, there are times when being able to obtain the un-advised target
from the factory might actually be an advantage: for example, in certain test scenarios.

Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Person interface: we needed to advise a class called
Person that didn't implement any business interface. In this case, you can configure Spring to use
CGLIB proxying, rather than dynamic proxies. Simply set the proxyTargetClass property on the
ProxyFactoryBean above to true. While it's best to program to interfaces, rather than classes, the ability to
advise classes that don't implement interfaces can be useful when working with legacy code. (In general,
Spring isn't prescriptive. While it makes it easy to apply good practices, it avoids forcing a particular
approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this
generated subclass to delegate method calls to the original target: the subclass is used to implement the
Decorator pattern, weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:

• Final methods can't be advised, as they can't be overridden.

• You'll need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK.

There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are slightly faster. However, this may change in the future. Performance should not be a
decisive consideration in this case.

Using 'global' advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before
the asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard set
of 'global' advisors:

<bean id="proxy" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="target" ref="service"/>
<property name="interceptorNames">

<list>
<value>global*</value>

</list>
</property>

</bean>

Spring Framework

3.1 Reference Documentation 740

<bean id="global_debug" class="org.springframework.aop.interceptor.DebugInterceptor"/>
<bean id="global_performance" class="org.springframework.aop.interceptor.PerformanceMonitorInterceptor"/>

B.5 Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy definitions. The
use of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and
more concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean id="txProxyTemplate" abstract="true"
class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">

<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributes">

<props>
<prop key="*">PROPAGATION_REQUIRED</prop>

</props>
</property>

</bean>

This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be
created is just a child bean definition, which wraps the target of the proxy as an inner bean definition,
since the target will never be used on its own anyway.

<bean id="myService" parent="txProxyTemplate">
<property name="target">

<bean class="org.springframework.samples.MyServiceImpl">
</bean>

</property>
</bean>

It is of course possible to override properties from the parent template, such as in this case, the transaction
propagation settings:

<bean id="mySpecialService" parent="txProxyTemplate">
<property name="target">

<bean class="org.springframework.samples.MySpecialServiceImpl">
</bean>

</property>
<property name="transactionAttributes">

<props>
<prop key="get*">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="find*">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="load*">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="store*">PROPAGATION_REQUIRED</prop>

</props>
</property>

</bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using
the abstract attribute, as described previously, so that it may not actually ever be instantiated. Application
contexts (but not simple bean factories) will by default pre-instantiate all singletons. It is therefore

Spring Framework

3.1 Reference Documentation 741

important (at least for singleton beans) that if you have a (parent) bean definition which you intend to use
only as a template, and this definition specifies a class, you must make sure to set the abstract attribute to
true, otherwise the application context will actually try to pre-instantiate it.

B.6 Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP
without dependency on Spring IoC.

The following listing shows creation of a proxy for a target object, with one interceptor and one advisor.
The interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFactory(myBusinessInterfaceImpl);
factory.addInterceptor(myMethodInterceptor);
factory.addAdvisor(myAdvisor);
MyBusinessInterface tb = (MyBusinessInterface) factory.getProxy();

The first step is to construct an object of type
org.springframework.aop.framework.ProxyFactory. You can create this with a target
object, as in the above example, or specify the interfaces to be proxied in an alternate constructor.

You can add interceptors or advisors, and manipulate them for the life of the ProxyFactory. If you add an
IntroductionInterceptionAroundAdvisor you can cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport) which allow
you to add other advice types such as before and throws advice. AdvisedSupport is the superclass of both
ProxyFactory and ProxyFactoryBean.

Tip

Integrating AOP proxy creation with the IoC framework is best practice in most applications.
We recommend that you externalize configuration from Java code with AOP, as in general.

B.7 Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org.springframework.aop.framework.Advised interface. Any AOP proxy can be cast to
this interface, whichever other interfaces it implements. This interface includes the following methods:

Advisor[] getAdvisors();

void addAdvice(Advice advice) throws AopConfigException;

void addAdvice(int pos, Advice advice)

Spring Framework

3.1 Reference Documentation 742

throws AopConfigException;

void addAdvisor(Advisor advisor) throws AopConfigException;

void addAdvisor(int pos, Advisor advisor) throws AopConfigException;

int indexOf(Advisor advisor);

boolean removeAdvisor(Advisor advisor) throws AopConfigException;

void removeAdvisor(int index) throws AopConfigException;

boolean replaceAdvisor(Advisor a, Advisor b) throws AopConfigException;

boolean isFrozen();

The getAdvisors() method will return an Advisor for every advisor, interceptor or other advice type
that has been added to the factory. If you added an Advisor, the returned advisor at this index will be the
object that you added. If you added an interceptor or other advice type, Spring will have wrapped this in
an advisor with a pointcut that always returns true. Thus if you added a MethodInterceptor, the
advisor returned for this index will be an DefaultPointcutAdvisor returning your
MethodInterceptor and a pointcut that matches all classes and methods.

The addAdvisor() methods can be used to add any Advisor. Usually the advisor holding pointcut and
advice will be the generic DefaultPointcutAdvisor, which can be used with any advice or
pointcut (but not for introductions).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The
only restriction is that it's impossible to add or remove an introduction advisor, as existing proxies from
the factory will not show the interface change. (You can obtain a new proxy from the factory to avoid this
problem.)

A simple example of casting an AOP proxy to the Advised interface and examining and manipulating
its advice:

Advised advised = (Advised) myObject;
Advisor[] advisors = advised.getAdvisors();
int oldAdvisorCount = advisors.length;
System.out.println(oldAdvisorCount + " advisors");

// Add an advice like an interceptor without a pointcut
// Will match all proxied methods
// Can use for interceptors, before, after returning or throws advice
advised.addAdvice(new DebugInterceptor());

// Add selective advice using a pointcut
advised.addAdvisor(new DefaultPointcutAdvisor(mySpecialPointcut, myAdvice));

assertEquals("Added two advisors",
oldAdvisorCount + 2, advised.getAdvisors().length);

Note

It's questionable whether it's advisable (no pun intended) to modify advice on a business
object in production, although there are no doubt legitimate usage cases. However, it can be

Spring Framework

3.1 Reference Documentation 743

very useful in development: for example, in tests. I have sometimes found it very useful to be
able to add test code in the form of an interceptor or other advice, getting inside a method
invocation I want to test. (For example, the advice can get inside a transaction created for that
method: for example, to run SQL to check that a database was correctly updated, before
marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set a frozen flag, in which case the
Advised isFrozen() method will return true, and any attempts to modify advice through addition or
removal will result in an AopConfigException. The ability to freeze the state of an advised object is
useful in some cases, for example, to prevent calling code removing a security interceptor. It may also be
used in Spring 1.1 to allow aggressive optimization if runtime advice modification is known not to be
required.

B.8 Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a ProxyFactoryBean or similar
factory bean.

Spring also allows us to use "autoproxy" bean definitions, which can automatically proxy selected bean
definitions. This is built on Spring "bean post processor" infrastructure, which enables modification of
any bean definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file to configure the
auto proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't
need to use ProxyFactoryBean.

There are two ways to do this:

• Using an autoproxy creator that refers to specific beans in the current context.

• A special case of autoproxy creation that deserves to be considered separately; autoproxy creation
driven by source-level metadata attributes.

Autoproxy bean definitions

The org.springframework.aop.framework.autoproxy package provides the following
standard autoproxy creators.

BeanNameAutoProxyCreator

The BeanNameAutoProxyCreator class is a BeanPostProcessor that automatically creates
AOP proxies for beans with names matching literal values or wildcards.

Spring Framework

3.1 Reference Documentation 744

<bean class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">
<property name="beanNames"><value>jdk*,onlyJdk</value></property>
<property name="interceptorNames">

<list>
<value>myInterceptor</value>

</list>
</property>

</bean>

As with ProxyFactoryBean, there is an interceptorNames property rather than a list of
interceptors, to allow correct behavior for prototype advisors. Named "interceptors" can be advisors or
any advice type.

As with auto proxying in general, the main point of using BeanNameAutoProxyCreator is to apply
the same configuration consistently to multiple objects, with minimal volume of configuration. It is a
popular choice for applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are
plain old bean definitions with the target class. An AOP proxy will be created automatically by the
BeanNameAutoProxyCreator. The same advice will be applied to all matching beans. Note that if
advisors are used (rather than the interceptor in the above example), the pointcuts may apply differently to
different beans.

DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is
DefaultAdvisorAutoProxyCreator. This will automagically apply eligible advisors in the
current context, without the need to include specific bean names in the autoproxy advisor's bean
definition. It offers the same merit of consistent configuration and avoidance of duplication as
BeanNameAutoProxyCreator.

Using this mechanism involves:

• Specifying a DefaultAdvisorAutoProxyCreator bean definition.

• Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors,
not just interceptors or other advices. This is necessary because there must be a pointcut to evaluate, to
check the eligibility of each advice to candidate bean definitions.

The DefaultAdvisorAutoProxyCreator will automatically evaluate the pointcut contained in
each advisor, to see what (if any) advice it should apply to each business object (such as
"businessObject1" and "businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no
pointcut in any of the advisors matches any method in a business object, the object will not be proxied. As
bean definitions are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain

Spring Framework

3.1 Reference Documentation 745

an un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP
proxy, not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
<property name="transactionInterceptor" ref="transactionInterceptor"/>

</bean>

<bean id="customAdvisor" class="com.mycompany.MyAdvisor"/>

<bean id="businessObject1" class="com.mycompany.BusinessObject1">
<!-- Properties omitted -->

</bean>

<bean id="businessObject2" class="com.mycompany.BusinessObject2"/>

The DefaultAdvisorAutoProxyCreator is very useful if you want to apply the same advice
consistently to many business objects. Once the infrastructure definitions are in place, you can simply add
new business objects without including specific proxy configuration. You can also drop in additional
aspects very easily - for example, tracing or performance monitoring aspects - with minimal change to
configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only
certain advisors are evaluated, allowing use of multiple, differently configured,
AdvisorAutoProxyCreators in the same factory) and ordering. Advisors can implement the
org.springframework.core.Ordered interface to ensure correct ordering if this is an issue. The
TransactionAttributeSourceAdvisor used in the above example has a configurable order value; the default
setting is unordered.

AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy creators
by subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to
the behavior of the framework DefaultAdvisorAutoProxyCreator.

Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar
programming model to .NET ServicedComponents. Instead of using XML deployment descriptors
as in EJB, configuration for transaction management and other enterprise services is held in source-level
attributes.

In this case, you use the DefaultAdvisorAutoProxyCreator, in combination with Advisors that
understand metadata attributes. The metadata specifics are held in the pointcut part of the candidate
advisors, rather than in the autoproxy creation class itself.

This is really a special case of the DefaultAdvisorAutoProxyCreator, but deserves

Spring Framework

3.1 Reference Documentation 746

consideration on its own. (The metadata-aware code is in the pointcuts contained in the advisors, not the
AOP framework itself.)

The /attributes directory of the JPetStore sample application shows the use of attribute-driven
autoproxying. In this case, there's no need to use the TransactionProxyFactoryBean. Simply
defining transactional attributes on business objects is sufficient, because of the use of metadata-aware
pointcuts. The bean definitions include the following code, in
/WEB-INF/declarativeServices.xml. Note that this is generic, and can be used outside the
JPetStore:

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
<property name="transactionInterceptor" ref="transactionInterceptor"/>

</bean>

<bean id="transactionInterceptor"
class="org.springframework.transaction.interceptor.TransactionInterceptor">

<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributeSource">

<bean class="org.springframework.transaction.interceptor.AttributesTransactionAttributeSource">
<property name="attributes" ref="attributes"/>

</bean>
</property>

</bean>

<bean id="attributes" class="org.springframework.metadata.commons.CommonsAttributes"/>

The DefaultAdvisorAutoProxyCreator bean definition (the name is not significant, hence it can
even be omitted) will pick up all eligible pointcuts in the current application context. In this case, the
"transactionAdvisor" bean definition, of type TransactionAttributeSourceAdvisor, will
apply to classes or methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor
depends on a TransactionInterceptor, via constructor dependency. The example resolves this via
autowiring. The AttributesTransactionAttributeSource depends on an implementation of
the org.springframework.metadata.Attributes interface. In this fragment, the "attributes"
bean satisfies this, using the Jakarta Commons Attributes API to obtain attribute information. (The
application code must have been compiled using the Commons Attributes compilation task.)

The /annotation directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection
of Spring's Transactional annotation, leading to implicit proxies for beans containing that
annotation:

<bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
<property name="transactionInterceptor" ref="transactionInterceptor"/>

</bean>

<bean id="transactionInterceptor"
class="org.springframework.transaction.interceptor.TransactionInterceptor">

<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributeSource">

<bean class="org.springframework.transaction.annotation.AnnotationTransactionAttributeSource"/>

Spring Framework

3.1 Reference Documentation 747

</property>
</bean>

The TransactionInterceptor defined here depends on a PlatformTransactionManager
definition, which is not included in this generic file (although it could be) because it will be specific to the
application's transaction requirements (typically JTA, as in this example, or Hibernate, JDO or JDBC):

<bean id="transactionManager"
class="org.springframework.transaction.jta.JtaTransactionManager"/>

Tip

If you require only declarative transaction management, using these generic XML definitions
will result in Spring automatically proxying all classes or methods with transaction attributes.
You won't need to work directly with AOP, and the programming model is similar to that of
.NET ServicedComponents.

This mechanism is extensible. It's possible to do autoproxying based on custom attributes. You need to:

• Define your custom attribute.

• Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence of
the custom attribute on a class or method. You may be able to use an existing advice, merely
implementing a static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they simply need
to be defined as prototype, rather than singleton, bean definitions. For example, the LockMixin
introduction interceptor from the Spring test suite, shown above, could be used in conjunction with an
attribute-driven pointcut to target a mixin, as shown here. We use the generic
DefaultPointcutAdvisor, configured using JavaBean properties:

<bean id="lockMixin" class="org.springframework.aop.LockMixin"
scope="prototype"/>

<bean id="lockableAdvisor" class="org.springframework.aop.support.DefaultPointcutAdvisor"
scope="prototype">

<property name="pointcut" ref="myAttributeAwarePointcut"/>
<property name="advice" ref="lockMixin"/>

</bean>

<bean id="anyBean" class="anyclass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin
will be applied. Note that both lockMixin and lockableAdvisor definitions are prototypes. The
myAttributeAwarePointcut pointcut can be a singleton definition, as it doesn't hold state for
individual advised objects.

Spring Framework

3.1 Reference Documentation 748

B.9 Using TargetSources

Spring offers the concept of a TargetSource, expressed in the
org.springframework.aop.TargetSource interface. This interface is responsible for returning
the "target object" implementing the join point. The TargetSource implementation is asked for a
target instance each time the AOP proxy handles a method invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides
a powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a
pooling TargetSource can return a different target instance for each invocation, using a pool to manage
instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The same
target is returned for each invocation (as you would expect).

Let's look at the standard target sources provided with Spring, and how you can use them.

Tip

When using a custom target source, your target will usually need to be a prototype rather than
a singleton bean definition. This allows Spring to create a new target instance when required.

Hot swappable target sources

The org.springframework.aop.target.HotSwappableTargetSource exists to allow the
target of an AOP proxy to be switched while allowing callers to keep their references to it.

Changing the target source's target takes effect immediately. The HotSwappableTargetSource is
threadsafe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:

HotSwappableTargetSource swapper =
(HotSwappableTargetSource) beanFactory.getBean("swapper");

Object oldTarget = swapper.swap(newTarget);

The XML definitions required look as follows:

<bean id="initialTarget" class="mycompany.OldTarget"/>

<bean id="swapper" class="org.springframework.aop.target.HotSwappableTargetSource">
<constructor-arg ref="initialTarget"/>

</bean>

<bean id="swappable" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="targetSource" ref="swapper"/>

</bean>

Spring Framework

3.1 Reference Documentation 749

The above swap() call changes the target of the swappable bean. Clients who hold a reference to that
bean will be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice - and it's not necessary to add advice to use a
TargetSource - of course any TargetSource can be used in conjunction with arbitrary advice.

Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in which a
pool of identical instances is maintained, with method invocations going to free objects in the pool.

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to
any POJO. As with Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.3, which provides a fairly efficient
pooling implementation. You'll need the commons-pool Jar on your application's classpath to use this
feature. It's also possible to subclass
org.springframework.aop.target.AbstractPoolingTargetSource to support any
other pooling API.

Sample configuration is shown below:

<bean id="businessObjectTarget" class="com.mycompany.MyBusinessObject"
scope="prototype">

... properties omitted
</bean>

<bean id="poolTargetSource" class="org.springframework.aop.target.CommonsPoolTargetSource">
<property name="targetBeanName" value="businessObjectTarget"/>
<property name="maxSize" value="25"/>

</bean>

<bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="targetSource" ref="poolTargetSource"/>
<property name="interceptorNames" value="myInterceptor"/>

</bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows the
PoolingTargetSource implementation to create new instances of the target to grow the pool as
necessary. See the havadoc for AbstractPoolingTargetSource and the concrete subclass you
wish to use for information about its properties: "maxSize" is the most basic, and always guaranteed to be
present.

In this case, "myInterceptor" is the name of an interceptor that would need to be defined in the same IoC
context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and
no other advice, don't set the interceptorNames property at all.

It's possible to configure Spring so as to be able to cast any pooled object to the
org.springframework.aop.target.PoolingConfig interface, which exposes information

Spring Framework

3.1 Reference Documentation 750

about the configuration and current size of the pool through an introduction. You'll need to define an
advisor like this:

<bean id="poolConfigAdvisor" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
<property name="targetObject" ref="poolTargetSource"/>
<property name="targetMethod" value="getPoolingConfigMixin"/>

</bean>

This advisor is obtained by calling a convenience method on the AbstractPoolingTargetSource
class, hence the use of MethodInvokingFactoryBean. This advisor's name ("poolConfigAdvisor" here)
must be in the list of interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look as follows:

PoolingConfig conf = (PoolingConfig) beanFactory.getBean("businessObject");
System.out.println("Max pool size is " + conf.getMaxSize());

Note

Pooling stateless service objects is not usually necessary. We don't believe it should be the
default choice, as most stateless objects are naturally thread safe, and instance pooling is
problematic if resources are cached.

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any
autoproxy creator.

Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance of
the target will be created on every method invocation. Although the cost of creating a new object isn't
high in a modern JVM, the cost of wiring up the new object (satisfying its IoC dependencies) may be
more expensive. Thus you shouldn't use this approach without very good reason.

To do this, you could modify the poolTargetSource definition shown above as follows. (I've also
changed the name, for clarity.)

<bean id="prototypeTargetSource" class="org.springframework.aop.target.PrototypeTargetSource">
<property name="targetBeanName" ref="businessObjectTarget"/>

</bean>

There's only one property: the name of the target bean. Inheritance is used in the TargetSource
implementations to ensure consistent naming. As with the pooling target source, the target bean must be a
prototype bean definition.

ThreadLocal target sources

Spring Framework

3.1 Reference Documentation 751

ThreadLocal target sources are useful if you need an object to be created for each incoming request
(per thread that is). The concept of a ThreadLocal provide a JDK-wide facility to transparently store
resource alongside a thread. Setting up a ThreadLocalTargetSource is pretty much the same as
was explained for the other types of target source:

<bean id="threadlocalTargetSource" class="org.springframework.aop.target.ThreadLocalTargetSource">
<property name="targetBeanName" value="businessObjectTarget"/>

</bean>

Note

ThreadLocals come with serious issues (potentially resulting in memory leaks) when
incorrectly using them in a multi-threaded and multi-classloader environments. One should
always consider wrapping a threadlocal in some other class and never directly use the
ThreadLocal itself (except of course in the wrapper class). Also, one should always
remember to correctly set and unset (where the latter simply involved a call to
ThreadLocal.set(null)) the resource local to the thread. Unsetting should be done in
any case since not unsetting it might result in problematic behavior. Spring's ThreadLocal
support does this for you and should always be considered in favor of using ThreadLocals
without other proper handling code.

B.10 Defining new Advice types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently used
internally, it is possible to support arbitrary advice types in addition to the out-of-the-box interception
around advice, before, throws advice and after returning advice.

The org.springframework.aop.framework.adapter package is an SPI package allowing
support for new custom advice types to be added without changing the core framework. The only
constraint on a custom Advice type is that it must implement the org.aopalliance.aop.Advice
tag interface.

Please refer to the org.springframework.aop.framework.adapter package's Javadocs for
further information.

B.11 Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:

• The JPetStore's default configuration illustrates the use of the TransactionProxyFactoryBean
for declarative transaction management.

• The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative

Spring Framework

3.1 Reference Documentation 752

transaction management.

Spring Framework

3.1 Reference Documentation 753

Appendix C. XML Schema-based
configuration

C.1 Introduction

This appendix details the XML Schema-based configuration introduced in Spring 2.0 and enhanced and
extended in Spring 2.5 and 3.0.

DTD support?

Authoring Spring configuration files using the older DTD style is still fully supported.

Nothing will break if you forego the use of the new XML Schema-based approach to authoring
Spring XML configuration files. All that you lose out on is the opportunity to have more succinct
and clearer configuration. Regardless of whether the XML configuration is DTD- or Schema-based,
in the end it all boils down to the same object model in the container (namely one or more
BeanDefinition instances).

The central motivation for moving to XML Schema based configuration files was to make Spring XML
configuration easier. The 'classic' <bean/>-based approach is good, but its generic-nature comes with a
price in terms of configuration overhead.

From the Spring IoC containers point-of-view, everything is a bean. That's great news for the Spring IoC
container, because if everything is a bean then everything can be treated in the exact same fashion. The
same, however, is not true from a developer's point-of-view. The objects defined in a Spring XML
configuration file are not all generic, vanilla beans. Usually, each bean requires some degree of specific
configuration.

Spring 2.0's new XML Schema-based configuration addresses this issue. The <bean/> element is still
present, and if you wanted to, you could continue to write the exact same style of Spring XML
configuration using only <bean/> elements. The new XML Schema-based configuration does, however,
make Spring XML configuration files substantially clearer to read. In addition, it allows you to express
the intent of a bean definition.

The key thing to remember is that the new custom tags work best for infrastructure or integration beans:
for example, AOP, collections, transactions, integration with 3rd-party frameworks such as Mule, etc.,
while the existing bean tags are best suited to application-specific beans, such as DAOs, service layer
objects, validators, etc.

The examples included below will hopefully convince you that the inclusion of XML Schema support in

Spring Framework

3.1 Reference Documentation 754

Spring 2.0 was a good idea. The reception in the community has been encouraging; also, please note the
fact that this new configuration mechanism is totally customisable and extensible. This means you can
write your own domain-specific configuration tags that would better represent your application's domain;
the process involved in doing so is covered in the appendix entitled Appendix D, Extensible XML
authoring.

C.2 XML Schema-based configuration

Referencing the schemas

To switch over from the DTD-style to the new XML Schema-style, you need to make the following
change.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"

"http://www.springframework.org/dtd/spring-beans-2.0.dtd">

<beans>

<!-- <bean/> definitions here -->

</beans>

The equivalent file in the XML Schema-style would be...

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- <bean/> definitions here -->

</beans>

Note

The 'xsi:schemaLocation' fragment is not actually required, but can be included to
reference a local copy of a schema (which can be useful during development).

The above Spring XML configuration fragment is boilerplate that you can copy and paste (!) and then
plug <bean/> definitions into like you have always done. However, the entire point of switching over is
to take advantage of the new Spring 2.0 XML tags since they make configuration easier. The section
entitled the section called “The util schema” demonstrates how you can start immediately by using some
of the more common utility tags.

The rest of this chapter is devoted to showing examples of the new Spring XML Schema based

Spring Framework

3.1 Reference Documentation 755

configuration, with at least one example for every new tag. The format follows a before and after style,
with a before snippet of XML showing the old (but still 100% legal and supported) style, followed
immediately by an after example showing the equivalent in the new XML Schema-based style.

The util schema

First up is coverage of the util tags. As the name implies, the util tags deal with common, utility
configuration issues, such as configuring collections, referencing constants, and suchlike.

To use the tags in the util schema, you need to have the following preamble at the top of your Spring
XML configuration file; the text in the snippet below references the correct schema so that the tags in the
util namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util-3.0.xsd">

<!-- <bean/> definitions here -->

</beans>

<util:constant/>

Before...

<bean id="..." class="...">
<property name="isolation">

<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />

</property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the
FieldRetrievingFactoryBean, to set the value of the 'isolation' property on a bean to the
value of the 'java.sql.Connection.TRANSACTION_SERIALIZABLE' constant. This is all
well and good, but it is a tad verbose and (unneccessarily) exposes Spring's internal plumbing to the end
user.

The following XML Schema-based version is more concise and clearly expresses the developer's intent
('inject this constant value'), and it just reads better.

<bean id="..." class="...">
<property name="isolation">

<util:constant static-field="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
</property>

</bean>

Spring Framework

3.1 Reference Documentation 756

Setting a bean property or constructor arg from a field value

FieldRetrievingFactoryBean is a FactoryBean which retrieves a static or non-static field
value. It is typically used for retrieving public static final constants, which may then be used to
set a property value or constructor arg for another bean.

Find below an example which shows how a static field is exposed, by using the staticField
property:

<bean id="myField"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">

<property name="staticField" value="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
</bean>

There is also a convenience usage form where the static field is specified as the bean name:

<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean"/>

This does mean that there is no longer any choice in what the bean id is (so any other bean that refers to it
will also have to use this longer name), but this form is very concise to define, and very convenient to use
as an inner bean since the id doesn't have to be specified for the bean reference:

<bean id="..." class="...">
<property name="isolation">

<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />

</property>
</bean>

It is also possible to access a non-static (instance) field of another bean, as described in the API
documentation for the FieldRetrievingFactoryBean class.

Injecting enum values into beans as either property or constructor arguments is very easy to do in Spring,
in that you don't actually have to do anything or know anything about the Spring internals (or even about
classes such as the FieldRetrievingFactoryBean). Let's look at an example to see how easy
injecting an enum value is; consider this JDK 5 enum:

package javax.persistence;

public enum PersistenceContextType {

TRANSACTION,
EXTENDED

}

Now consider a setter of type PersistenceContextType:

package example;

public class Client {

private PersistenceContextType persistenceContextType;

Spring Framework

3.1 Reference Documentation 757

http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/FieldRetrievingFactoryBean.html
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/FieldRetrievingFactoryBean.html#setStaticField(java.lang.String)
http://static.springframework.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/FieldRetrievingFactoryBean.html

public void setPersistenceContextType(PersistenceContextType type) {
this.persistenceContextType = type;

}
}

.. and the corresponding bean definition:

<bean class="example.Client">
<property name="persistenceContextType" value="TRANSACTION" />

</bean>

This works for classic type-safe emulated enums (on JDK 1.4 and JDK 1.3) as well; Spring will
automatically attempt to match the string property value to a constant on the enum class.

<util:property-path/>

Before...

<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">

<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>

</bean>
</property>

</bean>

<!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
<bean id="testBean.age" class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>

The above configuration uses a Spring FactoryBean implementation, the
PropertyPathFactoryBean, to create a bean (of type int) called 'testBean.age' that has a
value equal to the 'age' property of the 'testBean' bean.

After...

<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">

<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>

</bean>
</property>

</bean>

<!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
<util:property-path id="name" path="testBean.age"/>

The value of the 'path' attribute of the <property-path/> tag follows the form
'beanName.beanProperty'.

Using <util:property-path/> to set a bean property or constructor-argument

Spring Framework

3.1 Reference Documentation 758

PropertyPathFactoryBean is a FactoryBean that evaluates a property path on a given target
object. The target object can be specified directly or via a bean name. This value may then be used in
another bean definition as a property value or constructor argument.

Here's an example where a path is used against another bean, by name:

// target bean to be referenced by name
<bean id="person" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">

<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>

</bean>
</property>

</bean>

// will result in 11, which is the value of property 'spouse.age' of bean 'person'
<bean id="theAge"

class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
<property name="targetBeanName" value="person"/>
<property name="propertyPath" value="spouse.age"/>

</bean>

In this example, a path is evaluated against an inner bean:

<!-- will result in 12, which is the value of property 'age' of the inner bean -->
<bean id="theAge"

class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
<property name="targetObject">

<bean class="org.springframework.beans.TestBean">
<property name="age" value="12"/>

</bean>
</property>
<property name="propertyPath" value="age"/>

</bean>

There is also a shortcut form, where the bean name is the property path.

<!-- will result in 10, which is the value of property 'age' of bean 'person' -->
<bean id="person.age"

class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>

This form does mean that there is no choice in the name of the bean. Any reference to it will also have to
use the same id, which is the path. Of course, if used as an inner bean, there is no need to refer to it at all:

<bean id="..." class="...">
<property name="age">

<bean id="person.age"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>

</property>
</bean>

The result type may be specifically set in the actual definition. This is not necessary for most use cases,
but can be of use for some. Please see the Javadocs for more info on this feature.

<util:properties/>

Spring Framework

3.1 Reference Documentation 759

Before...

<!-- creates a java.util.Properties instance with values loaded from the supplied location -->
<bean id="jdbcConfiguration" class="org.springframework.beans.factory.config.PropertiesFactoryBean">
<property name="location" value="classpath:com/foo/jdbc-production.properties"/>

</bean>

The above configuration uses a Spring FactoryBean implementation, the
PropertiesFactoryBean, to instantiate a java.util.Properties instance with values loaded
from the supplied Resource location).

After...

<!-- creates a java.util.Properties instance with values loaded from the supplied location -->
<util:properties id="jdbcConfiguration" location="classpath:com/foo/jdbc-production.properties"/>

<util:list/>

Before...

<!-- creates a java.util.List instance with values loaded from the supplied 'sourceList' -->
<bean id="emails" class="org.springframework.beans.factory.config.ListFactoryBean">
<property name="sourceList">

<list>
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>

</list>
</property>

</bean>

The above configuration uses a Spring FactoryBean implementation, the ListFactoryBean, to
create a java.util.List instance initialized with values taken from the supplied 'sourceList'.

After...

<!-- creates a java.util.List instance with the supplied values -->
<util:list id="emails">

<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>

</util:list>

You can also explicitly control the exact type of List that will be instantiated and populated via the use
of the 'list-class' attribute on the <util:list/> element. For example, if we really need a
java.util.LinkedList to be instantiated, we could use the following configuration:

<util:list id="emails" list-class="java.util.LinkedList">
<value>jackshaftoe@vagabond.org</value>
<value>eliza@thinkingmanscrumpet.org</value>
<value>vanhoek@pirate.org</value>
<value>d'Arcachon@nemesis.org</value>

</util:list>

Spring Framework

3.1 Reference Documentation 760

If no 'list-class' attribute is supplied, a List implementation will be chosen by the container.

<util:map/>

Before...

<!-- creates a java.util.Map instance with values loaded from the supplied 'sourceMap' -->
<bean id="emails" class="org.springframework.beans.factory.config.MapFactoryBean">
<property name="sourceMap">

<map>
<entry key="pechorin" value="pechorin@hero.org"/>
<entry key="raskolnikov" value="raskolnikov@slums.org"/>
<entry key="stavrogin" value="stavrogin@gov.org"/>
<entry key="porfiry" value="porfiry@gov.org"/>

</map>
</property>

</bean>

The above configuration uses a Spring FactoryBean implementation, the MapFactoryBean, to
create a java.util.Map instance initialized with key-value pairs taken from the supplied
'sourceMap'.

After...

<!-- creates a java.util.Map instance with the supplied key-value pairs -->
<util:map id="emails">

<entry key="pechorin" value="pechorin@hero.org"/>
<entry key="raskolnikov" value="raskolnikov@slums.org"/>
<entry key="stavrogin" value="stavrogin@gov.org"/>
<entry key="porfiry" value="porfiry@gov.org"/>

</util:map>

You can also explicitly control the exact type of Map that will be instantiated and populated via the use of
the 'map-class' attribute on the <util:map/> element. For example, if we really need a
java.util.TreeMap to be instantiated, we could use the following configuration:

<util:map id="emails" map-class="java.util.TreeMap">
<entry key="pechorin" value="pechorin@hero.org"/>
<entry key="raskolnikov" value="raskolnikov@slums.org"/>
<entry key="stavrogin" value="stavrogin@gov.org"/>
<entry key="porfiry" value="porfiry@gov.org"/>

</util:map>

If no 'map-class' attribute is supplied, a Map implementation will be chosen by the container.

<util:set/>

Before...

<!-- creates a java.util.Set instance with values loaded from the supplied 'sourceSet' -->
<bean id="emails" class="org.springframework.beans.factory.config.SetFactoryBean">
<property name="sourceSet">

<set>
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>

Spring Framework

3.1 Reference Documentation 761

<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>

</set>
</property>

</bean>

The above configuration uses a Spring FactoryBean implementation, the SetFactoryBean, to
create a java.util.Set instance initialized with values taken from the supplied 'sourceSet'.

After...

<!-- creates a java.util.Set instance with the supplied values -->
<util:set id="emails">

<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>

</util:set>

You can also explicitly control the exact type of Set that will be instantiated and populated via the use of
the 'set-class' attribute on the <util:set/> element. For example, if we really need a
java.util.TreeSet to be instantiated, we could use the following configuration:

<util:set id="emails" set-class="java.util.TreeSet">
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>

</util:set>

If no 'set-class' attribute is supplied, a Set implementation will be chosen by the container.

The jee schema

The jee tags deal with Java EE (Java Enterprise Edition)-related configuration issues, such as looking up
a JNDI object and defining EJB references.

To use the tags in the jee schema, you need to have the following preamble at the top of your Spring
XML configuration file; the text in the following snippet references the correct schema so that the tags in
the jee namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/jee http://www.springframework.org/schema/jee/spring-jee-3.0.xsd">

<!-- <bean/> definitions here -->

</beans>

<jee:jndi-lookup/> (simple)

Spring Framework

3.1 Reference Documentation 762

Before...

<bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>

</bean>

<bean id="userDao" class="com.foo.JdbcUserDao">
<!-- Spring will do the cast automatically (as usual) -->
<property name="dataSource" ref="dataSource"/>

</bean>

After...

<jee:jndi-lookup id="dataSource" jndi-name="jdbc/MyDataSource"/>

<bean id="userDao" class="com.foo.JdbcUserDao">
<!-- Spring will do the cast automatically (as usual) -->
<property name="dataSource" ref="dataSource"/>

</bean>

<jee:jndi-lookup/> (with single JNDI environment setting)

Before...

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
<property name="jndiEnvironment">

<props>
<prop key="foo">bar</prop>

</props>
</property>

</bean>

After...

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
<jee:environment>foo=bar</jee:environment>

</jee:jndi-lookup>

<jee:jndi-lookup/> (with multiple JNDI environment settings)

Before...

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
<property name="jndiEnvironment">

<props>
<prop key="foo">bar</prop>
<prop key="ping">pong</prop>

</props>
</property>

</bean>

After...

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
<!-- newline-separated, key-value pairs for the environment (standard Properties format) -->

Spring Framework

3.1 Reference Documentation 763

<jee:environment>
foo=bar
ping=pong

</jee:environment>
</jee:jndi-lookup>

<jee:jndi-lookup/> (complex)

Before...

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
<property name="cache" value="true"/>
<property name="resourceRef" value="true"/>
<property name="lookupOnStartup" value="false"/>
<property name="expectedType" value="com.myapp.DefaultFoo"/>
<property name="proxyInterface" value="com.myapp.Foo"/>

</bean>

After...

<jee:jndi-lookup id="simple"
jndi-name="jdbc/MyDataSource"
cache="true"
resource-ref="true"
lookup-on-startup="false"
expected-type="com.myapp.DefaultFoo"
proxy-interface="com.myapp.Foo"/>

<jee:local-slsb/> (simple)

The <jee:local-slsb/> tag configures a reference to an EJB Stateless SessionBean.

Before...

<bean id="simple"
class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">

<property name="jndiName" value="ejb/RentalServiceBean"/>
<property name="businessInterface" value="com.foo.service.RentalService"/>

</bean>

After...

<jee:local-slsb id="simpleSlsb" jndi-name="ejb/RentalServiceBean"
business-interface="com.foo.service.RentalService"/>

<jee:local-slsb/> (complex)

<bean id="complexLocalEjb"
class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">

<property name="jndiName" value="ejb/RentalServiceBean"/>
<property name="businessInterface" value="com.foo.service.RentalService"/>
<property name="cacheHome" value="true"/>
<property name="lookupHomeOnStartup" value="true"/>
<property name="resourceRef" value="true"/>

</bean>

Spring Framework

3.1 Reference Documentation 764

After...

<jee:local-slsb id="complexLocalEjb"
jndi-name="ejb/RentalServiceBean"
business-interface="com.foo.service.RentalService"
cache-home="true"
lookup-home-on-startup="true"
resource-ref="true">

<jee:remote-slsb/>

The <jee:remote-slsb/> tag configures a reference to a remote EJB Stateless SessionBean.

Before...

<bean id="complexRemoteEjb"
class="org.springframework.ejb.access.SimpleRemoteStatelessSessionProxyFactoryBean">

<property name="jndiName" value="ejb/MyRemoteBean"/>
<property name="businessInterface" value="com.foo.service.RentalService"/>
<property name="cacheHome" value="true"/>
<property name="lookupHomeOnStartup" value="true"/>
<property name="resourceRef" value="true"/>
<property name="homeInterface" value="com.foo.service.RentalService"/>
<property name="refreshHomeOnConnectFailure" value="true"/>

</bean>

After...

<jee:remote-slsb id="complexRemoteEjb"
jndi-name="ejb/MyRemoteBean"
business-interface="com.foo.service.RentalService"
cache-home="true"
lookup-home-on-startup="true"
resource-ref="true"
home-interface="com.foo.service.RentalService"
refresh-home-on-connect-failure="true">

The lang schema

The lang tags deal with exposing objects that have been written in a dynamic language such as JRuby or
Groovy as beans in the Spring container.

These tags (and the dynamic language support) are comprehensively covered in the chapter entitled
Chapter 27, Dynamic language support. Please do consult that chapter for full details on this support and
the lang tags themselves.

In the interest of completeness, to use the tags in the lang schema, you need to have the following
preamble at the top of your Spring XML configuration file; the text in the following snippet references
the correct schema so that the tags in the lang namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:lang="http://www.springframework.org/schema/lang"

Spring Framework

3.1 Reference Documentation 765

xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-3.0.xsd">

<!-- <bean/> definitions here -->

</beans>

The jms schema

The jms tags deal with configuring JMS-related beans such as Spring's MessageListenerContainers.
These tags are detailed in the section of the JMS chapter entitled Section 22.6, “JMS Namespace
Support”. Please do consult that chapter for full details on this support and the jms tags themselves.

In the interest of completeness, to use the tags in the jms schema, you need to have the following
preamble at the top of your Spring XML configuration file; the text in the following snippet references
the correct schema so that the tags in the jms namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/jms http://www.springframework.org/schema/jms/spring-jms-3.0.xsd">

<!-- <bean/> definitions here -->

</beans>

The tx (transaction) schema

The tx tags deal with configuring all of those beans in Spring's comprehensive support for transactions.
These tags are covered in the chapter entitled Chapter 11, Transaction Management.

Tip

You are strongly encouraged to look at the 'spring-tx-3.0.xsd' file that ships with
the Spring distribution. This file is (of course), the XML Schema for Spring's transaction
configuration, and covers all of the various tags in the tx namespace, including attribute
defaults and suchlike. This file is documented inline, and thus the information is not repeated
here in the interests of adhering to the DRY (Don't Repeat Yourself) principle.

In the interest of completeness, to use the tags in the tx schema, you need to have the following preamble
at the top of your Spring XML configuration file; the text in the following snippet references the correct
schema so that the tags in the tx namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"

Spring Framework

3.1 Reference Documentation 766

xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<!-- <bean/> definitions here -->

</beans>

Note

Often when using the tags in the tx namespace you will also be using the tags from the aop
namespace (since the declarative transaction support in Spring is implemented using AOP).
The above XML snippet contains the relevant lines needed to reference the aop schema so
that the tags in the aop namespace are available to you.

The aop schema

The aop tags deal with configuring all things AOP in Spring: this includes Spring's own proxy-based
AOP framework and Spring's integration with the AspectJ AOP framework. These tags are
comprehensively covered in the chapter entitled Chapter 8, Aspect Oriented Programming with Spring.

In the interest of completeness, to use the tags in the aop schema, you need to have the following
preamble at the top of your Spring XML configuration file; the text in the following snippet references
the correct schema so that the tags in the aop namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<!-- <bean/> definitions here -->

</beans>

The context schema

The context tags deal with ApplicationContext configuration that relates to plumbing - that is,
not usually beans that are important to an end-user but rather beans that do a lot of grunt work in Spring,
such as BeanfactoryPostProcessors. The following snippet references the correct schema so that
the tags in the context namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

Spring Framework

3.1 Reference Documentation 767

http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<!-- <bean/> definitions here -->

</beans>

Note

The context schema was only introduced in Spring 2.5.

<property-placeholder/>

This element activates the replacement of ${...} placeholders, resolved against the specified properties
file (as a Spring resource location). This element is a convenience mechanism that sets up a
PropertyPlaceholderConfigurer for you; if you need more control over the
PropertyPlaceholderConfigurer, just define one yourself explicitly.

<annotation-config/>

Activates the Spring infrastructure for various annotations to be detected in bean classes: Spring's
@Required and @Autowired, as well as JSR 250's @PostConstruct, @PreDestroy and
@Resource (if available), and JPA's @PersistenceContext and @PersistenceUnit (if
available). Alternatively, you can choose to activate the individual BeanPostProcessors for those
annotations explictly.

Note

This element does not activate processing of Spring's @Transactional annotation. Use
the <tx:annotation-driven/> element for that purpose.

<component-scan/>

This element is detailed in Section 4.9, “Annotation-based container configuration”.

<load-time-weaver/>

This element is detailed in the section called “Load-time weaving with AspectJ in the Spring
Framework”.

<spring-configured/>

This element is detailed in the section called “Using AspectJ to dependency inject domain objects with
Spring”.

<mbean-export/>

Spring Framework

3.1 Reference Documentation 768

This element is detailed in the section called “The <context:mbean-export/> element”.

The tool schema

The tool tags are for use when you want to add tooling-specific metadata to your custom configuration
elements. This metadata can then be consumed by tools that are aware of this metadata, and the tools can
then do pretty much whatever they want with it (validation, etc.).

The tool tags are not documented in this release of Spring as they are currently undergoing review. If
you are a third party tool vendor and you would like to contribute to this review process, then do mail the
Spring mailing list. The currently supported tool tags can be found in the file
'spring-tool-3.0.xsd' in the 'src/org/springframework/beans/factory/xml'
directory of the Spring source distribution.

The beans schema

Last but not least we have the tags in the beans schema. These are the same tags that have been in
Spring since the very dawn of the framework. Examples of the various tags in the beans schema are not
shown here because they are quite comprehensively covered in the section called “Dependencies and
configuration in detail” (and indeed in that entire chapter).

One thing that is new to the beans tags themselves in Spring 2.0 is the idea of arbitrary bean metadata. In
Spring 2.0 it is now possible to add zero or more key / value pairs to <bean/> XML definitions. What,
if anything, is done with this extra metadata is totally up to your own custom logic (and so is typically
only of use if you are writing your own custom tags as described in the appendix entitled Appendix D,
Extensible XML authoring).

Find below an example of the <meta/> tag in the context of a surrounding <bean/> (please note that
without any logic to interpret it the metadata is effectively useless as-is).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="foo" class="x.y.Foo">
<meta key="cacheName" value="foo"/>
<property name="name" value="Rick"/>

</bean>

</beans>

In the case of the above example, you would assume that there is some logic that will consume the bean
definition and set up some caching infrastructure using the supplied metadata.

Spring Framework

3.1 Reference Documentation 769

Appendix D. Extensible XML authoring

D.1 Introduction

Since version 2.0, Spring has featured a mechanism for schema-based extensions to the basic Spring
XML format for defining and configuring beans. This section is devoted to detailing how you would go
about writing your own custom XML bean definition parsers and integrating such parsers into the Spring
IoC container.

To facilitate the authoring of configuration files using a schema-aware XML editor, Spring's extensible
XML configuration mechanism is based on XML Schema. If you are not familiar with Spring's current
XML configuration extensions that come with the standard Spring distribution, please first read the
appendix entitled Appendix C, XML Schema-based configuration.

Creating new XML configuration extensions can be done by following these (relatively) simple steps:

1. Authoring an XML schema to describe your custom element(s).

2. Coding a custom NamespaceHandler implementation (this is an easy step, don't worry).

3. Coding one or more BeanDefinitionParser implementations (this is where the real work is
done).

4. Registering the above artifacts with Spring (this too is an easy step).

What follows is a description of each of these steps. For the example, we will create an XML extension (a
custom XML element) that allows us to configure objects of the type SimpleDateFormat (from the
java.text package) in an easy manner. When we are done, we will be able to define bean definitions
of type SimpleDateFormat like this:

<myns:dateformat id="dateFormat"
pattern="yyyy-MM-dd HH:mm"
lenient="true"/>

(Don't worry about the fact that this example is very simple; much more detailed examples follow
afterwards. The intent in this first simple example is to walk you through the basic steps involved.)

D.2 Authoring the schema

Creating an XML configuration extension for use with Spring's IoC container starts with authoring an
XML Schema to describe the extension. What follows is the schema we'll use to configure
SimpleDateFormat objects.

Spring Framework

3.1 Reference Documentation 770

<!-- myns.xsd (inside package org/springframework/samples/xml) -->

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.mycompany.com/schema/myns"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:beans="http://www.springframework.org/schema/beans"
targetNamespace="http://www.mycompany.com/schema/myns"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:import namespace="http://www.springframework.org/schema/beans"/>

<xsd:element name="dateformat">
<xsd:complexType>

<xsd:complexContent>
<xsd:extension base="beans:identifiedType">

<xsd:attribute name="lenient" type="xsd:boolean"/>
<xsd:attribute name="pattern" type="xsd:string" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

</xsd:schema>

(The emphasized line contains an extension base for all tags that will be identifiable (meaning they have
an id attribute that will be used as the bean identifier in the container). We are able to use this attribute
because we imported the Spring-provided 'beans' namespace.)

The above schema will be used to configure SimpleDateFormat objects, directly in an XML
application context file using the <myns:dateformat/> element.

<myns:dateformat id="dateFormat"
pattern="yyyy-MM-dd HH:mm"
lenient="true"/>

Note that after we've created the infrastructure classes, the above snippet of XML will essentially be
exactly the same as the following XML snippet. In other words, we're just creating a bean in the
container, identified by the name 'dateFormat' of type SimpleDateFormat, with a couple of
properties set.

<bean id="dateFormat" class="java.text.SimpleDateFormat">
<constructor-arg value="yyyy-HH-dd HH:mm"/>
<property name="lenient" value="true"/>

</bean>

Note

The schema-based approach to creating configuration format allows for tight integration with
an IDE that has a schema-aware XML editor. Using a properly authored schema, you can use
autocompletion to have a user choose between several configuration options defined in the
enumeration.

Spring Framework

3.1 Reference Documentation 771

D.3 Coding a NamespaceHandler

In addition to the schema, we need a NamespaceHandler that will parse all elements of this specific
namespace Spring encounters while parsing configuration files. The NamespaceHandler should in
our case take care of the parsing of the myns:dateformat element.

The NamespaceHandler interface is pretty simple in that it features just three methods:

• init() - allows for initialization of the NamespaceHandler and will be called by Spring before
the handler is used

• BeanDefinition parse(Element, ParserContext) - called when Spring encounters a
top-level element (not nested inside a bean definition or a different namespace). This method can
register bean definitions itself and/or return a bean definition.

• BeanDefinitionHolder decorate(Node, BeanDefinitionHolder,
ParserContext) - called when Spring encounters an attribute or nested element of a different
namespace. The decoration of one or more bean definitions is used for example with the out-of-the-box
scopes Spring 2.0 supports. We'll start by highlighting a simple example, without using decoration,
after which we will show decoration in a somewhat more advanced example.

Although it is perfectly possible to code your own NamespaceHandler for the entire namespace (and
hence provide code that parses each and every element in the namespace), it is often the case that each
top-level XML element in a Spring XML configuration file results in a single bean definition (as in our
case, where a single <myns:dateformat/> element results in a single SimpleDateFormat bean
definition). Spring features a number of convenience classes that support this scenario. In this example,
we'll make use the NamespaceHandlerSupport class:

package org.springframework.samples.xml;

import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class MyNamespaceHandler extends NamespaceHandlerSupport {

public void init() {
registerBeanDefinitionParser("dateformat", new SimpleDateFormatBeanDefinitionParser());

}
}

The observant reader will notice that there isn't actually a whole lot of parsing logic in this class. Indeed...
the NamespaceHandlerSupport class has a built in notion of delegation. It supports the registration
of any number of BeanDefinitionParser instances, to which it will delegate to when it needs to
parse an element in its namespace. This clean separation of concerns allows a NamespaceHandler to
handle the orchestration of the parsing of all of the custom elements in its namespace, while delegating to
BeanDefinitionParsers to do the grunt work of the XML parsing; this means that each
BeanDefinitionParser will contain just the logic for parsing a single custom element, as we can
see in the next step

D.4 Coding a BeanDefinitionParser

Spring Framework

3.1 Reference Documentation 772

A BeanDefinitionParser will be used if the NamespaceHandler encounters an XML element
of the type that has been mapped to the specific bean definition parser (which is 'dateformat' in this
case). In other words, the BeanDefinitionParser is responsible for parsing one distinct top-level
XML element defined in the schema. In the parser, we'll have access to the XML element (and thus its
subelements too) so that we can parse our custom XML content, as can be seen in the following example:

package org.springframework.samples.xml;

import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser;
import org.springframework.util.StringUtils;
import org.w3c.dom.Element;

import java.text.SimpleDateFormat;

public class SimpleDateFormatBeanDefinitionParser extends AbstractSingleBeanDefinitionParser { #

protected Class getBeanClass(Element element) {
return SimpleDateFormat.class; #

}

protected void doParse(Element element, BeanDefinitionBuilder bean) {
// this will never be null since the schema explicitly requires that a value be supplied
String pattern = element.getAttribute("pattern");
bean.addConstructorArg(pattern);

// this however is an optional property
String lenient = element.getAttribute("lenient");
if (StringUtils.hasText(lenient)) {

bean.addPropertyValue("lenient", Boolean.valueOf(lenient));
}

}
}

❶ We use the Spring-provided AbstractSingleBeanDefinitionParser to handle a lot of
the basic grunt work of creating a single BeanDefinition.

❷ We supply the AbstractSingleBeanDefinitionParser superclass with the type that our
single BeanDefinition will represent.

In this simple case, this is all that we need to do. The creation of our single BeanDefinition is
handled by the AbstractSingleBeanDefinitionParser superclass, as is the extraction and
setting of the bean definition's unique identifier.

D.5 Registering the handler and the schema

The coding is finished! All that remains to be done is to somehow make the Spring XML parsing
infrastructure aware of our custom element; we do this by registering our custom namespaceHandler
and custom XSD file in two special purpose properties files. These properties files are both placed in a
'META-INF' directory in your application, and can, for example, be distributed alongside your binary
classes in a JAR file. The Spring XML parsing infrastructurewill automatically pick up your new
extension by consuming these special properties files, the formats of which are detailed below.

Spring Framework

3.1 Reference Documentation 773

'META-INF/spring.handlers'

The properties file called 'spring.handlers' contains a mapping of XML Schema URIs to
namespace handler classes. So for our example, we need to write the following:

http\://www.mycompany.com/schema/myns=org.springframework.samples.xml.MyNamespaceHandler

(The ':' character is a valid delimiter in the Java properties format, and so the ':' character in the
URI needs to be escaped with a backslash.)

The first part (the key) of the key-value pair is the URI associated with your custom namespace
extension, and needs to match exactly the value of the 'targetNamespace' attribute as specified in
your custom XSD schema.

'META-INF/spring.schemas'

The properties file called 'spring.schemas' contains a mapping of XML Schema locations (referred
to along with the schema declaration in XML files that use the schema as part of the
'xsi:schemaLocation' attribute) to classpath resources. This file is needed to prevent Spring from
absolutely having to use a default EntityResolver that requires Internet access to retrieve the schema
file. If you specify the mapping in this properties file, Spring will search for the schema on the classpath
(in this case 'myns.xsd' in the 'org.springframework.samples.xml' package):

http\://www.mycompany.com/schema/myns/myns.xsd=org/springframework/samples/xml/myns.xsd

The upshot of this is that you are encouraged to deploy your XSD file(s) right alongside the
NamespaceHandler and BeanDefinitionParser classes on the classpath.

D.6 Using a custom extension in your Spring XML
configuration

Using a custom extension that you yourself have implemented is no different from using one of the
'custom' extensions that Spring provides straight out of the box. Find below an example of using the
custom <dateformat/> element developed in the previous steps in a Spring XML configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:myns="http://www.mycompany.com/schema/myns"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.mycompany.com/schema/myns http://www.mycompany.com/schema/myns/myns.xsd">

<!-- as a top-level bean -->
<myns:dateformat id="defaultDateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true"/>

<bean id="jobDetailTemplate" abstract="true">
<property name="dateFormat">

Spring Framework

3.1 Reference Documentation 774

<!-- as an inner bean -->
<myns:dateformat pattern="HH:mm MM-dd-yyyy"/>

</property>
</bean>

</beans>

D.7 Meatier examples

Find below some much meatier examples of custom XML extensions.

Nesting custom tags within custom tags

This example illustrates how you might go about writing the various artifacts required to satisfy a target
of the following configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:foo="http://www.foo.com/schema/component"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.foo.com/schema/component http://www.foo.com/schema/component/component.xsd">

<foo:component id="bionic-family" name="Bionic-1">
<foo:component name="Mother-1">
<foo:component name="Karate-1"/>
<foo:component name="Sport-1"/>

</foo:component>
<foo:component name="Rock-1"/>

</foo:component>

</beans>

The above configuration actually nests custom extensions within each other. The class that is actually
configured by the above <foo:component/> element is the Component class (shown directly
below). Notice how the Component class does not expose a setter method for the 'components'
property; this makes it hard (or rather impossible) to configure a bean definition for the Component
class using setter injection.

package com.foo;

import java.util.ArrayList;
import java.util.List;

public class Component {

private String name;
private List<Component> components = new ArrayList<Component> ();

// mmm, there is no setter method for the 'components'
public void addComponent(Component component) {

this.components.add(component);
}

public List<Component> getComponents() {
return components;

Spring Framework

3.1 Reference Documentation 775

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
}

The typical solution to this issue is to create a custom FactoryBean that exposes a setter property for
the 'components' property.

package com.foo;

import org.springframework.beans.factory.FactoryBean;

import java.util.List;

public class ComponentFactoryBean implements FactoryBean<Component> {

private Component parent;
private List<Component> children;

public void setParent(Component parent) {
this.parent = parent;

}

public void setChildren(List<Component> children) {
this.children = children;

}

public Component getObject() throws Exception {
if (this.children != null && this.children.size() > 0) {

for (Component child : children) {
this.parent.addComponent(child);

}
}
return this.parent;

}

public Class<Component> getObjectType() {
return Component.class;

}

public boolean isSingleton() {
return true;

}
}

This is all very well, and does work nicely, but exposes a lot of Spring plumbing to the end user. What we
are going to do is write a custom extension that hides away all of this Spring plumbing. If we stick to the
steps described previously, we'll start off by creating the XSD schema to define the structure of our
custom tag.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns="http://www.foo.com/schema/component"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.foo.com/schema/component"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

Spring Framework

3.1 Reference Documentation 776

<xsd:element name="component">
<xsd:complexType>

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="component"/>

</xsd:choice>
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="name" use="required" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

We'll then create a custom NamespaceHandler.

package com.foo;

import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class ComponentNamespaceHandler extends NamespaceHandlerSupport {

public void init() {
registerBeanDefinitionParser("component", new ComponentBeanDefinitionParser());

}
}

Next up is the custom BeanDefinitionParser. Remember that what we are creating is a
BeanDefinition describing a ComponentFactoryBean.

package com.foo;

import org.springframework.beans.factory.config.BeanDefinition;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.support.ManagedList;
import org.springframework.beans.factory.xml.AbstractBeanDefinitionParser;
import org.springframework.beans.factory.xml.ParserContext;
import org.springframework.util.xml.DomUtils;
import org.w3c.dom.Element;

import java.util.List;

public class ComponentBeanDefinitionParser extends AbstractBeanDefinitionParser {

protected AbstractBeanDefinition parseInternal(Element element, ParserContext parserContext) {
return parseComponentElement(element);

}

private static AbstractBeanDefinition parseComponentElement(Element element) {
BeanDefinitionBuilder factory = BeanDefinitionBuilder.rootBeanDefinition(ComponentFactoryBean.class);
factory.addPropertyValue("parent", parseComponent(element));

List<Element> childElements = DomUtils.getChildElementsByTagName(element, "component");
if (childElements != null && childElements.size() > 0) {

parseChildComponents(childElements, factory);
}

return factory.getBeanDefinition();
}

private static BeanDefinition parseComponent(Element element) {
BeanDefinitionBuilder component = BeanDefinitionBuilder.rootBeanDefinition(Component.class);
component.addPropertyValue("name", element.getAttribute("name"));
return component.getBeanDefinition();

Spring Framework

3.1 Reference Documentation 777

}

private static void parseChildComponents(List<Element> childElements, BeanDefinitionBuilder factory) {
ManagedList<BeanDefinition> children = new ManagedList<BeanDefinition>(childElements.size());

for (Element element : childElements) {
children.add(parseComponentElement(element));

}

factory.addPropertyValue("children", children);
}

}

Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

in 'META-INF/spring.handlers'
http\://www.foo.com/schema/component=com.foo.ComponentNamespaceHandler

in 'META-INF/spring.schemas'
http\://www.foo.com/schema/component/component.xsd=com/foo/component.xsd

Custom attributes on 'normal' elements

Writing your own custom parser and the associated artifacts isn't hard, but sometimes it is not the right
thing to do. Consider the scenario where you need to add metadata to already existing bean definitions. In
this case you certainly don't want to have to go off and write your own entire custom extension; rather
you just want to add an additional attribute to the existing bean definition element.

By way of another example, let's say that the service class that you are defining a bean definition for a
service object that will (unknown to it) be accessing a clustered JCache, and you want to ensure that the
named JCache instance is eagerly started within the surrounding cluster:

<bean id="checkingAccountService" class="com.foo.DefaultCheckingAccountService"
jcache:cache-name="checking.account">

<!-- other dependencies here... -->
</bean>

What we are going to do here is create another BeanDefinition when the
'jcache:cache-name' attribute is parsed; this BeanDefinition will then initialize the named
JCache for us. We will also modify the existing BeanDefinition for the
'checkingAccountService' so that it will have a dependency on this new JCache-initializing
BeanDefinition.

package com.foo;

public class JCacheInitializer {

private String name;

public JCacheInitializer(String name) {
this.name = name;

}

public void initialize() {
// lots of JCache API calls to initialize the named cache...

Spring Framework

3.1 Reference Documentation 778

http://jcp.org/en/jsr/detail?id=107

}
}

Now onto the custom extension. Firstly, the authoring of the XSD schema describing the custom attribute
(quite easy in this case).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns="http://www.foo.com/schema/jcache"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.foo.com/schema/jcache"
elementFormDefault="qualified">

<xsd:attribute name="cache-name" type="xsd:string"/>

</xsd:schema>

Next, the associated NamespaceHandler.

package com.foo;

import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class JCacheNamespaceHandler extends NamespaceHandlerSupport {

public void init() {
super.registerBeanDefinitionDecoratorForAttribute("cache-name",

new JCacheInitializingBeanDefinitionDecorator());
}

}

Next, the parser. Note that in this case, because we are going to be parsing an XML attribute, we write a
BeanDefinitionDecorator rather than a BeanDefinitionParser.

package com.foo;

import org.springframework.beans.factory.config.BeanDefinitionHolder;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.BeanDefinitionDecorator;
import org.springframework.beans.factory.xml.ParserContext;
import org.w3c.dom.Attr;
import org.w3c.dom.Node;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class JCacheInitializingBeanDefinitionDecorator implements BeanDefinitionDecorator {

private static final String[] EMPTY_STRING_ARRAY = new String[0];

public BeanDefinitionHolder decorate(
Node source, BeanDefinitionHolder holder, ParserContext ctx) {

String initializerBeanName = registerJCacheInitializer(source, ctx);
createDependencyOnJCacheInitializer(holder, initializerBeanName);
return holder;

}

private void createDependencyOnJCacheInitializer(BeanDefinitionHolder holder, String initializerBeanName) {
AbstractBeanDefinition definition = ((AbstractBeanDefinition) holder.getBeanDefinition());
String[] dependsOn = definition.getDependsOn();

Spring Framework

3.1 Reference Documentation 779

if (dependsOn == null) {
dependsOn = new String[]{initializerBeanName};

} else {
List dependencies = new ArrayList(Arrays.asList(dependsOn));
dependencies.add(initializerBeanName);
dependsOn = (String[]) dependencies.toArray(EMPTY_STRING_ARRAY);

}
definition.setDependsOn(dependsOn);

}

private String registerJCacheInitializer(Node source, ParserContext ctx) {
String cacheName = ((Attr) source).getValue();
String beanName = cacheName + "-initializer";
if (!ctx.getRegistry().containsBeanDefinition(beanName)) {

BeanDefinitionBuilder initializer = BeanDefinitionBuilder.rootBeanDefinition(JCacheInitializer.class);
initializer.addConstructorArg(cacheName);
ctx.getRegistry().registerBeanDefinition(beanName, initializer.getBeanDefinition());

}
return beanName;

}
}

Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

in 'META-INF/spring.handlers'
http\://www.foo.com/schema/jcache=com.foo.JCacheNamespaceHandler

in 'META-INF/spring.schemas'
http\://www.foo.com/schema/jcache/jcache.xsd=com/foo/jcache.xsd

D.8 Further Resources

Find below links to further resources concerning XML Schema and the extensible XML support
described in this chapter.

• The XML Schema Part 1: Structures Second Edition

• The XML Schema Part 2: Datatypes Second Edition

Spring Framework

3.1 Reference Documentation 780

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

Appendix E. spring-beans-2.0.dtd

<!--
Spring XML Beans DTD, version 2.0
Authors: Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu, Rob Harrop

This defines a simple and consistent way of creating a namespace
of JavaBeans objects, managed by a Spring BeanFactory, read by
XmlBeanDefinitionReader (with DefaultBeanDefinitionDocumentReader).

This document type is used by most Spring functionality, including
web application contexts, which are based on bean factories.

Each "bean" element in this document defines a JavaBean.
Typically the bean class is specified, along with JavaBean properties
and/or constructor arguments.

A bean instance can be a "singleton" (shared instance) or a "prototype"
(independent instance). Further scopes can be provided by extended
bean factories, for example in a web environment.

References among beans are supported, that is, setting a JavaBean property
or a constructor argument to refer to another bean in the same factory
(or an ancestor factory).

As alternative to bean references, "inner bean definitions" can be used.
Singleton flags of such inner bean definitions are effectively ignored:
Inner beans are typically anonymous prototypes.

There is also support for lists, sets, maps, and java.util.Properties
as bean property types or constructor argument types.

For simple purposes, this DTD is sufficient. As of Spring 2.0,
XSD-based bean definitions are supported as more powerful alternative.

XML documents that conform to this DTD should declare the following doctype:

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
"http://www.springframework.org/dtd/spring-beans-2.0.dtd">

-->

<!--
The document root. A document can contain bean definitions only,
imports only, or a mixture of both (typically with imports first).

-->
<!ELEMENT beans (

description?,
(import | alias | bean)*

)>

<!--
Default values for all bean definitions. Can be overridden at
the "bean" level. See those attribute definitions for details.

-->
<!ATTLIST beans default-lazy-init (true | false) "false">
<!ATTLIST beans default-autowire (no | byName | byType | constructor | autodetect) "no">
<!ATTLIST beans default-dependency-check (none | objects | simple | all) "none">
<!ATTLIST beans default-init-method CDATA #IMPLIED>
<!ATTLIST beans default-destroy-method CDATA #IMPLIED>
<!ATTLIST beans default-merge (true | false) "false">

<!--

Spring Framework

3.1 Reference Documentation 781

Element containing informative text describing the purpose of the enclosing
element. Always optional.
Used primarily for user documentation of XML bean definition documents.

-->
<!ELEMENT description (#PCDATA)>

<!--
Specifies an XML bean definition resource to import.

-->
<!ELEMENT import EMPTY>

<!--
The relative resource location of the XML bean definition file to import,
for example "myImport.xml" or "includes/myImport.xml" or "../myImport.xml".

-->
<!ATTLIST import resource CDATA #REQUIRED>

<!--
Defines an alias for a bean, which can reside in a different definition file.

-->
<!ELEMENT alias EMPTY>

<!--
The name of the bean to define an alias for.

-->
<!ATTLIST alias name CDATA #REQUIRED>

<!--
The alias name to define for the bean.

-->
<!ATTLIST alias alias CDATA #REQUIRED>

<!--
Allows for arbitrary metadata to be attached to a bean definition.

-->
<!ELEMENT meta EMPTY>

<!--
Specifies the key name of the metadata parameter being defined.

-->
<!ATTLIST meta key CDATA #REQUIRED>

<!--
Specifies the value of the metadata parameter being defined as a String.

-->
<!ATTLIST meta value CDATA #REQUIRED>

<!--
Defines a single (usually named) bean.

A bean definition may contain nested tags for constructor arguments,
property values, lookup methods, and replaced methods. Mixing constructor
injection and setter injection on the same bean is explicitly supported.

-->
<!ELEMENT bean (

description?,
(meta | constructor-arg | property | lookup-method | replaced-method)*

)>

<!--
Beans can be identified by an id, to enable reference checking.

There are constraints on a valid XML id: if you want to reference your bean
in Java code using a name that's illegal as an XML id, use the optional
"name" attribute. If neither is given, the bean class name is used as id

Spring Framework

3.1 Reference Documentation 782

(with an appended counter like "#2" if there is already a bean with that name).
-->
<!ATTLIST bean id ID #IMPLIED>

<!--
Optional. Can be used to create one or more aliases illegal in an id.
Multiple aliases can be separated by any number of spaces, commas, or
semi-colons (or indeed any mixture of the three).

-->
<!ATTLIST bean name CDATA #IMPLIED>

<!--
Each bean definition must specify the fully qualified name of the class,
except if it pure serves as parent for child bean definitions.

-->
<!ATTLIST bean class CDATA #IMPLIED>

<!--
Optionally specify a parent bean definition.

Will use the bean class of the parent if none specified, but can
also override it. In the latter case, the child bean class must be
compatible with the parent, i.e. accept the parent's property values
and constructor argument values, if any.

A child bean definition will inherit constructor argument values,
property values and method overrides from the parent, with the option
to add new values. If init method, destroy method, factory bean and/or factory
method are specified, they will override the corresponding parent settings.

The remaining settings will always be taken from the child definition:
depends on, autowire mode, dependency check, scope, lazy init.

-->
<!ATTLIST bean parent CDATA #IMPLIED>

<!--
The scope of this bean: typically "singleton" (one shared instance,
which will be returned by all calls to getBean() with the id),
or "prototype" (independent instance resulting from each call to
getBean(). Default is "singleton".

Singletons are most commonly used, and are ideal for multi-threaded
service objects. Further scopes, such as "request" or "session",
might be supported by extended bean factories (for example, in a
web environment).

Note: This attribute will not be inherited by child bean definitions.
Hence, it needs to be specified per concrete bean definition.

Inner bean definitions inherit the singleton status of their containing
bean definition, unless explicitly specified: The inner bean will be a
singleton if the containing bean is a singleton, and a prototype if
the containing bean has any other scope.

-->
<!ATTLIST bean scope CDATA #IMPLIED>

<!--
Is this bean "abstract", i.e. not meant to be instantiated itself but
rather just serving as parent for concrete child bean definitions.
Default is "false". Specify "true" to tell the bean factory to not try to
instantiate that particular bean in any case.

Note: This attribute will not be inherited by child bean definitions.
Hence, it needs to be specified per abstract bean definition.

-->
<!ATTLIST bean abstract (true | false) #IMPLIED>

Spring Framework

3.1 Reference Documentation 783

<!--
If this bean should be lazily initialized.
If false, it will get instantiated on startup by bean factories
that perform eager initialization of singletons.

Note: This attribute will not be inherited by child bean definitions.
Hence, it needs to be specified per concrete bean definition.

-->
<!ATTLIST bean lazy-init (true | false | default) "default">

<!--
Indicates whether or not this bean should be considered when looking
for candidates to satisfy another beans autowiring requirements.

-->
<!ATTLIST bean autowire-candidate (true | false) #IMPLIED>

<!--
Optional attribute controlling whether to "autowire" bean properties.
This is an automagical process in which bean references don't need to be coded
explicitly in the XML bean definition file, but Spring works out dependencies.

There are 5 modes:

1. "no"
The traditional Spring default. No automagical wiring. Bean references
must be defined in the XML file via the <ref> element. We recommend this
in most cases as it makes documentation more explicit.

2. "byName"
Autowiring by property name. If a bean of class Cat exposes a dog property,
Spring will try to set this to the value of the bean "dog" in the current factory.
If there is no matching bean by name, nothing special happens;
use dependency-check="objects" to raise an error in that case.

3. "byType"
Autowiring if there is exactly one bean of the property type in the bean factory.
If there is more than one, a fatal error is raised, and you can't use byType
autowiring for that bean. If there is none, nothing special happens;
use dependency-check="objects" to raise an error in that case.

4. "constructor"
Analogous to "byType" for constructor arguments. If there isn't exactly one bean
of the constructor argument type in the bean factory, a fatal error is raised.

5. "autodetect"
Chooses "constructor" or "byType" through introspection of the bean class.
If a default no-arg constructor is found, "byType" gets applied.

The latter two are similar to PicoContainer and make bean factories simple to
configure for small namespaces, but doesn't work as well as standard Spring
behaviour for bigger applications.

Note that explicit dependencies, i.e. "property" and "constructor-arg" elements,
always override autowiring. Autowire behavior can be combined with dependency
checking, which will be performed after all autowiring has been completed.

Note: This attribute will not be inherited by child bean definitions.
Hence, it needs to be specified per concrete bean definition.

-->
<!ATTLIST bean autowire (no | byName | byType | constructor | autodetect | default) "default">

<!--
Optional attribute controlling whether to check whether all this
beans dependencies, expressed in its properties, are satisfied.
Default is no dependency checking.

"simple" type dependency checking includes primitives and String;

Spring Framework

3.1 Reference Documentation 784

"objects" includes collaborators (other beans in the factory);
"all" includes both types of dependency checking.

Note: This attribute will not be inherited by child bean definitions.
Hence, it needs to be specified per concrete bean definition.

-->
<!ATTLIST bean dependency-check (none | objects | simple | all | default) "default">

<!--
The names of the beans that this bean depends on being initialized.
The bean factory will guarantee that these beans get initialized before.

Note that dependencies are normally expressed through bean properties or
constructor arguments. This property should just be necessary for other kinds
of dependencies like statics (*ugh*) or database preparation on startup.

Note: This attribute will not be inherited by child bean definitions.
Hence, it needs to be specified per concrete bean definition.

-->
<!ATTLIST bean depends-on CDATA #IMPLIED>

<!--
Optional attribute for the name of the custom initialization method
to invoke after setting bean properties. The method must have no arguments,
but may throw any exception.

-->
<!ATTLIST bean init-method CDATA #IMPLIED>

<!--
Optional attribute for the name of the custom destroy method to invoke
on bean factory shutdown. The method must have no arguments,
but may throw any exception.

Note: Only invoked on beans whose lifecycle is under full control
of the factory - which is always the case for singletons, but not
guaranteed for any other scope.

-->
<!ATTLIST bean destroy-method CDATA #IMPLIED>

<!--
Optional attribute specifying the name of a factory method to use to
create this object. Use constructor-arg elements to specify arguments
to the factory method, if it takes arguments. Autowiring does not apply
to factory methods.

If the "class" attribute is present, the factory method will be a static
method on the class specified by the "class" attribute on this bean
definition. Often this will be the same class as that of the constructed
object - for example, when the factory method is used as an alternative
to a constructor. However, it may be on a different class. In that case,
the created object will *not* be of the class specified in the "class"
attribute. This is analogous to FactoryBean behavior.

If the "factory-bean" attribute is present, the "class" attribute is not
used, and the factory method will be an instance method on the object
returned from a getBean call with the specified bean name. The factory
bean may be defined as a singleton or a prototype.

The factory method can have any number of arguments. Autowiring is not
supported. Use indexed constructor-arg elements in conjunction with the
factory-method attribute.

Setter Injection can be used in conjunction with a factory method.
Method Injection cannot, as the factory method returns an instance,
which will be used when the container creates the bean.

-->
<!ATTLIST bean factory-method CDATA #IMPLIED>

Spring Framework

3.1 Reference Documentation 785

<!--
Alternative to class attribute for factory-method usage.
If this is specified, no class attribute should be used.
This should be set to the name of a bean in the current or
ancestor factories that contains the relevant factory method.
This allows the factory itself to be configured using Dependency
Injection, and an instance (rather than static) method to be used.

-->
<!ATTLIST bean factory-bean CDATA #IMPLIED>

<!--
Bean definitions can specify zero or more constructor arguments.
This is an alternative to "autowire constructor".
Arguments correspond to either a specific index of the constructor argument
list or are supposed to be matched generically by type.

Note: A single generic argument value will just be used once, rather than
potentially matched multiple times (as of Spring 1.1).

constructor-arg elements are also used in conjunction with the factory-method
element to construct beans using static or instance factory methods.

-->
<!ELEMENT constructor-arg (

description?,
(bean | ref | idref | value | null | list | set | map | props)?

)>

<!--
The constructor-arg tag can have an optional index attribute,
to specify the exact index in the constructor argument list. Only needed
to avoid ambiguities, e.g. in case of 2 arguments of the same type.

-->
<!ATTLIST constructor-arg index CDATA #IMPLIED>

<!--
The constructor-arg tag can have an optional type attribute,
to specify the exact type of the constructor argument. Only needed
to avoid ambiguities, e.g. in case of 2 single argument constructors
that can both be converted from a String.

-->
<!ATTLIST constructor-arg type CDATA #IMPLIED>

<!--
A short-cut alternative to a child element "ref bean=".

-->
<!ATTLIST constructor-arg ref CDATA #IMPLIED>

<!--
A short-cut alternative to a child element "value".

-->
<!ATTLIST constructor-arg value CDATA #IMPLIED>

<!--
Bean definitions can have zero or more properties.
Property elements correspond to JavaBean setter methods exposed
by the bean classes. Spring supports primitives, references to other
beans in the same or related factories, lists, maps and properties.

-->
<!ELEMENT property (

description?, meta*,
(bean | ref | idref | value | null | list | set | map | props)?

)>

<!--
The property name attribute is the name of the JavaBean property.

Spring Framework

3.1 Reference Documentation 786

This follows JavaBean conventions: a name of "age" would correspond
to setAge()/optional getAge() methods.

-->
<!ATTLIST property name CDATA #REQUIRED>

<!--
A short-cut alternative to a child element "ref bean=".

-->
<!ATTLIST property ref CDATA #IMPLIED>

<!--
A short-cut alternative to a child element "value".

-->
<!ATTLIST property value CDATA #IMPLIED>

<!--
A lookup method causes the IoC container to override the given method and return
the bean with the name given in the bean attribute. This is a form of Method Injection.
It's particularly useful as an alternative to implementing the BeanFactoryAware
interface, in order to be able to make getBean() calls for non-singleton instances
at runtime. In this case, Method Injection is a less invasive alternative.

-->
<!ELEMENT lookup-method EMPTY>

<!--
Name of a lookup method. This method should take no arguments.

-->
<!ATTLIST lookup-method name CDATA #IMPLIED>

<!--
Name of the bean in the current or ancestor factories that the lookup method
should resolve to. Often this bean will be a prototype, in which case the
lookup method will return a distinct instance on every invocation. This
is useful for single-threaded objects.

-->
<!ATTLIST lookup-method bean CDATA #IMPLIED>

<!--
Similar to the lookup method mechanism, the replaced-method element is used to control
IoC container method overriding: Method Injection. This mechanism allows the overriding
of a method with arbitrary code.

-->
<!ELEMENT replaced-method (

(arg-type)*
)>

<!--
Name of the method whose implementation should be replaced by the IoC container.
If this method is not overloaded, there's no need to use arg-type subelements.
If this method is overloaded, arg-type subelements must be used for all
override definitions for the method.

-->
<!ATTLIST replaced-method name CDATA #IMPLIED>

<!--
Bean name of an implementation of the MethodReplacer interface in the current
or ancestor factories. This may be a singleton or prototype bean. If it's
a prototype, a new instance will be used for each method replacement.
Singleton usage is the norm.

-->
<!ATTLIST replaced-method replacer CDATA #IMPLIED>

<!--
Subelement of replaced-method identifying an argument for a replaced method
in the event of method overloading.

Spring Framework

3.1 Reference Documentation 787

-->
<!ELEMENT arg-type (#PCDATA)>

<!--
Specification of the type of an overloaded method argument as a String.
For convenience, this may be a substring of the FQN. E.g. all the
following would match "java.lang.String":
- java.lang.String
- String
- Str

As the number of arguments will be checked also, this convenience can often
be used to save typing.

-->
<!ATTLIST arg-type match CDATA #IMPLIED>

<!--
Defines a reference to another bean in this factory or an external
factory (parent or included factory).

-->
<!ELEMENT ref EMPTY>

<!--
References must specify a name of the target bean.
The "bean" attribute can reference any name from any bean in the context,
to be checked at runtime.
Local references, using the "local" attribute, have to use bean ids;
they can be checked by this DTD, thus should be preferred for references
within the same bean factory XML file.

-->
<!ATTLIST ref bean CDATA #IMPLIED>
<!ATTLIST ref local IDREF #IMPLIED>
<!ATTLIST ref parent CDATA #IMPLIED>

<!--
Defines a string property value, which must also be the id of another
bean in this factory or an external factory (parent or included factory).
While a regular 'value' element could instead be used for the same effect,
using idref in this case allows validation of local bean ids by the XML
parser, and name completion by supporting tools.

-->
<!ELEMENT idref EMPTY>

<!--
ID refs must specify a name of the target bean.
The "bean" attribute can reference any name from any bean in the context,
potentially to be checked at runtime by bean factory implementations.
Local references, using the "local" attribute, have to use bean ids;
they can be checked by this DTD, thus should be preferred for references
within the same bean factory XML file.

-->
<!ATTLIST idref bean CDATA #IMPLIED>
<!ATTLIST idref local IDREF #IMPLIED>

<!--
Contains a string representation of a property value.
The property may be a string, or may be converted to the required
type using the JavaBeans PropertyEditor machinery. This makes it
possible for application developers to write custom PropertyEditor
implementations that can convert strings to arbitrary target objects.

Note that this is recommended for simple objects only.
Configure more complex objects by populating JavaBean
properties with references to other beans.

Spring Framework

3.1 Reference Documentation 788

-->
<!ELEMENT value (#PCDATA)>

<!--
The value tag can have an optional type attribute, to specify the
exact type that the value should be converted to. Only needed
if the type of the target property or constructor argument is
too generic: for example, in case of a collection element.

-->
<!ATTLIST value type CDATA #IMPLIED>

<!--
Denotes a Java null value. Necessary because an empty "value" tag
will resolve to an empty String, which will not be resolved to a
null value unless a special PropertyEditor does so.

-->
<!ELEMENT null (#PCDATA)>

<!--
A list can contain multiple inner bean, ref, collection, or value elements.
Java lists are untyped, pending generics support in Java 1.5,
although references will be strongly typed.
A list can also map to an array type. The necessary conversion
is automatically performed by the BeanFactory.

-->
<!ELEMENT list (

(bean | ref | idref | value | null | list | set | map | props)*
)>

<!--
Enable/disable merging for collections when using parent/child beans.

-->
<!ATTLIST list merge (true | false | default) "default">

<!--
Specify the default Java type for nested values.

-->
<!ATTLIST list value-type CDATA #IMPLIED>

<!--
A set can contain multiple inner bean, ref, collection, or value elements.
Java sets are untyped, pending generics support in Java 1.5,
although references will be strongly typed.

-->
<!ELEMENT set (

(bean | ref | idref | value | null | list | set | map | props)*
)>

<!--
Enable/disable merging for collections when using parent/child beans.

-->
<!ATTLIST set merge (true | false | default) "default">

<!--
Specify the default Java type for nested values.

-->
<!ATTLIST set value-type CDATA #IMPLIED>

<!--
A Spring map is a mapping from a string key to object.
Maps may be empty.

-->
<!ELEMENT map (

(entry)*

Spring Framework

3.1 Reference Documentation 789

)>

<!--
Enable/disable merging for collections when using parent/child beans.

-->
<!ATTLIST map merge (true | false | default) "default">

<!--
Specify the default Java type for nested entry keys.

-->
<!ATTLIST map key-type CDATA #IMPLIED>

<!--
Specify the default Java type for nested entry values.

-->
<!ATTLIST map value-type CDATA #IMPLIED>

<!--
A map entry can be an inner bean, ref, value, or collection.
The key of the entry is given by the "key" attribute or child element.

-->
<!ELEMENT entry (
key?,

(bean | ref | idref | value | null | list | set | map | props)?
)>

<!--
Each map element must specify its key as attribute or as child element.
A key attribute is always a String value.

-->
<!ATTLIST entry key CDATA #IMPLIED>

<!--
A short-cut alternative to a "key" element with a "ref bean=" child element.

-->
<!ATTLIST entry key-ref CDATA #IMPLIED>

<!--
A short-cut alternative to a child element "value".

-->
<!ATTLIST entry value CDATA #IMPLIED>

<!--
A short-cut alternative to a child element "ref bean=".

-->
<!ATTLIST entry value-ref CDATA #IMPLIED>

<!--
A key element can contain an inner bean, ref, value, or collection.

-->
<!ELEMENT key (

(bean | ref | idref | value | null | list | set | map | props)
)>

<!--
Props elements differ from map elements in that values must be strings.
Props may be empty.

-->
<!ELEMENT props (

(prop)*
)>

<!--
Enable/disable merging for collections when using parent/child beans.

-->
<!ATTLIST props merge (true | false | default) "default">

Spring Framework

3.1 Reference Documentation 790

<!--
Element content is the string value of the property.
Note that whitespace is trimmed off to avoid unwanted whitespace
caused by typical XML formatting.

-->
<!ELEMENT prop (#PCDATA)>

<!--
Each property element must specify its key.

-->
<!ATTLIST prop key CDATA #REQUIRED>

Spring Framework

3.1 Reference Documentation 791

Appendix F. spring.tld

F.1 Introduction

One of the view technologies you can use with the Spring Framework is Java Server Pages (JSPs). To
help you implement views using Java Server Pages the Spring Framework provides you with some tags
for evaluating errors, setting themes and outputting internationalized messages.

Please note that the various tags generated by this form tag library are compliant with the
XHTML-1.0-Strict specification and attendant DTD.

This appendix describes the spring.tld tag library.

• Section F.2, “The bind tag”

• Section F.3, “The escapeBody tag”

• Section F.4, “The hasBindErrors tag”

• Section F.5, “The htmlEscape tag”

• Section F.6, “The message tag”

• Section F.7, “The nestedPath tag”

• Section F.8, “The theme tag”

• Section F.9, “The transform tag”

• Section F.10, “The url tag”

• Section F.11, “The eval tag”

F.2 The bind tag

Provides BindStatus object for the given bind path. The HTML escaping flag participates in a page-wide
or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml).

Table F.1. Attributes

Attribute Required? Runtime Expression?

htmlEscape false true

Spring Framework

3.1 Reference Documentation 792

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_XHTML-1.0-Strict

Attribute Required? Runtime Expression?

ignoreNestedPath false true

path true true

F.3 The escapeBody tag

Escapes its enclosed body content, applying HTML escaping and/or JavaScript escaping. The HTML
escaping flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a
"defaultHtmlEscape" context-param in web.xml).

Table F.2. Attributes

Attribute Required? Runtime Expression?

htmlEscape false true

javaScriptEscape false true

F.4 The hasBindErrors tag

Provides Errors instance in case of bind errors. The HTML escaping flag participates in a page-wide or
application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml).

Table F.3. Attributes

Attribute Required? Runtime Expression?

htmlEscape false true

name true true

F.5 The htmlEscape tag

Sets default HTML escape value for the current page. Overrides a "defaultHtmlEscape" context-param in
web.xml, if any.

Spring Framework

3.1 Reference Documentation 793

Table F.4. Attributes

Attribute Required? Runtime Expression?

defaultHtmlEscape true true

F.6 The message tag

Retrieves the message with the given code, or text if code isn't resolvable. The HTML escaping flag
participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape"
context-param in web.xml).

Table F.5. Attributes

Attribute Required? Runtime Expression?

arguments false true

argumentSeparator false true

code false true

htmlEscape false true

javaScriptEscape false true

message false true

scope false true

text false true

var false true

F.7 The nestedPath tag

Sets a nested path to be used by the bind tag's path.

Spring Framework

3.1 Reference Documentation 794

Table F.6. Attributes

Attribute Required? Runtime Expression?

path true true

F.8 The theme tag

Retrieves the theme message with the given code, or text if code isn't resolvable. The HTML escaping
flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a
"defaultHtmlEscape" context-param in web.xml).

Table F.7. Attributes

Attribute Required? Runtime Expression?

arguments false true

argumentSeparator false true

code false true

htmlEscape false true

javaScriptEscape false true

message false true

scope false true

text false true

var false true

F.9 The transform tag

Provides transformation of variables to Strings, using an appropriate custom PropertyEditor from

Spring Framework

3.1 Reference Documentation 795

BindTag (can only be used inside BindTag). The HTML escaping flag participates in a page-wide or
application-wide setting (i.e. by HtmlEscapeTag or a 'defaultHtmlEscape' context-param in web.xml).

Table F.8. Attributes

Attribute Required? Runtime Expression?

htmlEscape false true

scope false true

value true true

var false true

F.10 The url tag

Creates URLs with support for URI template variables, HTML/XML escaping, and Javascript escaping.
Modeled after the JSTL c:url tag with backwards compatibility in mind.

Table F.9. Attributes

Attribute Required? Runtime Expression?

url true true

context false true

var false true

scope false true

htmlEscape false true

javascriptEncoding false true

F.11 The eval tag

Spring Framework

3.1 Reference Documentation 796

Evaluates a Spring expression (SpEL) and either prints the result or assigns it to a variable.

Table F.10. Attributes

Attribute Required? Runtime Expression?

expression true true

var false true

scope false true

htmlEscape false true

javascriptEncoding false true

Spring Framework

3.1 Reference Documentation 797

Appendix G. spring-form.tld

G.1 Introduction

One of the view technologies you can use with the Spring Framework is Java Server Pages (JSPs). To
help you implement views using Java Server Pages the Spring Framework provides you with some tags
for evaluating errors, setting themes and outputting internationalized messages.

Please note that the various tags generated by this form tag library are compliant with the
XHTML-1.0-Strict specification and attendant DTD.

This appendix describes the spring-form.tld tag library.

• Section G.2, “The checkbox tag”

• Section G.3, “The checkboxes tag”

• Section G.4, “The errors tag”

• Section G.5, “The form tag”

• Section G.6, “The hidden tag”

• Section G.7, “The input tag”

• Section G.8, “The label tag”

• Section G.9, “The option tag”

• Section G.10, “The options tag”

• Section G.11, “The password tag”

• Section G.12, “The radiobutton tag”

• Section G.13, “The radiobuttons tag”

• Section G.14, “The select tag”

• Section G.15, “The textarea tag”

G.2 The checkbox tag

Renders an HTML 'input' tag with type 'checkbox'.

Spring Framework

3.1 Reference Documentation 798

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_XHTML-1.0-Strict

Table G.1. Attributes

Attribute Required? Runtime Expression?

accesskey false true

cssClass false true

cssErrorClass false true

cssStyle false true

dir false true

disabled false true

htmlEscape false true

id false true

label false true

lang false true

onblur false true

onchange false true

onclick false true

ondblclick false true

onfocus false true

onkeydown false true

onkeypress false true

onkeyup false true

Spring Framework

3.1 Reference Documentation 799

Attribute Required? Runtime Expression?

onmousedown false true

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

path true true

tabindex false true

title false true

value false true

G.3 The checkboxes tag

Renders multiple HTML 'input' tags with type 'checkbox'.

Table G.2. Attributes

Attribute Required? Runtime Expression?

accesskey false true

cssClass false true

cssErrorClass false true

cssStyle false true

delimiter false true

Spring Framework

3.1 Reference Documentation 800

Attribute Required? Runtime Expression?

dir false true

disabled false true

element false true

htmlEscape false true

id false true

itemLabel false true

items true true

itemValue false true

lang false true

onblur false true

onchange false true

onclick false true

ondblclick false true

onfocus false true

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

onmousemove false true

Spring Framework

3.1 Reference Documentation 801

Attribute Required? Runtime Expression?

onmouseout false true

onmouseover false true

onmouseup false true

path true true

tabindex false true

title false true

G.4 The errors tag

Renders field errors in an HTML 'span' tag.

Table G.3. Attributes

Attribute Required? Runtime Expression?

cssClass false true

cssStyle false true

delimiter false true

dir false true

element false true

htmlEscape false true

id false true

lang false true

Spring Framework

3.1 Reference Documentation 802

Attribute Required? Runtime Expression?

onclick false true

ondblclick false true

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

path false true

tabindex false true

title false true

G.5 The form tag

Renders an HTML 'form' tag and exposes a binding path to inner tags for binding.

Table G.4. Attributes

Attribute Required? Runtime Expression?

acceptCharset false true

Spring Framework

3.1 Reference Documentation 803

Attribute Required? Runtime Expression?

action false true

commandName false true

cssClass false true

cssStyle false true

dir false true

enctype false true

htmlEscape false true

id false true

lang false true

method false true

modelAttribute false true

name false true

onclick false true

ondblclick false true

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

onmousemove false true

Spring Framework

3.1 Reference Documentation 804

Attribute Required? Runtime Expression?

onmouseout false true

onmouseover false true

onmouseup false true

onreset false true

onsubmit false true

target false true

title false true

G.6 The hidden tag

Renders an HTML 'input' tag with type 'hidden' using the bound value.

Table G.5. Attributes

Attribute Required? Runtime Expression?

htmlEscape false true

id false true

path true true

G.7 The input tag

Renders an HTML 'input' tag with type 'text' using the bound value.

Table G.6. Attributes

Spring Framework

3.1 Reference Documentation 805

Attribute Required? Runtime Expression?

accesskey false true

alt false true

autocomplete false true

cssClass false true

cssErrorClass false true

cssStyle false true

dir false true

disabled false true

htmlEscape false true

id false true

lang false true

maxlength false true

onblur false true

onchange false true

onclick false true

ondblclick false true

onfocus false true

onkeydown false true

onkeypress false true

Spring Framework

3.1 Reference Documentation 806

Attribute Required? Runtime Expression?

onkeyup false true

onmousedown false true

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

onselect false true

path true true

readonly false true

size false true

tabindex false true

title false true

G.8 The label tag

Renders a form field label in an HTML 'label' tag.

Table G.7. Attributes

Attribute Required? Runtime Expression?

cssClass false true

cssErrorClass false true

Spring Framework

3.1 Reference Documentation 807

Attribute Required? Runtime Expression?

cssStyle false true

dir false true

for false true

htmlEscape false true

id false true

lang false true

onclick false true

ondblclick false true

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

path true true

tabindex false true

title false true

Spring Framework

3.1 Reference Documentation 808

Attribute Required? Runtime Expression?

G.9 The option tag

Renders a single HTML 'option'. Sets 'selected' as appropriate based on bound value.

Table G.8. Attributes

Attribute Required? Runtime Expression?

cssClass false true

cssErrorClass false true

cssStyle false true

dir false true

disabled false true

htmlEscape false true

id false true

label false true

lang false true

onclick false true

ondblclick false true

onkeydown false true

onkeypress false true

onkeyup false true

Spring Framework

3.1 Reference Documentation 809

Attribute Required? Runtime Expression?

onmousedown false true

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

tabindex false true

title false true

value true true

G.10 The options tag

Renders a list of HTML 'option' tags. Sets 'selected' as appropriate based on bound value.

Table G.9. Attributes

Attribute Required? Runtime Expression?

cssClass false true

cssErrorClass false true

cssStyle false true

dir false true

disabled false true

htmlEscape false true

Spring Framework

3.1 Reference Documentation 810

Attribute Required? Runtime Expression?

id false true

itemLabel false true

items true true

itemValue false true

lang false true

onclick false true

ondblclick false true

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

tabindex false true

title false true

G.11 The password tag

Spring Framework

3.1 Reference Documentation 811

Renders an HTML 'input' tag with type 'password' using the bound value.

Table G.10. Attributes

Attribute Required? Runtime Expression?

accesskey false true

alt false true

autocomplete false true

cssClass false true

cssErrorClass false true

cssStyle false true

dir false true

disabled false true

htmlEscape false true

id false true

lang false true

maxlength false true

onblur false true

onchange false true

onclick false true

ondblclick false true

onfocus false true

Spring Framework

3.1 Reference Documentation 812

Attribute Required? Runtime Expression?

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

onselect false true

path true true

readonly false true

showPassword false true

size false true

tabindex false true

title false true

G.12 The radiobutton tag

Renders an HTML 'input' tag with type 'radio'.

Table G.11. Attributes

Spring Framework

3.1 Reference Documentation 813

Attribute Required? Runtime Expression?

accesskey false true

cssClass false true

cssErrorClass false true

cssStyle false true

dir false true

disabled false true

htmlEscape false true

id false true

label false true

lang false true

onblur false true

onchange false true

onclick false true

ondblclick false true

onfocus false true

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

Spring Framework

3.1 Reference Documentation 814

Attribute Required? Runtime Expression?

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

path true true

tabindex false true

title false true

value false true

G.13 The radiobuttons tag

Renders multiple HTML 'input' tags with type 'radio'.

Table G.12. Attributes

Attribute Required? Runtime Expression?

accesskey false true

cssClass false true

cssErrorClass false true

cssStyle false true

delimiter false true

dir false true

Spring Framework

3.1 Reference Documentation 815

Attribute Required? Runtime Expression?

disabled false true

element false true

htmlEscape false true

id false true

itemLabel false true

items true true

itemValue false true

lang false true

onblur false true

onchange false true

onclick false true

ondblclick false true

onfocus false true

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

onmousemove false true

onmouseout false true

Spring Framework

3.1 Reference Documentation 816

Attribute Required? Runtime Expression?

onmouseover false true

onmouseup false true

path true true

tabindex false true

title false true

G.14 The select tag

Renders an HTML 'select' element. Supports databinding to the selected option.

Table G.13. Attributes

Attribute Required? Runtime Expression?

accesskey false true

cssClass false true

cssErrorClass false true

cssStyle false true

dir false true

disabled false true

htmlEscape false true

id false true

itemLabel false true

Spring Framework

3.1 Reference Documentation 817

Attribute Required? Runtime Expression?

items false true

itemValue false true

lang false true

multiple false true

onblur false true

onchange false true

onclick false true

ondblclick false true

onfocus false true

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

path true true

size false true

Spring Framework

3.1 Reference Documentation 818

Attribute Required? Runtime Expression?

tabindex false true

title false true

G.15 The textarea tag

Renders an HTML 'textarea'.

Table G.14. Attributes

Attribute Required? Runtime Expression?

accesskey false true

cols false true

cssClass false true

cssErrorClass false true

cssStyle false true

dir false true

disabled false true

htmlEscape false true

id false true

lang false true

onblur false true

onchange false true

Spring Framework

3.1 Reference Documentation 819

Attribute Required? Runtime Expression?

onclick false true

ondblclick false true

onfocus false true

onkeydown false true

onkeypress false true

onkeyup false true

onmousedown false true

onmousemove false true

onmouseout false true

onmouseover false true

onmouseup false true

onselect false true

path true true

readonly false true

rows false true

tabindex false true

title false true

Spring Framework

3.1 Reference Documentation 820

	Reference Documentation
	Table of Contents
	Part I. Overview of Spring Framework
	1. Introduction to Spring Framework
	1.1 Dependency Injection and Inversion of Control
	1.2 Modules
	Core Container
	Data Access/Integration
	Web
	AOP and Instrumentation
	Test

	1.3 Usage scenarios
	Dependency Management and Naming Conventions
	Spring Dependencies and Depending on Spring
	Maven Dependency Management
	Ivy Dependency Management

	Logging
	Not Using Commons Logging
	Using SLF4J
	Using Log4J
	Runtime Containers with Native JCL

	Part II. What's New in Spring 3
	2. New Features and Enhancements in Spring 3.0
	2.1 Java 5
	2.2 Improved documentation
	2.3 New articles and tutorials
	2.4 New module organization and build system
	2.5 Overview of new features
	Core APIs updated for Java 5
	Spring Expression Language
	The Inversion of Control (IoC) container
	Java based bean metadata
	Defining bean metadata within components

	General purpose type conversion system and field formatting system
	The Data Tier
	The Web Tier
	Comprehensive REST support
	@MVC additions

	Declarative model validation
	Early support for Java EE 6
	Support for embedded databases

	3. New Features and Enhancements in Spring 3.1
	3.1 Overview of new features
	Cache Abstraction
	Bean Definition Profiles
	Environment Abstraction
	PropertySource Abstraction
	Code equivalents for Spring's XML namespaces
	Support for Hibernate 4.x
	TestContext framework support for @Configuration classes and bean definition profiles
	c: namespace for more concise constructor injection
	Support for injection against non-standard JavaBeans setters
	Support for Servlet 3 code-based configuration of Servlet Container
	Support for Servlet 3 MultipartResolver
	JPA EntityManagerFactory bootstrapping without persistence.xml
	New HandlerMethod-based Support Classes For Annotated Controller Processing
	"consumes" and "produces" conditions in @RequestMapping
	Flash Attributes and RedirectAttributes
	URI Template Variable Enhancements
	@Valid On @RequestBody Controller Method Arguments
	@RequestPart Annotation On Controller Method Arguments
	UriComponentsBuilder and UriComponents

	Part III. Core Technologies
	4. The IoC container
	4.1 Introduction to the Spring IoC container and beans
	4.2 Container overview
	Configuration metadata
	Instantiating a container
	Composing XML-based configuration metadata

	Using the container

	4.3 Bean overview
	Naming beans
	Aliasing a bean outside the bean definition

	Instantiating beans
	Instantiation with a constructor
	Instantiation with a static factory method
	Instantiation using an instance factory method

	4.4 Dependencies
	Dependency injection
	Constructor-based dependency injection
	Constructor argument resolution
	Constructor argument type matching
	Constructor argument index
	Constructor argument name

	Setter-based dependency injection
	Dependency resolution process
	Examples of dependency injection

	Dependencies and configuration in detail
	Straight values (primitives, Strings, and so on)
	The idref element

	References to other beans (collaborators)
	Inner beans
	Collections
	Collection merging
	Limitations of collection merging
	Strongly-typed collection (Java 5+ only)

	Null and empty string values
	XML shortcut with the p-namespace
	XML shortcut with the c-namespace
	Compound property names

	Using depends-on
	Lazy-initialized beans
	Autowiring collaborators
	Limitations and disadvantages of autowiring
	Excluding a bean from autowiring

	Method injection
	Lookup method injection
	Arbitrary method replacement

	4.5 Bean scopes
	The singleton scope
	The prototype scope
	Singleton beans with prototype-bean dependencies
	Request, session, and global session scopes
	Initial web configuration
	Request scope
	Session scope
	Global session scope
	Scoped beans as dependencies
	Choosing the type of proxy to create

	Custom scopes
	Creating a custom scope
	Using a custom scope

	4.6 Customizing the nature of a bean
	Lifecycle callbacks
	Initialization callbacks
	Destruction callbacks
	Default initialization and destroy methods
	Combining lifecycle mechanisms
	Startup and shutdown callbacks
	Shutting down the Spring IoC container gracefully in non-web applications

	ApplicationContextAware and BeanNameAware
	Other Aware interfaces

	4.7 Bean definition inheritance
	4.8 Container Extension Points
	Customizing beans using a BeanPostProcessor
	Example: Hello World, BeanPostProcessor-style
	Example: The RequiredAnnotationBeanPostProcessor

	Customizing configuration metadata with a BeanFactoryPostProcessor
	Example: the PropertyPlaceholderConfigurer
	Example: the PropertyOverrideConfigurer

	Customizing instantiation logic with a FactoryBean

	4.9 Annotation-based container configuration
	@Required
	@Autowired
	Fine-tuning annotation-based autowiring with qualifiers
	CustomAutowireConfigurer
	@Resource
	@PostConstruct and @PreDestroy

	4.10 Classpath scanning and managed components
	@Component and further stereotype annotations
	Automatically detecting classes and registering bean definitions
	Using filters to customize scanning
	Defining bean metadata within components
	Naming autodetected components
	Providing a scope for autodetected components
	Providing qualifier metadata with annotations

	4.11 Using JSR 330 Standard Annotations
	Dependency Injection with @Inject and @Named
	@Named: a standard equivalent to the @Component annotation
	Limitations of the standard approach

	4.12 Java-based container configuration
	Basic concepts: @Configuration and @Bean
	Instantiating the Spring container using AnnotationConfigApplicationContext
	Simple construction
	Building the container programmatically using register(Class<?>...)
	Enabling component scanning with scan(String...)
	Support for web applications with AnnotationConfigWebApplicationContext

	Composing Java-based configurations
	Using the @Import annotation
	Injecting dependencies on imported @Bean definitions
	Fully-qualifying imported beans for ease of navigation

	Combining Java and XML configuration
	XML-centric use of @Configuration classes
	Declaring @Configuration classes as plain Spring <bean/> elements
	Using <context:component-scan/> to pick up @Configuration classes

	@Configuration class-centric use of XML with @ImportResource

	Using the @Bean annotation
	Declaring a bean
	Injecting dependencies
	Receiving lifecycle callbacks
	Specifying bean scope
	Using the @Scope annotation
	@Scope and scoped-proxy
	Lookup method injection

	Customizing bean naming
	Bean aliasing

	Further information about how Java-based configuration works internally

	4.13 Registering a LoadTimeWeaver
	4.14 Additional Capabilities of the ApplicationContext
	Internationalization using MessageSource
	Standard and Custom Events
	Convenient access to low-level resources
	Convenient ApplicationContext instantiation for web applications
	Deploying a Spring ApplicationContext as a J2EE RAR file

	4.15 The BeanFactory
	BeanFactory or ApplicationContext?
	Glue code and the evil singleton

	5. Resources
	5.1 Introduction
	5.2 The Resource interface
	5.3 Built-in Resource implementations
	UrlResource
	ClassPathResource
	FileSystemResource
	ServletContextResource
	InputStreamResource
	ByteArrayResource

	5.4 The ResourceLoader
	5.5 The ResourceLoaderAware interface
	5.6 Resources as dependencies
	5.7 Application contexts and Resource paths
	Constructing application contexts
	Constructing ClassPathXmlApplicationContext instances - shortcuts

	Wildcards in application context constructor resource paths
	Ant-style Patterns
	Implications on portability

	The classpath*: prefix
	Other notes relating to wildcards

	FileSystemResource caveats

	6. Validation, Data Binding, and Type Conversion
	6.1 Introduction
	6.2 Validation using Spring's Validator interface
	6.3 Resolving codes to error messages
	6.4 Bean manipulation and the BeanWrapper
	Setting and getting basic and nested properties
	Built-in PropertyEditor implementations
	Registering additional custom PropertyEditors
	Using PropertyEditorRegistrars

	6.5 Spring 3 Type Conversion
	Converter SPI
	ConverterFactory
	GenericConverter
	ConditionalGenericConverter

	ConversionService API
	Configuring a ConversionService
	Using a ConversionService programatically

	6.6 Spring 3 Field Formatting
	Formatter SPI
	Annotation-driven Formatting
	Format Annotation API

	FormatterRegistry SPI
	FormatterRegistrar SPI
	Configuring Formatting in Spring MVC

	6.7 Spring 3 Validation
	Overview of the JSR-303 Bean Validation API
	Configuring a Bean Validation Implementation
	Injecting a Validator
	Configuring Custom Constraints
	Additional Configuration Options

	Configuring a DataBinder
	Spring MVC 3 Validation
	Triggering @Controller Input Validation
	Configuring a Validator for use by Spring MVC
	Configuring a JSR-303 Validator for use by Spring MVC

	7. Spring Expression Language (SpEL)
	7.1 Introduction
	7.2 Feature Overview
	7.3 Expression Evaluation using Spring's Expression Interface
	The EvaluationContext interface
	Type Conversion

	7.4 Expression support for defining bean definitions
	XML based configuration
	Annotation-based configuration

	7.5 Language Reference
	Literal expressions
	Properties, Arrays, Lists, Maps, Indexers
	Inline lists
	Array construction
	Methods
	Operators
	Relational operators
	Logical operators
	Mathematical operators

	Assignment
	Types
	Constructors
	Variables
	The #this and #root variables

	Functions
	Bean references
	Ternary Operator (If-Then-Else)
	The Elvis Operator
	Safe Navigation operator
	Collection Selection
	Collection Projection
	Expression templating

	7.6 Classes used in the examples

	8. Aspect Oriented Programming with Spring
	8.1 Introduction
	AOP concepts
	Spring AOP capabilities and goals
	AOP Proxies

	8.2 @AspectJ support
	Enabling @AspectJ Support
	Declaring an aspect
	Declaring a pointcut
	Supported Pointcut Designators
	Combining pointcut expressions
	Sharing common pointcut definitions
	Examples
	Writing good pointcuts

	Declaring advice
	Before advice
	After returning advice
	After throwing advice
	After (finally) advice
	Around advice
	Advice parameters
	Access to the current JoinPoint
	Passing parameters to advice
	Advice parameters and generics
	Determining argument names
	Proceeding with arguments

	Advice ordering

	Introductions
	Aspect instantiation models
	Example

	8.3 Schema-based AOP support
	Declaring an aspect
	Declaring a pointcut
	Declaring advice
	Before advice
	After returning advice
	After throwing advice
	After (finally) advice
	Around advice
	Advice parameters
	Advice ordering

	Introductions
	Aspect instantiation models
	Advisors
	Example

	8.4 Choosing which AOP declaration style to use
	Spring AOP or full AspectJ?
	@AspectJ or XML for Spring AOP?

	8.5 Mixing aspect types
	8.6 Proxying mechanisms
	Understanding AOP proxies

	8.7 Programmatic creation of @AspectJ Proxies
	8.8 Using AspectJ with Spring applications
	Using AspectJ to dependency inject domain objects with Spring
	Unit testing @Configurable objects
	Working with multiple application contexts

	Other Spring aspects for AspectJ
	Configuring AspectJ aspects using Spring IoC
	Load-time weaving with AspectJ in the Spring Framework
	A first example
	Aspects
	'META-INF/aop.xml'
	Required libraries (JARS)
	Spring configuration
	Environment-specific configuration
	Tomcat
	WebLogic, WebSphere, OC4J, Resin, GlassFish, JBoss
	Generic Java applications

	8.9 Further Resources

	9. Spring AOP APIs
	9.1 Introduction
	9.2 Pointcut API in Spring
	Concepts
	Operations on pointcuts
	AspectJ expression pointcuts
	Convenience pointcut implementations
	Static pointcuts
	Regular expression pointcuts
	Attribute-driven pointcuts

	Dynamic pointcuts
	Control flow pointcuts

	Pointcut superclasses
	Custom pointcuts

	9.3 Advice API in Spring
	Advice lifecycles
	Advice types in Spring
	Interception around advice
	Before advice
	Throws advice
	After Returning advice
	Introduction advice

	9.4 Advisor API in Spring
	9.5 Using the ProxyFactoryBean to create AOP proxies
	Basics
	JavaBean properties
	JDK- and CGLIB-based proxies
	Proxying interfaces
	Proxying classes
	Using 'global' advisors

	9.6 Concise proxy definitions
	9.7 Creating AOP proxies programmatically with the ProxyFactory
	9.8 Manipulating advised objects
	9.9 Using the "autoproxy" facility
	Autoproxy bean definitions
	BeanNameAutoProxyCreator
	DefaultAdvisorAutoProxyCreator
	AbstractAdvisorAutoProxyCreator

	Using metadata-driven auto-proxying

	9.10 Using TargetSources
	Hot swappable target sources
	Pooling target sources
	Prototype target sources
	ThreadLocal target sources

	9.11 Defining new Advice types
	9.12 Further resources

	10. Testing
	10.1 Introduction to Spring Testing
	10.2 Unit Testing
	Mock Objects
	JNDI
	Servlet API
	Portlet API

	Unit Testing support Classes
	General utilities
	Spring MVC

	10.3 Integration Testing
	Overview
	Goals of Integration Testing
	Context management and caching
	Dependency Injection of test fixtures
	Transaction management
	Support classes for integration testing

	JDBC Testing Support
	Annotations
	Spring Testing Annotations
	Standard Annotation Support
	Spring JUnit Testing Annotations

	Spring TestContext Framework
	Key abstractions
	Context management
	Context configuration with XML resources
	Context configuration with @Configuration classes
	Mixing XML resources and @Configuration classes
	Context configuration inheritance
	Context configuration with environment profiles
	Context caching

	Dependency injection of test fixtures
	Transaction management
	TestContext support classes
	JUnit support classes
	Spring JUnit Runner
	TestNG support classes

	PetClinic Example

	10.4 Further Resources

	Part IV. Data Access
	11. Transaction Management
	11.1 Introduction to Spring Framework transaction management
	11.2 Advantages of the Spring Framework's transaction support model
	Global transactions
	Local transactions
	Spring Framework's consistent programming model

	11.3 Understanding the Spring Framework transaction abstraction
	11.4 Synchronizing resources with transactions
	High-level synchronization approach
	Low-level synchronization approach
	TransactionAwareDataSourceProxy

	11.5 Declarative transaction management
	Understanding the Spring Framework's declarative transaction implementation
	Example of declarative transaction implementation
	Rolling back a declarative transaction
	Configuring different transactional semantics for different beans
	<tx:advice/> settings
	Using @Transactional
	@Transactional settings
	Multiple Transaction Managers with @Transactional
	Custom shortcut annotations

	Transaction propagation
	Required
	RequiresNew
	Nested

	Advising transactional operations
	Using @Transactional with AspectJ

	11.6 Programmatic transaction management
	Using the TransactionTemplate
	Specifying transaction settings

	Using the PlatformTransactionManager

	11.7 Choosing between programmatic and declarative transaction management
	11.8 Application server-specific integration
	IBM WebSphere
	BEA WebLogic Server
	Oracle OC4J

	11.9 Solutions to common problems
	Use of the wrong transaction manager for a specific DataSource

	11.10 Further Resources

	12. DAO support
	12.1 Introduction
	12.2 Consistent exception hierarchy
	12.3 Annotations used for configuring DAO or Repository classes

	13. Data access with JDBC
	13.1 Introduction to Spring Framework JDBC
	Choosing an approach for JDBC database access
	Package hierarchy

	13.2 Using the JDBC core classes to control basic JDBC processing and error handling
	JdbcTemplate
	Examples of JdbcTemplate class usage
	Querying (SELECT)
	Updating (INSERT/UPDATE/DELETE) with jdbcTemplate
	Other jdbcTemplate operations

	JdbcTemplate best practices

	NamedParameterJdbcTemplate
	SimpleJdbcTemplate
	SQLExceptionTranslator
	Executing statements
	Running queries
	Updating the database
	Retrieving auto-generated keys

	13.3 Controlling database connections
	DataSource
	DataSourceUtils
	SmartDataSource
	AbstractDataSource
	SingleConnectionDataSource
	DriverManagerDataSource
	TransactionAwareDataSourceProxy
	DataSourceTransactionManager
	NativeJdbcExtractor

	13.4 JDBC batch operations
	Basic batch operations with the JdbcTemplate
	Batch operations with a List of objects
	Batch operations with multiple batches

	13.5 Simplifying JDBC operations with the SimpleJdbc classes
	Inserting data using SimpleJdbcInsert
	Retrieving auto-generated keys using SimpleJdbcInsert
	Specifying columns for a SimpleJdbcInsert
	Using SqlParameterSource to provide parameter values
	Calling a stored procedure with SimpleJdbcCall
	Explicitly declaring parameters to use for a SimpleJdbcCall
	How to define SqlParameters
	Calling a stored function using SimpleJdbcCall
	Returning ResultSet/REF Cursor from a SimpleJdbcCall

	13.6 Modeling JDBC operations as Java objects
	SqlQuery
	MappingSqlQuery
	SqlUpdate
	StoredProcedure

	13.7 Common problems with parameter and data value handling
	Providing SQL type information for parameters
	Handling BLOB and CLOB objects
	Passing in lists of values for IN clause
	Handling complex types for stored procedure calls

	13.8 Embedded database support
	Why use an embedded database?
	Creating an embedded database instance using Spring XML
	Creating an embedded database instance programmatically
	Extending the embedded database support
	Using HSQL
	Using H2
	Using Derby
	Testing data access logic with an embedded database

	13.9 Initializing a DataSource
	Initializing a database instance using Spring XML
	Initialization of Other Components that Depend on the Database

	14. Object Relational Mapping (ORM) Data Access
	14.1 Introduction to ORM with Spring
	14.2 General ORM integration considerations
	Resource and transaction management
	Exception translation

	14.3 Hibernate
	SessionFactory setup in a Spring container
	Implementing DAOs based on plain Hibernate 3 API
	Declarative transaction demarcation
	Programmatic transaction demarcation
	Transaction management strategies
	Comparing container-managed and locally defined resources
	Spurious application server warnings with Hibernate

	14.4 JDO
	PersistenceManagerFactory setup
	Implementing DAOs based on the plain JDO API
	Transaction management
	JdoDialect

	14.5 JPA
	Three options for JPA setup in a Spring environment
	LocalEntityManagerFactoryBean
	Obtaining an EntityManagerFactory from JNDI
	LocalContainerEntityManagerFactoryBean
	Dealing with multiple persistence units

	Implementing DAOs based on plain JPA
	Transaction Management
	JpaDialect

	14.6 iBATIS SQL Maps
	Setting up the SqlMapClient
	Using SqlMapClientTemplate and SqlMapClientDaoSupport
	Implementing DAOs based on plain iBATIS API

	15. Marshalling XML using O/X Mappers
	15.1 Introduction
	15.2 Marshaller and Unmarshaller
	Marshaller
	Unmarshaller
	XmlMappingException

	15.3 Using Marshaller and Unmarshaller
	15.4 XML Schema-based Configuration
	15.5 JAXB
	Jaxb2Marshaller
	XML Schema-based Configuration

	15.6 Castor
	CastorMarshaller
	Mapping

	15.7 XMLBeans
	XmlBeansMarshaller
	XML Schema-based Configuration

	15.8 JiBX
	JibxMarshaller
	XML Schema-based Configuration

	15.9 XStream
	XStreamMarshaller

	Part V. The Web
	16. Web MVC framework
	16.1 Introduction to Spring Web MVC framework
	Features of Spring Web MVC
	Pluggability of other MVC implementations

	16.2 The DispatcherServlet
	Special Bean Types In the WebApplicationContext
	Default DispatcherServlet Configuration
	DispatcherServlet Processing Sequence

	16.3 Implementing Controllers
	Defining a controller with @Controller
	Mapping Requests With @RequestMapping
	URI Template Patterns
	URI Template Patterns with Regular Expressions
	Path Patterns
	Consumable Media Types
	Producible Media Types
	Request Parameters and Header Values

	Defining @RequestMapping handler methods
	Supported method argument types
	Supported method return types
	Binding request parameters to method parameters with @RequestParam
	Mapping the request body with the @RequestBody annotation
	Mapping the response body with the @ResponseBody annotation
	Using HttpEntity<?>
	Using @ModelAttribute on a method
	Using @ModelAttribute on a method argument
	Using @SessionAttributes to store model attributes in the HTTP session between requests
	Specifying redirect and flash attributes
	Working with "application/x-www-form-urlencoded" data
	Mapping cookie values with the @CookieValue annotation
	Mapping request header attributes with the @RequestHeader annotation
	Method Parameters And Type Conversion
	Customizing WebDataBinder initialization
	Customizing data binding with @InitBinder
	Configuring a custom WebBindingInitializer

	Support for the 'Last-Modified' Response Header To Facilitate Content Caching

	16.4 Handler mappings
	Intercepting requests with a HandlerInterceptor

	16.5 Resolving views
	Resolving views with the ViewResolver interface
	Chaining ViewResolvers
	Redirecting to views
	RedirectView
	The redirect: prefix
	The forward: prefix

	ContentNegotiatingViewResolver

	16.6 Using flash attributes
	16.7 Building URIs
	16.8 Using locales
	AcceptHeaderLocaleResolver
	CookieLocaleResolver
	SessionLocaleResolver
	LocaleChangeInterceptor

	16.9 Using themes
	Overview of themes
	Defining themes
	Theme resolvers

	16.10 Spring's multipart (file upload) support
	Introduction
	Using a MultipartResolver with Commons FileUpload
	Using a MultipartResolver with Servlet 3.0
	Handling a file upload in a form
	Handling a file upload request from programmatic clients

	16.11 Handling exceptions
	HandlerExceptionResolver
	@ExceptionHandler

	16.12 Convention over configuration support
	The Controller ControllerClassNameHandlerMapping
	The Model ModelMap (ModelAndView)
	The View - RequestToViewNameTranslator

	16.13 ETag support
	16.14 Configuring Spring MVC
	Enabling MVC Java Config or the MVC XML Namespace
	Customizing the Provided Configuration
	Configuring Interceptors
	Configuring View Controllers
	Configuring Serving of Resources
	mvc:default-servlet-handler
	More Spring Web MVC Resources
	Advanced Customizations with MVC Java Config
	Advanced Customizations with the MVC Namespace

	17. View technologies
	17.1 Introduction
	17.2 JSP & JSTL
	View resolvers
	'Plain-old' JSPs versus JSTL
	Additional tags facilitating development
	Using Spring's form tag library
	Configuration
	The form tag
	The input tag
	The checkbox tag
	The checkboxes tag
	The radiobutton tag
	The radiobuttons tag
	The password tag
	The select tag
	The option tag
	The options tag
	The textarea tag
	The hidden tag
	The errors tag
	HTTP Method Conversion
	HTML5 Tags

	17.3 Tiles
	Dependencies
	How to integrate Tiles
	UrlBasedViewResolver
	ResourceBundleViewResolver
	SimpleSpringPreparerFactory and SpringBeanPreparerFactory

	17.4 Velocity & FreeMarker
	Dependencies
	Context configuration
	Creating templates
	Advanced configuration
	velocity.properties
	FreeMarker

	Bind support and form handling
	The bind macros
	Simple binding
	Form input generation macros
	Input Fields
	Selection Fields

	HTML escaping and XHTML compliance

	17.5 XSLT
	My First Words
	Bean definitions
	Standard MVC controller code
	Convert the model data to XML
	Defining the view properties
	Document transformation

	Summary

	17.6 Document views (PDF/Excel)
	Introduction
	Configuration and setup
	Document view definitions
	Controller code
	Subclassing for Excel views
	Subclassing for PDF views

	17.7 JasperReports
	Dependencies
	Configuration
	Configuring the ViewResolver
	Configuring the Views
	About Report Files
	Using JasperReportsMultiFormatView

	Populating the ModelAndView
	Working with Sub-Reports
	Configuring Sub-Report Files
	Configuring Sub-Report Data Sources

	Configuring Exporter Parameters

	17.8 Feed Views
	17.9 XML Marshalling View
	17.10 JSON Mapping View

	18. Integrating with other web frameworks
	18.1 Introduction
	18.2 Common configuration
	18.3 JavaServer Faces 1.1 and 1.2
	DelegatingVariableResolver (JSF 1.1/1.2)
	SpringBeanVariableResolver (JSF 1.1/1.2)
	SpringBeanFacesELResolver (JSF 1.2+)
	FacesContextUtils

	18.4 Apache Struts 1.x and 2.x
	ContextLoaderPlugin
	DelegatingRequestProcessor
	DelegatingActionProxy

	ActionSupport Classes

	18.5 WebWork 2.x
	18.6 Tapestry 3.x and 4.x
	Injecting Spring-managed beans
	Dependency Injecting Spring Beans into Tapestry pages
	Component definition files
	Adding abstract accessors
	Dependency Injecting Spring Beans into Tapestry pages - Tapestry 4.x style

	18.7 Further Resources

	19. Portlet MVC Framework
	19.1 Introduction
	Controllers - The C in MVC
	Views - The V in MVC
	Web-scoped beans

	19.2 The DispatcherPortlet
	19.3 The ViewRendererServlet
	19.4 Controllers
	AbstractController and PortletContentGenerator
	Other simple controllers
	Command Controllers
	PortletWrappingController

	19.5 Handler mappings
	PortletModeHandlerMapping
	ParameterHandlerMapping
	PortletModeParameterHandlerMapping
	Adding HandlerInterceptors
	HandlerInterceptorAdapter
	ParameterMappingInterceptor

	19.6 Views and resolving them
	19.7 Multipart (file upload) support
	Using the PortletMultipartResolver
	Handling a file upload in a form

	19.8 Handling exceptions
	19.9 Annotation-based controller configuration
	Setting up the dispatcher for annotation support
	Defining a controller with @Controller
	Mapping requests with @RequestMapping
	Supported handler method arguments
	Binding request parameters to method parameters with @RequestParam
	Providing a link to data from the model with @ModelAttribute
	Specifying attributes to store in a Session with @SessionAttributes
	Customizing WebDataBinder initialization
	Customizing data binding with @InitBinder
	Configuring a custom WebBindingInitializer

	19.10 Portlet application deployment

	Part VI. Integration
	20. Remoting and web services using Spring
	20.1 Introduction
	20.2 Exposing services using RMI
	Exporting the service using the RmiServiceExporter
	Linking in the service at the client

	20.3 Using Hessian or Burlap to remotely call services via HTTP
	Wiring up the DispatcherServlet for Hessian and co.
	Exposing your beans by using the HessianServiceExporter
	Linking in the service on the client
	Using Burlap
	Applying HTTP basic authentication to a service exposed through Hessian or Burlap

	20.4 Exposing services using HTTP invokers
	Exposing the service object
	Linking in the service at the client

	20.5 Web services
	Exposing servlet-based web services using JAX-RPC
	Accessing web services using JAX-RPC
	Registering JAX-RPC Bean Mappings
	Registering your own JAX-RPC Handler
	Exposing servlet-based web services using JAX-WS
	Exporting standalone web services using JAX-WS
	Exporting web services using the JAX-WS RI's Spring support
	Accessing web services using JAX-WS

	20.6 JMS
	Server-side configuration
	Client-side configuration

	20.7 Auto-detection is not implemented for remote interfaces
	20.8 Considerations when choosing a technology
	20.9 Accessing RESTful services on the Client
	RestTemplate
	Working with the URI
	Dealing with request and response headers

	HTTP Message Conversion
	StringHttpMessageConverter
	FormHttpMessageConverter
	ByteArrayMessageConverter
	MarshallingHttpMessageConverter
	MappingJacksonHttpMessageConverter
	SourceHttpMessageConverter
	BufferedImageHttpMessageConverter

	21. Enterprise JavaBeans (EJB) integration
	21.1 Introduction
	21.2 Accessing EJBs
	Concepts
	Accessing local SLSBs
	Accessing remote SLSBs
	Accessing EJB 2.x SLSBs versus EJB 3 SLSBs

	21.3 Using Spring's EJB implementation support classes
	EJB 2.x base classes
	EJB 3 injection interceptor

	22. JMS (Java Message Service)
	22.1 Introduction
	22.2 Using Spring JMS
	JmsTemplate
	Connections
	Caching Messaging Resources
	SingleConnectionFactory
	CachingConnectionFactory

	Destination Management
	Message Listener Containers
	SimpleMessageListenerContainer
	DefaultMessageListenerContainer

	Transaction management

	22.3 Sending a Message
	Using Message Converters
	SessionCallback and ProducerCallback

	22.4 Receiving a message
	Synchronous Reception
	Asynchronous Reception - Message-Driven POJOs
	The SessionAwareMessageListener interface
	The MessageListenerAdapter
	Processing messages within transactions

	22.5 Support for JCA Message Endpoints
	22.6 JMS Namespace Support

	23. JMX
	23.1 Introduction
	23.2 Exporting your beans to JMX
	Creating an MBeanServer
	Reusing an existing MBeanServer
	Lazy-initialized MBeans
	Automatic registration of MBeans
	Controlling the registration behavior

	23.3 Controlling the management interface of your beans
	The MBeanInfoAssembler Interface
	Using Source-Level Metadata (JDK 5.0 annotations)
	Source-Level Metadata Types
	The AutodetectCapableMBeanInfoAssembler interface
	Defining management interfaces using Java interfaces
	Using MethodNameBasedMBeanInfoAssembler

	23.4 Controlling the ObjectNames for your beans
	Reading ObjectNames from Properties
	Using the MetadataNamingStrategy
	The <context:mbean-export/> element

	23.5 JSR-160 Connectors
	Server-side Connectors
	Client-side Connectors
	JMX over Burlap/Hessian/SOAP

	23.6 Accessing MBeans via Proxies
	23.7 Notifications
	Registering Listeners for Notifications
	Publishing Notifications

	23.8 Further Resources

	24. JCA CCI
	24.1 Introduction
	24.2 Configuring CCI
	Connector configuration
	ConnectionFactory configuration in Spring
	Configuring CCI connections
	Using a single CCI connection

	24.3 Using Spring's CCI access support
	Record conversion
	The CciTemplate
	DAO support
	Automatic output record generation
	Summary
	Using a CCI Connection and Interaction directly
	Example for CciTemplate usage

	24.4 Modeling CCI access as operation objects
	MappingRecordOperation
	MappingCommAreaOperation
	Automatic output record generation
	Summary
	Example for MappingRecordOperation usage
	Example for MappingCommAreaOperation usage

	24.5 Transactions

	25. Email
	25.1 Introduction
	25.2 Usage
	Basic MailSender and SimpleMailMessage usage
	Using the JavaMailSender and the MimeMessagePreparator

	25.3 Using the JavaMail MimeMessageHelper
	Sending attachments and inline resources
	Attachments
	Inline resources

	Creating email content using a templating library
	A Velocity-based example

	26. Task Execution and Scheduling
	26.1 Introduction
	26.2 The Spring TaskExecutor abstraction
	TaskExecutor types
	Using a TaskExecutor

	26.3 The Spring TaskScheduler abstraction
	The Trigger interface
	Trigger implementations
	TaskScheduler implementations

	26.4 The Task Namespace
	The 'scheduler' element
	The 'executor' element
	The 'scheduled-tasks' element

	26.5 Annotation Support for Scheduling and Asynchronous Execution
	The @Scheduled Annotation
	The @Async Annotation
	The <annotation-driven> Element

	26.6 Using the OpenSymphony Quartz Scheduler
	Using the JobDetailBean
	Using the MethodInvokingJobDetailFactoryBean
	Wiring up jobs using triggers and the SchedulerFactoryBean

	26.7 Using JDK Timer support
	Creating custom timers
	Using the MethodInvokingTimerTaskFactoryBean
	Wrapping up: setting up the tasks using the TimerFactoryBean

	27. Dynamic language support
	27.1 Introduction
	27.2 A first example
	27.3 Defining beans that are backed by dynamic languages
	Common concepts
	The <lang:language/> element
	Refreshable beans
	Inline dynamic language source files
	Understanding Constructor Injection in the context of dynamic-language-backed beans

	JRuby beans
	Groovy beans
	Customising Groovy objects via a callback

	BeanShell beans

	27.4 Scenarios
	Scripted Spring MVC Controllers
	Scripted Validators

	27.5 Bits and bobs
	AOP - advising scripted beans
	Scoping

	27.6 Further Resources

	28. Cache Abstraction
	28.1 Introduction
	28.2 Understanding the cache abstraction
	28.3 Declarative annotation-based caching
	@Cacheable annotation
	Default Key Generation
	Custom Key Generation Declaration
	Conditional caching
	Available caching SpEL evaluation context

	@CachePut annotation
	@CacheEvict annotation
	@Caching annotation
	Enable caching annotations
	Using custom annotations

	28.4 Declarative XML-based caching
	28.5 Configuring the cache storage
	JDK ConcurrentMap-based Cache
	Ehcache-based Cache
	Dealing with caches without a backing store

	28.6 Plugging-in different back-end caches
	28.7 How can I set the TTL/TTI/Eviction policy/XXX feature?

	Part VII. Appendices
	Appendix A. Classic Spring Usage
	A.1 Classic ORM usage
	Hibernate
	The HibernateTemplate
	Implementing Spring-based DAOs without callbacks

	JDO
	JdoTemplate and JdoDaoSupport

	JPA
	JpaTemplate and JpaDaoSupport

	A.2 Classic Spring MVC
	A.3 JMS Usage
	JmsTemplate
	Asynchronous Message Reception
	Connections
	Transaction Management

	Appendix B. Classic Spring AOP Usage
	B.1 Pointcut API in Spring
	Concepts
	Operations on pointcuts
	AspectJ expression pointcuts
	Convenience pointcut implementations
	Static pointcuts
	Regular expression pointcuts
	Attribute-driven pointcuts

	Dynamic pointcuts
	Control flow pointcuts

	Pointcut superclasses
	Custom pointcuts

	B.2 Advice API in Spring
	Advice lifecycles
	Advice types in Spring
	Interception around advice
	Before advice
	Throws advice
	After Returning advice
	Introduction advice

	B.3 Advisor API in Spring
	B.4 Using the ProxyFactoryBean to create AOP proxies
	Basics
	JavaBean properties
	JDK- and CGLIB-based proxies
	Proxying interfaces
	Proxying classes
	Using 'global' advisors

	B.5 Concise proxy definitions
	B.6 Creating AOP proxies programmatically with the ProxyFactory
	B.7 Manipulating advised objects
	B.8 Using the "autoproxy" facility
	Autoproxy bean definitions
	BeanNameAutoProxyCreator
	DefaultAdvisorAutoProxyCreator
	AbstractAdvisorAutoProxyCreator

	Using metadata-driven auto-proxying

	B.9 Using TargetSources
	Hot swappable target sources
	Pooling target sources
	Prototype target sources
	ThreadLocal target sources

	B.10 Defining new Advice types
	B.11 Further resources

	Appendix C. XML Schema-based configuration
	C.1 Introduction
	C.2 XML Schema-based configuration
	Referencing the schemas
	The util schema
	<util:constant/>
	Setting a bean property or constructor arg from a field value

	<util:property-path/>
	Using <util:property-path/> to set a bean property or constructor-argument

	<util:properties/>
	<util:list/>
	<util:map/>
	<util:set/>

	The jee schema
	<jee:jndi-lookup/> (simple)
	<jee:jndi-lookup/> (with single JNDI environment setting)
	<jee:jndi-lookup/> (with multiple JNDI environment settings)
	<jee:jndi-lookup/> (complex)
	<jee:local-slsb/> (simple)
	<jee:local-slsb/> (complex)
	<jee:remote-slsb/>

	The lang schema
	The jms schema
	The tx (transaction) schema
	The aop schema
	The context schema
	<property-placeholder/>
	<annotation-config/>
	<component-scan/>
	<load-time-weaver/>
	<spring-configured/>
	<mbean-export/>

	The tool schema
	The beans schema

	Appendix D. Extensible XML authoring
	D.1 Introduction
	D.2 Authoring the schema
	D.3 Coding a NamespaceHandler
	D.4 Coding a BeanDefinitionParser
	D.5 Registering the handler and the schema
	'META-INF/spring.handlers'
	'META-INF/spring.schemas'

	D.6 Using a custom extension in your Spring XML configuration
	D.7 Meatier examples
	Nesting custom tags within custom tags
	Custom attributes on 'normal' elements

	D.8 Further Resources

	Appendix E. spring-beans-2.0.dtd
	Appendix F. spring.tld
	F.1 Introduction
	F.2 The bind tag
	F.3 The escapeBody tag
	F.4 The hasBindErrors tag
	F.5 The htmlEscape tag
	F.6 The message tag
	F.7 The nestedPath tag
	F.8 The theme tag
	F.9 The transform tag
	F.10 The url tag
	F.11 The eval tag

	Appendix G. spring-form.tld
	G.1 Introduction
	G.2 The checkbox tag
	G.3 The checkboxes tag
	G.4 The errors tag
	G.5 The form tag
	G.6 The hidden tag
	G.7 The input tag
	G.8 The label tag
	G.9 The option tag
	G.10 The options tag
	G.11 The password tag
	G.12 The radiobutton tag
	G.13 The radiobuttons tag
	G.14 The select tag
	G.15 The textarea tag

