Spring Security Reference

Ben Alex, Luke Taylor, Rob Winch, Gunnar Hillert, Joe Grandja, Jay Bryant, Eddu
Meléndez, Josh Cummings, Dave Syer

Version 5.4.5

Table of Contents

Introduction
1. Prerequisites

2. Spring Security Community

2.1. Getting Help

2.2. Becoming Involved
2.3. Source Code

2.4. Apache 2 License
2.5. Social Media

3. What’s New in Spring Security 5.4

3.1. Documentation Updates
3.2. Logging Updates

3.3. Servlet

3.4. WebFlux

3.5. Additional Updates

3.6. Build Changes

4. Getting Spring Security

4.1. Release Numbering
4.2. Usage with Maven
4.3. Gradle

5. Features

5.1. Authentication
5.2. Protection Against Exploits

6. Project Modules and Dependencies

6.1. Core —spring-security-core.jar

6.2. Remoting — spring-security-remoting.jar

6.3. Web — spring-security-web.jar

6.4. Config — spring-security-config.jar

6.5. LDAP —spring-security-1ldap.jar

6.6. OAuth 2.0 Core — spring-security-oauth2-core.jar
6.7. OAuth 2.0 Client — spring-security-oauth2-client.jar
6.8. OAuth 2.0 JOSE — spring-security-oauth2-jose.jar
6.9. OAuth 2.0 Resource Server — spring-security-oauth2-resource-server.jar
6.10. ACL —spring-security-acl.jar

6.11. CAS—spring-security-cas.jar

6.12. OpenlID — spring-security-openid.jar

6.13. Test—spring-security-test.jar

6.14. Taglibs — spring-secuity-taglibs.jar

7. Samples

0 00 0 N O Ul Ul bR R R R R WM

S N N N e s e N N N
O© 3 39 9 o o o U g U1 b b W W NN DD gl gl e

Servlet Applications 50

8. Hello Spring Security 51
8.1. Updating Dependencies 51
8.2. Starting Hello Spring Security Boot 51
8.3. Spring Boot Auto Configuration 51

9. Servlet Security: The Big Picture 53
9.1. A Review of Filters 53
9.2. DelegatingFilterProxy 54
9.3. FilterChainProxy 56
9.4. SecurityFilterChain 57
9.5. Security Filters 59
9.6. Handling Security Exceptions 60

10. Authentication 63
10.1. SecurityContextHolder 64
10.2. SecurityContext 65
10.3. Authentication 66
10.4. GrantedAuthority 66
10.5. AuthenticationManager 66
10.6. ProviderManager 67
10.7. AuthenticationProvider 69
10.8. Request Credentials with AuthenticationEntryPoint 69
10.9. AbstractAuthenticationProcessingFilter 69
10.10. Username/Password Authentication 71
10.11. Session Management 107
10.12. Remember-Me Authentication 113
10.13. OpenlID Support 116
10.14. Anonymous Authentication 118
10.15. Pre-Authentication Scenarios 120
10.16. Java Authentication and Authorization Service (JAAS) Provider 123
10.17. CAS Authentication 127
10.18. X.509 Authentication 138
10.19. Run-As Authentication Replacement 140
10.20. Handling Logouts 141
10.21. Authentication Events 144

11. Authorization 148
11.1. Authorization Architecture 148
11.2. Authorize HttpServletRequest with FilterSecurityInterceptor 153
11.3. Expression-Based Access Control 156
11.4. Secure Object Implementations 168
11.5. Method Security 172

11.6. Domain Object Security (ACLS) 176

12. OAuth2 181

12.1. OAuth 2.0 Login 181
12.2. OAuth 2.0 Client 218
12.3. OAuth 2.0 Resource Server 270
13. SAML2 351
13.1. SAML 2.0 Login 351
14. Protection Against Exploits 377
14.1. Cross Site Request Forgery (CSRF) for Servlet Environments 377
14.2. Security HTTP Response Headers 387
14.3. HTTP 419
14.4. HttpFirewall 420
15. Integrations 427
15.1. Servlet API integration 427
15.2. Spring Data Integration 431
15.3. Concurrency Support 432
15.4. Jackson Support 436
15.5. Localization 436
15.6. Spring MVC Integration 437
15.7. WebSocket Security 445
15.8. CORS 454
15.9. JSP Tag Libraries 456
16. Java Configuration 461
16.1. Hello Web Security Java Configuration 461
16.2. HttpSecurity 464
16.3. Multiple HttpSecurity 464
16.4. Custom DSLs 466
16.5. Post Processing Configured Objects 467
17. Kotlin Configuration 469
17.1. HttpSecurity 469
17.2. Multiple HttpSecurity 469
18. Security Namespace Configuration 472
18.1. Introduction 472
18.2. Getting Started with Security Namespace Configuration 473
18.3. Advanced Web Features 4717
18.4. Method Security 479
18.5. The Default AccessDecisionManager 479
19. Testing 481
19.1. Testing Method Security 481
19.2. Spring MVC Test Integration 488
20. Spring Security Crypto Module 508

20.1. Introduction 508

20.2. Encryptors 508

20.3. Key Generators 510
20.4. Password Encoding 511
21. Appendix 513
21.1. Security Database Schema 513
21.2. The Security Namespace 521
21.3. Spring Security FAQ 559
Reactive Applications 575
22. WebFlux Security 576
22.1. Minimal WebFlux Security Configuration 576
22.2. Explicit WebFlux Security Configuration 577
23. Protection Against Exploits 580
23.1. Cross Site Request Forgery (CSRF) for WebFlux Environments 580
23.2. Security HTTP Response Headers 588
23.3. HTTP 600
24. OAuth2 WebFlux 603
24.1. OAuth 2.0 Login 603
24.2. OAuth2 Client 608
24.3. OAuth 2.0 Resource Server 609
25. @RegisteredOAuth2AuthorizedClient 656
26. Reactive X.509 Authentication 658
27. WebClient 660
27.1. WebClient OAuth2 Setup 660
27.2. Implicit OAuth2AuthorizedClient 661
27.3. Explicit OAuth2AuthorizedClient 662
27.4. clientRegistrationId 663
28. EnableReactiveMethodSecurity 665
29. Reactive Test Support 668
29.1. Testing Reactive Method Security 668
29.2. WebTestClientSupport 668
30. RSocket Security 683
30.1. Minimal RSocket Security Configuration 683
30.2. Adding SecuritySocketAcceptorInterceptor 683
30.3. RSocket Authentication 684

30.4. RSocket Authorization 687

Spring Security is a framework that provides authentication, authorization, and
protection against common attacks. With first class support for both imperative
and reactive applications, it is the de-facto standard for securing Spring-based
applications.

Introduction

This section discusses the logistics of Spring Security.

Chapter 1. Prerequisites

Spring Security requires a Java 8 or higher Runtime Environment.

As Spring Security aims to operate in a self-contained manner, you do not need to place any special
configuration files in your Java Runtime Environment. In particular, you need not configure a
special Java Authentication and Authorization Service (JAAS) policy file or place Spring Security
into common classpath locations.

Similarly, if you use an EJB Container or Servlet Container, you need not put any special
configuration files anywhere nor include Spring Security in a server classloader. All the required
files are contained within your application.

This design offers maximum deployment time flexibility, as you can copy your target artifact (be it a
JAR, WAR, or EAR) from one system to another and it immediately works.

Chapter 2. Spring Security Community

Welcome to the Spring Security Community! This section discusses how you can make the most of
our vast community.

2.1. Getting Help

If you need help with Spring Security, we are here to help. The following are some of the best ways
to get help:

* Read through this documentation.
* Try one of our many sample applications.
» Ask a question on https://stackoverflow.com with the spring-security tag.

* Report bugs and enhancement requests at https://github.com/spring-projects/spring-security/
issues

2.2. Becoming Involved

We welcome your involvement in the Spring Security project. There are many ways to contribute,
including answering questions on Stack Overflow, writing new code, improving existing code,
assisting with documentation, developing samples or tutorials, reporting bugs, or simply making
suggestions. For more information, see our Contributing documentation.

2.3. Source Code

You can find Spring Security’s source code on GitHub at https://github.com/spring-projects/spring-
security/

2.4. Apache 2 License

Spring Security is Open Source software released under the Apache 2.0 license.

2.5. Social Media

You can follow @SpringSecurity and the Spring Security team on Twitter to stay up to date with the
latest news. You can also follow @SpringCentral to keep up to date with the entire Spring portfolio.

https://stackoverflow.com/questions/tagged/spring-security
https://github.com/spring-projects/spring-security/issues
https://github.com/spring-projects/spring-security/issues
https://github.com/spring-projects/spring-security/blob/master/CONTRIBUTING.adoc
https://github.com/spring-projects/spring-security/
https://github.com/spring-projects/spring-security/
https://www.apache.org/licenses/LICENSE-2.0.html
https://twitter.com/SpringSecurity
https://twitter.com/SpringSecurity/lists/team
https://twitter.com/SpringCentral

Chapter 3. What’s New in Spring Security 5.4

Spring Security 5.4 provides a number of new features. Below are the highlights of the release.

3.1. Documentation Updates

We will continue our effort to rewrite the documentation.
Here’s what you’ll see in this release:

* Added OAuth 2.0 Resource Server diagrams for JWT and Opaque Token

* Restructured SAML 2.0 Relying Party documentation and added diagrams

3.2. Logging Updates

We have begun an effort to restructure our logging.
Here’s what you’ll see in this release:

* Restructured authorization logs
* Restructured Form Login and HTTP Basic authentication logs

* Added Resource Server logs

3.3. Servlet

* Configuration

> Added support for publishing SecurityFilterChain as a @Bean
* Kotlin DSL

o Added authenticationManagerResolver

o Added hasAnyRole and hasAnyAuthority

o Added custom HeaderWriter support

o Updated to use reified types

o Added authorize() method that accepts HttpMethod
* OAuth 2.0 Client

o Polished OAuth 2.0 Client test support to not require
HttpSessionOAuth2AuthorizedClientRepository bean

o Added support for client ID and secret placeholders in XML support

o Refined ClientRegistrations to not default scopes to the OIDC scopes_supported attribute

> Allow for custom Client Authentication Method in ClientRegistration

an

o Enhanced OAuth2AuthorizedClientArgumentResolver to pick up OAuth2Authorized(ClientManager

from the application context

https://github.com/spring-projects/spring-security/commit/fa7baf551dc55eab50b9ad94720e7521f0b1d26f
https://github.com/spring-projects/spring-security/commit/fa7baf551dc55eab50b9ad94720e7521f0b1d26f
https://github.com/spring-projects/spring-security/commit/02d1516c566a58574af0a1d0391fd2ec8c5ad774
https://github.com/spring-projects/spring-security/commit/bf067d679fb5990d6b3d31cee292af171f8a5014
https://github.com/spring-projects/spring-security/commit/b2728059ae903d027d0da0f4a25bed6df213a0ce
https://github.com/spring-projects/spring-security/issues/8804
https://github.com/spring-projects/spring-security/issues/8804
https://github.com/spring-projects/spring-security/issues/8804
https://github.com/spring-projects/spring-security/issues/8804
https://github.com/spring-projects/spring-security/issues/8981
https://github.com/spring-projects/spring-security/issues/8892
https://github.com/spring-projects/spring-security/issues/8892
https://github.com/spring-projects/spring-security/issues/8892
https://github.com/spring-projects/spring-security/issues/8823
https://github.com/spring-projects/spring-security/issues/8697
https://github.com/spring-projects/spring-security/pull/8350
https://github.com/spring-projects/spring-security/pull/8350
https://github.com/spring-projects/spring-security/pull/8350
https://github.com/spring-projects/spring-security/issues/8453
https://github.com/spring-projects/spring-security/issues/8514
https://github.com/spring-projects/spring-security/issues/8514
https://github.com/spring-projects/spring-security/issues/8514
https://github.com/spring-projects/spring-security/issues/8903
https://github.com/spring-projects/spring-security/issues/8700
https://github.com/spring-projects/spring-security/issues/8700
https://github.com/spring-projects/spring-security/issues/8700
https://github.com/spring-projects/spring-security/issues/8700

o Added OAuth2AuthorizedClientArgumentResolver support to XML config
o Added RequestCache support to OAuth2AuthorizationCodeGrantFilter
o Added issuerUri to ClientRegistration
* OAuth 2.0 Resource Server
o Added caching support in NimbusJwtDecoder
o Made principal claim configurable in JwtAuthenticationConverter
o Enhanced configuration to pick up JwtAuthenticationConverter as a @Bean
o Simplified attribute retrieval for opaque token
* SAML 2.0
o Made Open SAML AuthnRequest construction configurable
- Enhanced AuthnRequest construction to access HttpServletRequest data
o Opened Saml2AuthenticationRequestContext for extension
o Enhanced Saml2AuthenticatedPrincipal to include <saml2:AttributeStatement>

o Enhanced OpenSamlAuthenticationProvider to support customizing the Authentication
returned

o Enhanced OpenSamlAuthenticationProvider to support customizing <saml2:Assertion>
validation

> Added support for resolving the RelyingPartyRegistration from the request

o Added an initialization service to supercede Open SAML’s InitializationService
o Added a SAML 2.0 Metadata Filter

o Simplified Sam12X509Credential construction

o Restructured RelyingPartyRegistration to separate relying and asserting party
configurations

o Added configuration by Asserting Party Metadata endpoint

o Restructured RelyingPartyRegistration to reflect metadata terminology
* LDAP

> Added support for configuring ApacheDSContainer with a random port

> Added support for configuring application with a random port
* CSRF

o Made the secure flag configurable

3.4. WebFlux

e Added Kotlin DSL for WebFlux
» Added AuthoritiesMapper configuration to OAuth 2.0 Login
¢ Added SwitchUserWebFilter

https://github.com/spring-projects/spring-security/issues/8669
https://github.com/spring-projects/spring-security/issues/8669
https://github.com/spring-projects/spring-security/issues/8120
https://github.com/spring-projects/spring-security/issues/8326
https://github.com/spring-projects/spring-security/issues/8326
https://github.com/spring-projects/spring-security/issues/8326
https://github.com/spring-projects/spring-security/issues/8186
https://github.com/spring-projects/spring-security/issues/8186
https://github.com/spring-projects/spring-security/pull/8740
https://github.com/spring-projects/spring-security/issues/8144
https://github.com/spring-projects/spring-security/issues/8138
https://github.com/spring-projects/spring-security/pull/8749
https://github.com/spring-projects/spring-security/pull/8749
https://github.com/spring-projects/spring-security/issues/5558
https://github.com/spring-projects/spring-security/issues/8324
https://github.com/spring-projects/spring-security/issues/8324
https://github.com/spring-projects/spring-security/issues/8599

3.5. Additional Updates

* Renamed whitelist and blacklist to allowlist and blocklist

* Added RequestRejectedHandler

» Strengthened StrictHttpFirewall to verify header and parameter names and values
* Made SessionRegistry aware of SessionIdChangedEvent

» Allow AesBytesEncryptor to be constructed with a real key

* Deprecated OpenID 2.0 support

3.6. Build Changes

* Improved performance further

https://github.com/spring-projects/spring-security/issues/8676
https://github.com/spring-projects/spring-security/pull/7052
https://github.com/spring-projects/spring-security/pull/8644
https://github.com/spring-projects/spring-security/issues/5438
https://github.com/spring-projects/spring-security/issues/5438
https://github.com/spring-projects/spring-security/issues/5438
https://github.com/spring-projects/spring-security/issues/8402
https://github.com/spring-projects/spring-security/issues/8402
https://github.com/spring-projects/spring-security/pull/8450
https://github.com/spring-projects/spring-security/issues/8113

Chapter 4. Getting Spring Security

This section discusses all you need to know about getting the Spring Security binaries. See Source
Code for how to obtain the source code.

4.1. Release Numbering
Spring Security versions are formatted as MAJOR.MINOR.PATCH such that:

* MAJOR versions may contain breaking changes. Typically, these are done to provide improved
security to match modern security practices.

* MINOR versions contain enhancements but are considered passive updates

* PATCH level should be perfectly compatible, forwards and backwards, with the possible
exception of changes that fix bugs.

4.2. Usage with Maven

As most open source projects, Spring Security deploys its dependencies as Maven artifacts. The
topics in this section provide detail on how to consume Spring Security when using Maven.

4.2.1. Spring Boot with Maven

Spring Boot provides a spring-boot-starter-security starter that aggregates Spring Security-related
dependencies together. The simplest and preferred way to use the starter is to use Spring Initializr
by using an IDE integration (Eclipse, Intelli], NetBeans) or through https://start.spring.io.

Alternatively, you can manually add the starter, as the following example shows:

Example 1. pom.xml

<dependencies>
<!-- ... other dependency elements ... -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>
</dependencies>

Since Spring Boot provides a Maven BOM to manage dependency versions, you do not need to
specify a version. If you wish to override the Spring Security version, you may do so by providing a
Maven property, as the following example shows:

https://docs.spring.io/initializr/docs/current/reference/htmlsingle/
https://joshlong.com/jl/blogPost/tech_tip_geting_started_with_spring_boot.html
https://www.jetbrains.com/help/idea/spring-boot.html#d1489567e2
https://github.com/AlexFalappa/nb-springboot/wiki/Quick-Tour
https://start.spring.io

Example 2. pom.xml

<properties>
== =20
<spring-security.version>5.4.5</spring-security.version>
</dependencies>

Since Spring Security makes breaking changes only in major releases, it is safe to use a newer
version of Spring Security with Spring Boot. However, at times, you may need to update the version
of Spring Framework as well. You can do so by adding a Maven property, as the following example
shows:

Example 3. pom.xml

<properties>
== ==2
<spring.version>5.2.13.RELEASE</spring.version>
</dependencies>

If you use additional features (such as LDAP, OpenID, and others), you need to also include the
appropriate Project Modules and Dependencies.

4.2.2. Maven Without Spring Boot

When you use Spring Security without Spring Boot, the preferred way is to use Spring Security’s
BOM to ensure a consistent version of Spring Security is used throughout the entire project. The
following example shows how to do so:

Example 4. pom.xml

<dependencyManagement>
<dependencies>
<!-- ... other dependency elements ... -->
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-bom</artifactId>
<version>{spring-security-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

A minimal Spring Security Maven set of dependencies typically looks like the following:

Example 5. pom.xml

<dependencies>
<!-- ... other dependency elements ... -->
<dependency>
<groupId>org.springframework.security</groupld>
<artifactId>spring-security-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>
</dependency>
</dependencies>

If you use additional features (such as LDAP, OpenID, and others), you need to also include the
appropriate Project Modules and Dependencies.

Spring Security builds against Spring Framework 5.2.13.RELEASE but should generally work with
any newer version of Spring Framework 5.x. Many users are likely to run afoul of the fact that
Spring Security’s transitive dependencies resolve Spring Framework 5.2.13.RELEASE, which can
cause strange classpath problems. The easiest way to resolve this is to use the spring-framework-bom
within the <dependencyManagement> section of your pom.xml as the following example shows:

Example 6. pom.xml

<dependencyManagement>
<dependencies>
<!-- ... other dependency elements ... -->
<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-framework-bom</artifactId>
<version>5.2.13.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

The preceding example ensures that all the transitive dependencies of Spring Security use the
Spring 5.2.13.RELEASE modules.
This approach uses Maven’s “bill of materials” (BOM) concept and is only available

o in Maven 2.0.9+. For additional details about how dependencies are resolved, see
Maven’s Introduction to the Dependency Mechanism documentation.

10

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

4.2.3. Maven Repositories

All GA releases (that is, versions ending in .RELEASE) are deployed to Maven Central, so no
additional Maven repositories need to be declared in your pom.

If you use a SNAPSHOT version, you need to ensure that you have the Spring Snapshot repository
defined, as the following example shows:

Example 7. pom.xml

<repositories>
<!-- ... possibly other repository elements ... -->
<repository>
<id>spring-snapshot</id>
<name>Spring Snapshot Repository</name>
<url>https://repo.spring.io/snapshot</url>
</repository>
</repositories>

If you use a milestone or release candidate version, you need to ensure that you have the Spring
Milestone repository defined, as the following example shows:

Example 8. pom.xml

<repositories>
<!-- ... possibly other repository elements ... -->
<repository>
<id>spring-milestone</id>
<name>Spring Milestone Repository</name>
<url>https://repo.spring.io/milestone</url>
</repository>
</repositories>

4.3. Gradle

As most open source projects, Spring Security deploys its dependencies as Maven artifacts, which
allows for first-class Gradle support. The following topics provide detail on how to consume Spring
Security when using Gradle.

4.3.1. Spring Boot with Gradle

Spring Boot provides a spring-boot-starter-security starter that aggregates Spring Security related
dependencies together. The simplest and preferred method to use the starter is to use Spring
Initializr by using an IDE integration (Eclipse, Intelli], NetBeans) or through https://start.spring.io.

Alternatively, you can manually add the starter, as the following example shows:

11

https://docs.spring.io/initializr/docs/current/reference/htmlsingle/
https://docs.spring.io/initializr/docs/current/reference/htmlsingle/
https://joshlong.com/jl/blogPost/tech_tip_geting_started_with_spring_boot.html
https://www.jetbrains.com/help/idea/spring-boot.html#d1489567e2
https://github.com/AlexFalappa/nb-springboot/wiki/Quick-Tour
https://start.spring.io

Example 9. build.gradle

dependencies {
compile "org.springframework.boot:spring-boot-starter-security"

}

Since Spring Boot provides a Maven BOM to manage dependency versions, you need not specify a
version. If you wish to override the Spring Security version, you may do so by providing a Gradle
property, as the following example shows:

Example 10. build.gradle

ext['spring-security.version']='5.4.5"

Since Spring Security makes breaking changes only in major releases, it is safe to use a newer
version of Spring Security with Spring Boot. However, at times, you may need to update the version
of Spring Framework as well. You can do so by adding a Gradle property, as the following example
shows:

Example 11. build.gradle

ext["'spring.version']='5.2.13.RELEASE'

If you use additional features (such as LDAP, OpenID, and others), you need to also include the
appropriate Project Modules and Dependencies.

4.3.2. Gradle Without Spring Boot

When you use Spring Security without Spring Boot, the preferred way is to use Spring Security’s
BOM to ensure a consistent version of Spring Security is used throughout the entire project. You can
do so by using the Dependency Management Plugin, as the following example shows:

12

https://github.com/spring-gradle-plugins/dependency-management-plugin

Example 12. build.gradle

plugins {
id "io.spring.dependency-management"” version "1.0.6.RELEASE"

}

dependencyManagement {
imports {
mavenBom 'org.springframework.security:spring-security-bom:5.4.5"

}

A minimal Spring Security Maven set of dependencies typically looks like the following:

Example 13. build.gradle

dependencies {
compile "org.springframework.security:spring-security-web"
compile "org.springframework.security:spring-security-config"

If you use additional features (such as LDAP, OpenID, and others), you need to also include the
appropriate Project Modules and Dependencies.

Spring Security builds against Spring Framework 5.2.13.RELEASE but should generally work with
any newer version of Spring Framework 5.x. Many users are likely to run afoul of the fact that
Spring Security’s transitive dependencies resolve Spring Framework 5.2.13.RELEASE, which can
cause strange classpath problems. The easiest way to resolve this is to use the spring-framework-bom
within your <dependencyManagement> section of your pom.xml. You can do so by using the Dependency
Management Plugin, as the following example shows:

Example 14. build.gradle
plugins {

id "io.spring.dependency-management" version "1.0.6.RELEASE"

}

dependencyManagement {
imports {
mavenBom 'org.springframework:spring-framework-bom:5.2.13.RELEASE'

}

The preceding example ensures that all the transitive dependencies of Spring Security use the

13

https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin

Spring 5.2.13.RELEASE modules.

4.3.3. Gradle Repositories

All GA releases (that is, versions ending in .RELEASE) are deployed to Maven Central, so using the
mavenCentral() repository is sufficient for GA releases. The following example shows how to do so:

Example 15. build.gradle
repositories {

mavenCentral()

}

If you use a SNAPSHOT version, you need to ensure you have the Spring Snapshot repository
defined, as the following example shows:

Example 16. build.gradle

repositories {
maven { url 'https://repo.spring.io/snapshot’ }

}

If you use a milestone or release candidate version, you need to ensure that you have the Spring
Milestone repository defined, as the following example shows:

Example 17. build.gradle

repositories {
maven { url 'https://repo.spring.io/milestone’ }

}

14

Chapter 5. Features

Spring Security provides comprehensive support for authentication, authorization, and protection
against common exploits. It also provides integration with other libraries to simplify its usage.

5.1. Authentication

Spring Security provides comprehensive support for authentication. Authentication is how we
verify the identity of who is trying to access a particular resource. A common way to authenticate
users is by requiring the user to enter a username and password. Once authentication is performed
we know the identity and can perform authorization.

5.1.1. Authentication Support

Spring Security provides built in support for authenticating users. Refer to the sections on
authentication for Servlet and WebFlux for details on what is supported for each stack.

5.1.2. Password Storage

Spring Security’s PasswordEncoder interface is used to perform a one way transformation of a
password to allow the password to be stored securely. Given PasswordEncoder is a one way
transformation, it is not intended when the password transformation needs to be two way (i.e.
storing credentials used to authenticate to a database). Typically PasswordEncoder is used for storing
a password that needs to be compared to a user provided password at the time of authentication.

Password Storage History

Throughout the years the standard mechanism for storing passwords has evolved. In the beginning
passwords were stored in plain text. The passwords were assumed to be safe because the data store
the passwords were saved in required credentials to access it. However, malicious users were able
to find ways to get large "data dumps" of usernames and passwords using attacks like SQL Injection.
As more and more user credentials became public security experts realized we needed to do more
to protect users' passwords.

Developers were then encouraged to store passwords after running them through a one way hash
such as SHA-256. When a user tried to authenticate, the hashed password would be compared to
the hash of the password that they typed. This meant that the system only needed to store the one
way hash of the password. If a breach occurred, then only the one way hashes of the passwords
were exposed. Since the hashes were one way and it was computationally difficult to guess the
passwords given the hash, it would not be worth the effort to figure out each password in the
system. To defeat this new system malicious users decided to create lookup tables known as
Rainbow Tables. Rather than doing the work of guessing each password every time, they computed
the password once and stored it in a lookup table.

To mitigate the effectiveness of Rainbow Tables, developers were encouraged to use salted
passwords. Instead of using just the password as input to the hash function, random bytes (known
as salt) would be generated for every users' password. The salt and the user’s password would be
ran through the hash function which produced a unique hash. The salt would be stored alongside

15

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Rainbow_table

the user’s password in clear text. Then when a user tried to authenticate, the hashed password
would be compared to the hash of the stored salt and the password that they typed. The unique salt
meant that Rainbow Tables were no longer effective because the hash was different for every salt
and password combination.

In modern times we realize that cryptographic hashes (like SHA-256) are no longer secure. The
reason is that with modern hardware we can perform billions of hash calculations a second. This
means that we can crack each password individually with ease.

Developers are now encouraged to leverage adaptive one-way functions to store a password.
Validation of passwords with adaptive one-way functions are intentionally resource (i.e. CPU,
memory, etc) intensive. An adaptive one-way function allows configuring a "work factor" which can
grow as hardware gets better. It is recommended that the "work factor" be tuned to take about 1
second to verify a password on your system. This trade off is to make it difficult for attackers to
crack the password, but not so costly it puts excessive burden on your own system. Spring Security
has attempted to provide a good starting point for the "work factor", but users are encouraged to
customize the "work factor" for their own system since the performance will vary drastically from
system to system. Examples of adaptive one-way functions that should be used include bcrypt,
PBKDF2, scrypt, and argon2.

Because adaptive one-way functions are intentionally resource intensive, validating a username
and password for every request will degrade performance of an application significantly. There is
nothing Spring Security (or any other library) can do to speed up the validation of the password
since security is gained by making the validation resource intensive. Users are encouraged to
exchange the long term credentials (i.e. username and password) for a short term credential (i.e.
session, OAuth Token, etc). The short term credential can be validated quickly without any loss in
security.

DelegatingPasswordEncoder

Prior to Spring Security 5.0 the default PasswordEncoder was NoOpPasswordEncoder which required
plain text passwords. Based upon the Password History section you might expect that the default
PasswordEncoder is now something like BCryptPasswordEncoder. However, this ignores three real
world problems:

» There are many applications using old password encodings that cannot easily migrate

» The best practice for password storage will change again.

* As a framework Spring Security cannot make breaking changes frequently
Instead Spring Security introduces DelegatingPasswordEncoder which solves all of the problems by:

* Ensuring that passwords are encoded using the current password storage recommendations
» Allowing for validating passwords in modern and legacy formats

» Allowing for upgrading the encoding in the future

You can easily construct an instance of DelegatingPasswordEncoder using PasswordEncoderFactories.

16

Example 18. Create Default DelegatingPasswordEncoder
Java

PasswordEncoder passwordEncoder =
PasswordEncoderFactories.createDelegatingPasswordEncoder();

Kotlin

val passwordEncoder: PasswordEncoder =
PasswordEncoderFactories.createDelegatingPasswordEncoder()

Alternatively, you may create your own custom instance. For example:

Example 19. Create Custom DelegatingPasswordEncoder
Java

String idForEncode = "berypt";

Map encoders = new HashMap<>();
encoders.put(idForEncode, new BCryptPasswordEncoder());
encoders.put("noop", NoOpPasswordEncoder.getInstance());
encoders.put("pbkdf2", new Pbkdf2PasswordEncoder());
encoders.put("scrypt", new SCryptPasswordEncoder());
encoders.put("sha256", new StandardPasswordEncoder());

PasswordEncoder passwordEncoder =
new DelegatingPasswordEncoder(idForEncode, encoders);

Kotlin

val idForEncode = "berypt"

val encoders: MutableMap<String, PasswordEncoder> = mutableMapOf()
encoders[idForEncode] = BCryptPasswordEncoder()

encoders["noop"] = NoOpPasswordEncoder.getInstance()
encoders["pbkdf2"] = Pbkdf2PasswordEncoder()

encoders["scrypt"] = SCryptPasswordEncoder ()

encoders["sha256"] = StandardPasswordEncoder()

val passwordEncoder: PasswordEncoder = DelegatingPasswordEncoder(idForEncode,
encoders)

Password Storage Format

The general format for a password is:

Example 20. DelegatingPasswordEncoder Storage Format

{id}encodedPassword

Such that id is an identifier used to look up which PasswordEncoder should be used and
encodedPassword is the original encoded password for the selected PasswordEncoder. The id must be at
the beginning of the password, start with { and end with }. If the id cannot be found, the id will be
null. For example, the following might be a list of passwords encoded using different id. All of the
original passwords are "password".

Example 21. DelegatingPasswordEncoder Encoded Passwords Example

{berypt}$2a$10$dXI3SW667P501GmMkkmwe . 20cQQubK3 . HZWzG3YB1t1Ry. fquM/BE @

{noop}password @
{pbkdf2}5d923b44a6d129f3ddf3e3c8d29412723dcbde72445e8efbbf3b508fbf17faded4dbb99ca’

63d8dc @
{scrypt}$e0801$8bW1aSu2IKSn979kM+TPXf0c/9bdYSrN10D9qfVThWEWdRTnO7re7Ei+fUZRI68KITT
yuTeUp4of4g24hHnazw==$0A0ec@5+bXxvuu/1qZ6NUR+xQYvYv7BeL1QxwRpY5Pc= @
{sha256}97cde38028ad898ebc02e690819fa220e88c62e0699403e94fff291cfffaf8410849f27605
abcbcd ®

® The first password would have a PasswordEncoder id of berypt and encodedPassword of
$2a$10$dXJ13SW6G7P5016GmMkkmwe . 20cQQubK3.HZWzG3YBTt1Ry.fquM/BG. When matching it would
delegate to BCryptPasswordEncoder

@ The second password would have a PasswordEncoder id of noop and encodedPassword of password.
When matching it would delegate to NoOpPasswordEncoder

® The third password would have a PasswordEncoder id of pbkdf2 and encodedPassword of
5d923b4436d129f3ddf3e3c8d29412723dcbde72445e8efobf3b508fbf17faded4d6b99ca763d8dc. When
matching it would delegate to Pbkdf2PasswordEncoder

@ The fourth password would have a PasswordEncoder id of scrypt and encodedPassword of
$e0801$8bWIaSu2IKSn9Z9kM+TPXf0c/9bdYSrN10D9qfVThWEwdRTn07re7Ei+fUZRI68kI1TyuTeUpdof4g24hHnaz

w==$0A0ec@5+bXxvuu/1qZ6NUR+xQYvYv7BeL1QxwRpY5Pc= When matching it would delegate to
SCryptPasswordEncoder

® The final password would have a PasswordEncoder id of sha256 and encodedPassword of
97cde38028ad898ebc02e690819fa220e88c62e0699403e94fff291cfffaf8410849f27605abcbcO. When
matching it would delegate to StandardPasswordEncoder

Some users might be concerned that the storage format is provided for a potential
o hacker. This is not a concern because the storage of the password does not rely on
the algorithm being a secret. Additionally, most formats are easy for an attacker to
figure out without the prefix. For example, BCrypt passwords often start with $2a$.

18

Password Encoding

The idForEncode passed into the constructor determines which PasswordEncoder will be used for
encoding passwords. In the DelegatingPasswordEncoder we constructed above, that means that the
result of encoding password would be delegated to BCryptPasswordEncoder and be prefixed with
{bcrypt}. The end result would look like:

Example 22. DelegatingPasswordEncoder Encode Example

{berypt}$2a$10$dXI3SW667P501GmMkkmwe . 20cQQubK3 . HZWzG3YB1t1Ry. fquM/BG

Password Matching

Matching is done based upon the {id} and the mapping of the id to the PasswordEncoder provided in
the constructor. Our example in Password Storage Format provides a working example of how this
is done. By default, the result of invoking matches(CharSequence, String) with a password and an id
that is not mapped (including a null id) will result in an I1legalArgumentException. This behavior
can be customized using
DelegatingPasswordEncoder.setDefaultPasswordEncoderForMatches(PasswordEncoder).

By using the id we can match on any password encoding, but encode passwords using the most
modern password encoding. This is important, because unlike encryption, password hashes are
designed so that there is no simple way to recover the plaintext. Since there is no way to recover
the plaintext, it makes it difficult to migrate the passwords. While it is simple for users to migrate
NoOpPasswordEncoder, we chose to include it by default to make it simple for the getting started
experience.

Getting Started Experience

If you are putting together a demo or a sample, it is a bit cumbersome to take time to hash the
passwords of your users. There are convenience mechanisms to make this easier, but this is still not
intended for production.

19

Example 23. withDefaultPasswordEncoder Example
Java

User user = User.withDefaultPasswordEncoder()
.username("user")
.password("password")
.roles("user")
.build();
System.out.println(user.getPassword());
// {bcrypt}$2a$10$dX13SW6G7P501GmMkkmwe .20cQQubK3.HZWzG3YB1t1Ry. fquM/BG

Kotlin

val user = User.withDefaultPasswordEncoder()
.username("user")
.password("password")
.roles("user")
.build()
println(user.password)
// {bcrypt}$2a$10$dX13SW6G7P501GmMkkmwe .20cQQubK3.HZWzG3YB1t1Ry. fquM/BG

If you are creating multiple users, you can also reuse the builder.

20

Example 24. withDefaultPasswordEncoder Reusing the Builder
Java

UserBuilder users = User.withDefaultPasswordEncoder();

User user = users
.username("user")
.password("password")
.roles("USER")
.build();

User admin = users
.username("admin")
.password("password")
.roles("USER", "ADMIN")
.build();

Kotlin

val users = User.withDefaultPasswordEncoder ()

val user = users
.username("user")
.password("password")
.roles("USER")
.build()

val admin = users
.username("admin")
.password("password")
.roles("USER", "ADMIN")
.build()

This does hash the password that is stored, but the passwords are still exposed in memory and in
the compiled source code. Therefore, it is still not considered secure for a production environment.
For production, you should hash your passwords externally.

Encode with Spring Boot CLI
The easiest way to properly encode your password is to use the Spring Boot CLI.

For example, the following will encode the password of password for wuse with
DelegatingPasswordEncoder:

Example 25. Spring Boot CLI encodepassword Example

spring encodepassword password
{bcrypt}$2a$108$X5wFBtLrL/kHemrOGGTrGufsBX8CIOWpQpF3pgeuxBB/H73BK1DW6

21

https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-cli.html

Troubleshooting

The following error occurs when one of the passwords that are stored has no id as described in
Password Storage Format.

java.lang.I1llegalArgumentException: There is no PasswordEncoder mapped for the id
“null"

at
org.springframework.security.crypto.password.DelegatingPasswordEncoder$UnmappedIdPassw
ordEncoder.matches(DelegatingPasswordEncoder.java:233)

at
org.springframework.security.crypto.password.DelegatingPasswordEncoder.matches(Delegat
ingPasswordEncoder.java:196)

The easiest way to resolve the error is to switch to explicitly provide the PasswordEncoder that you
passwords are encoded with. The easiest way to resolve it is to figure out how your passwords are
currently being stored and explicitly provide the correct PasswordEncoder.

If you are migrating from Spring Security 4.2.X you can revert to the previous behavior by exposing
a NoOpPasswordEncoder bean.

Alternatively, you can prefix all of your passwords with the correct id and continue to use
DelegatingPasswordEncoder. For example, if you are using BCrypt, you would migrate your password
from something like:

$2a$10$dX13SW6G7P501GmMkkmwe . 20cQQubK3 . HZWzG3YB1t1Ry. fquM/BG

to

{berypt}$2a$10$dXI3SW6G7P501GmMkkmwe . 20cQQubK3 . HZWzG3YB1t1Ry . fqui/BG

For a complete listing of the mappings refer to the Javadoc on PasswordEncoderFactories.

BCryptPasswordEncoder

The BCryptPasswordEncoder implementation uses the widely supported bcrypt algorithm to hash the
passwords. In order to make it more resistent to password cracking, bcrypt is deliberately slow.
Like other adaptive one-way functions, it should be tuned to take about 1 second to verify a
password on your system. The default implementation of BCryptPasswordEncoder uses strength 10 as
mentioned in the Javadoc of BCryptPasswordEncoder. You are encouraged to tune and test the
strength parameter on your own system so that it takes roughly 1 second to verify a password.

22

https://docs.spring.io/spring-security/site/docs/5.0.x/api/org/springframework/security/crypto/factory/PasswordEncoderFactories.html
https://en.wikipedia.org/wiki/Bcrypt
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html

Example 26. BCryptPasswordEncoder
Java

// Create an encoder with strength 16

BCryptPasswordEncoder encoder = new BCryptPasswordEncoder(16);
String result = encoder.encode("myPassword");
assertTrue(encoder.matches("myPassword", result));

Kotlin

// Create an encoder with strength 16

val encoder = BCryptPasswordEncoder(16)

val result: String = encoder.encode("myPassword")
assertTrue(encoder.matches("myPassword", result))

Argon2PasswordEncoder

The Argon2PasswordEncoder implementation uses the Argon2 algorithm to hash the passwords.
Argon2 is the winner of the Password Hashing Competition. In order to defeat password cracking
on custom hardware, Argon2 is a deliberately slow algorithm that requires large amounts of
memory. Like other adaptive one-way functions, it should be tuned to take about 1 second to verify
a password on your system. The current implementation of the Argon2PasswordEncoder requires

BouncyCastle.

Example 27. Argon2PasswordEncoder
Java

// Create an encoder with all the defaults
Argon2PasswordEncoder encoder = new Argon2PasswordEncoder();
String result = encoder.encode("myPassword");
assertTrue(encoder.matches("myPassword", result));

Kotlin

// Create an encoder with all the defaults

val encoder = Argon2PasswordEncoder()

val result: String = encoder.encode("myPassword")
assertTrue(encoder.matches("myPassword", result))

Pbkdf2PasswordEncoder

The Pbkdf2PasswordEncoder implementation uses the PBKDF2 algorithm to hash the passwords. In
order to defeat password cracking PBKDF2 is a deliberately slow algorithm. Like other adaptive
one-way functions, it should be tuned to take about 1 second to verify a password on your system.

https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Password_Hashing_Competition
https://en.wikipedia.org/wiki/PBKDF2

This algorithm is a good choice when FIPS certification is required.

Example 28. Pbkdf2PasswordEncoder
Java

// Create an encoder with all the defaults

Pbkdf2PasswordEncoder encoder = new Pbkdf2PasswordEncoder();

String result = encoder.encode("myPassword");
assertTrue(encoder.matches("myPassword", result));

Kotlin

// Create an encoder with all the defaults

val encoder = Pbkdf2PasswordEncoder()

val result: String = encoder.encode("myPassword")
assertTrue(encoder.matches("myPassword", result))

SCryptPasswordEncoder

The SCryptPasswordEncoder implementation uses scrypt algorithm to hash the passwords. In order to
defeat password cracking on custom hardware scrypt is a deliberately slow algorithm that requires
large amounts of memory. Like other adaptive one-way functions, it should be tuned to take about 1

second to verify a password on your system.

Example 29. SCryptPasswordEncoder
Java

// Create an encoder with all the defaults

SCryptPasswordEncoder encoder = new SCryptPasswordEncoder();

String result = encoder.encode("myPassword");
assertTrue(encoder.matches("myPassword", result));

Kotlin

// Create an encoder with all the defaults

val encoder = SCryptPasswordEncoder()

val result: String = encoder.encode("myPassword")
assertTrue(encoder.matches("myPassword", result))

Other PasswordEncoders

There are a significant number of other PasswordEncoder implementations that exist entirely for
backward compatibility. They are all deprecated to indicate that they are no longer considered
secure. However, there are no plans to remove them since it is difficult to migrate existing legacy

24

https://en.wikipedia.org/wiki/Scrypt

systems.

Password Storage Configuration

Spring Security uses DelegatingPasswordEncoder by default. However, this can be customized by
exposing a PasswordEncoder as a Spring bean.

If you are migrating from Spring Security 4.2.X you can revert to the previous behavior by exposing
a NoOpPasswordEncoder bean.

a Reverting to NoOpPasswordEncoder is not considered to be secure. You should instead
migrate to using DelegatingPasswordEncoder to support secure password encoding.

Example 30. NoOpPasswordEncoder
Java

@Bean
public static NoOpPasswordEncoder passwordEncoder() {
return NoOpPasswordEncoder.getInstance();

}

XML

<b:bean id="passwordEncoder"
class="org.springframework.security.crypto.password.NoOpPasswordEncoder"
factory-method="getInstance"/>

Kotlin

@Bean
fun passwordEncoder(): PasswordEncoder {
return NoOpPasswordEncoder.getInstance();

}

o XML Configuration requires the NoOpPasswordEncoder bean name to be
passwordEncoder.

5.2. Protection Against Exploits

Spring Security provides protection against common exploits. Whenever possible, the protection is
enabled by default. Below you will find high level description of the various exploits that Spring
Security protects against.

25

5.2.1. Cross Site Request Forgery (CSRF)

Spring provides comprehensive support for protecting against Cross Site Request Forgery (CSRF)
attacks. In the following sections we will explore:

* What is a CSRF Attack?
» Protecting Against CSRF Attacks

* CSRF Considerations

This portion of the documentation discusses the general topic of CSRF protection.
o Refer to the relevant sections for specific information on CSRF protection for
servlet and WebFlux based applications.

What is a CSRF Attack?

The best way to understand a CSRF attack is by taking a look at a concrete example.

Assume that your bank’s website provides a form that allows transferring money from the
currently logged in user to another bank account. For example, the transfer form might look like:

Example 31. Transfer form

<form method="post"
action="/transfer">
<input type="text"
name="amount"/>
<input type="text"
name="routingNumber"/>
<input type="text"
name="account"/>
<input type="submit"
value="Transfer"/>
</form>

The corresponding HTTP request might look like:
Example 32. Transfer HTTP request

POST /transfer HTTP/1.1

Host: bank.example.com

Cookie: JSESSIONID=randomid

Content-Type: application/x-www-form-urlencoded

amount=100.00&routingNumber=1234&account=9876

26

https://en.wikipedia.org/wiki/Cross-site_request_forgery

Now pretend you authenticate to your bank’s website and then, without logging out, visit an evil
website. The evil website contains an HTML page with the following form:

Example 33. Evil transfer form

<form method="post"
action="https://bank.example.com/transfer">

<input type="hidden"
name="amount"
value="100.00"/>

<input type="hidden"
name="routingNumber"
value="evilsRoutingNumber"/>

<input type="hidden"
name="account"
value="evilsAccountNumber"/>

<input type="submit"
value="Win Money!"/>

</form>

You like to win money, so you click on the submit button. In the process, you have unintentionally
transferred $100 to a malicious user. This happens because, while the evil website cannot see your
cookies, the cookies associated with your bank are still sent along with the request.

Worst yet, this whole process could have been automated using JavaScript. This means you didn’t
even need to click on the button. Furthermore, it could just as easily happen when visiting an
honest site that is a victim of a XSS attack. So how do we protect our users from such attacks?

Protecting Against CSRF Attacks

The reason that a CSRF attack is possible is that the HTTP request from the victim’s website and the
request from the attacker’s website are exactly the same. This means there is no way to reject
requests coming from the evil website and allow requests coming from the bank’s website. To
protect against CSRF attacks we need to ensure there is something in the request that the evil site is
unable to provide so we can differentiate the two requests.

Spring provides two mechanisms to protect against CSRF attacks:

» The Synchronizer Token Pattern

* Specifying the SameSite Attribute on your session cookie

o Both protections require that Safe Methods Must be Idempotent

Safe Methods Must be Idempotent

In order for either protection against CSRF to work, the application must ensure that "safe" HTTP
methods are idempotent. This means that requests with the HTTP method GET, HEAD, OPTIONS, and
TRACE should not change the state of the application.

27

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.1

Synchronizer Token Pattern

The predominant and most comprehensive way to protect against CSRF attacks is to use the
Synchronizer Token Pattern. This solution is to ensure that each HTTP request requires, in addition
to our session cookie, a secure random generated value called a CSRF token must be present in the
HTTP request.

When an HTTP request is submitted, the server must look up the expected CSRF token and compare
it against the actual CSRF token in the HTTP request. If the values do not match, the HTTP request
should be rejected.

The key to this working is that the actual CSRF token should be in a part of the HTTP request that is
not automatically included by the browser. For example, requiring the actual CSRF token in an
HTTP parameter or an HTTP header will protect against CSRF attacks. Requiring the actual CSRF
token in a cookie does not work because cookies are automatically included in the HTTP request by
the browser.

We can relax the expectations to only require the actual CSRF token for each HTTP request that
updates state of the application. For that to work, our application must ensure that safe HTTP
methods are idempotent. This improves usability since we want to allow linking to our website
using links from external sites. Additionally, we do not want to include the random token in HTTP
GET as this can cause the tokens to be leaked.

Let’s take a look at how our example would change when using the Synchronizer Token Pattern.
Assume the actual CSRF token is required to be in an HTTP parameter named _csrf. Our
application’s transfer form would look like:

Example 34. Synchronizer Token Form

<form method="post"
action="/transfer">
<input type="hidden"
name="_csrf"
value="4bfd1575-3ad1-4d21-96¢7-4ef2d9f86721"/>
<input type="text"
name="amount"/>
<input type="text"
name="routingNumber"/>
<input type="hidden"
name="account"/>
<input type="submit"
value="Transfer"/>
</form>

The form now contains a hidden input with the value of the CSRF token. External sites cannot read
the CSRF token since the same origin policy ensures the evil site cannot read the response.

The corresponding HTTP request to transfer money would look like this:

28

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern

Example 35. Synchronizer Token request

POST /transfer HTTP/1.1

Host: bank.example.com

Cookie: JSESSIONID=randomid

Content-Type: application/x-www-form-urlencoded

amount=100.00&routingNumber=1234&account=9876&_csrf=4bfd1575-3ad1-4d21-96¢7-
4et2d9f86721

You will notice that the HTTP request now contains the _csrf parameter with a secure random
value. The evil website will not be able to provide the correct value for the _csrf parameter (which
must be explicitly provided on the evil website) and the transfer will fail when the server compares
the actual CSRF token to the expected CSRF token.

SameSite Attribute

An emerging way to protect against CSRF Attacks is to specify the SameSite Attribute on cookies. A
server can specify the SameSite attribute when setting a cookie to indicate that the cookie should
not be sent when coming from external sites.

Spring Security does not directly control the creation of the session cookie, so it
does not provide support for the SameSite attribute. Spring Session provides

o support for the SameSite attribute in servlet based applications. Spring
Framework’s CookieWebSessionIldResolver provides out of the box support for the
SameSite attribute in WebFlux based applications.

An example, HTTP response header with the SameSite attribute might look like:

Example 36. SameSite HTTP response

Set-Cookie: JSESSIONID=randomid; Domain=bank.example.com; Secure; HttpOnly;
SameSite=Lax

Valid values for the SameSite attribute are:
» Strict - when specified any request coming from the same-site will include the cookie.
Otherwise, the cookie will not be included in the HTTP request.

* Lax - when specified cookies will be sent when coming from the same-site or when the request
comes from top-level navigations and the method is idempotent. Otherwise, the cookie will not
be included in the HTTP request.

Let’s take a look at how our example could be protected using the SameSite attribute. The bank
application can protect against CSRF by specifying the SameSite attribute on the session cookie.

29

https://tools.ietf.org/html/draft-west-first-party-cookies
https://spring.io/projects/spring-session
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/server/session/CookieWebSessionIdResolver.html
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-2.1
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-2.1

With the SameSite attribute set on our session cookie, the browser will continue to send the
JSESSIONID cookie with requests coming from the banking website. However, the browser will no
longer send the JSESSIONID cookie with a transfer request coming from the evil website. Since the
session is no longer present in the transfer request coming from the evil website, the application is
protected from the CSRF attack.

There are some important considerations that one should be aware about when using SameSite
attribute to protect against CSRF attacks.

Setting the SameSite attribute to Strict provides a stronger defense but can confuse users. Consider
a user that stays logged into a social media site hosted at https://social.example.com. The user
receives an email at https://email.example.org that includes a link to the social media site. If the
user clicks on the link, they would rightfully expect to be authenticated to the social media site.
However, if the SameSite attribute is Strict the cookie would not be sent and so the user would not
be authenticated.

o We could improve the protection and usability of SameSite protection against CSRF
attacks by implementing gh-7537.

Another obvious consideration is that in order for the SameSite attribute to protect users, the
browser must support the SameSite attribute. Most modern browsers do support the SameSite
attribute. However, older browsers that are still in use may not.

For this reason, it is generally recommended to use the SameSite attribute as a defense in depth
rather than the sole protection against CSRF attacks.

When to use CSRF protection

When should you use CSRF protection? Our recommendation is to use CSRF protection for any
request that could be processed by a browser by normal users. If you are only creating a service
that is used by non-browser clients, you will likely want to disable CSRF protection.

CSRF protection and JSON

A common question is "do I need to protect JSON requests made by javascript?” The short answer is,
it depends. However, you must be very careful as there are CSRF exploits that can impact JSON
requests. For example, a malicious user can create a CSRF with JSON using the following form:

Example 37. CSRF with JSON form

<form action="https://bank.example.com/transfer" method="post"
enctype="text/plain">

<input
name="{"amount":100, "routingNumber":"evilsRoutingNumber","account":"evilsAccountNu
mber", "ignore_me":"' value='test"}' type='hidden'>

<input type="submit"
value="Win Money!"/>
</form>

30

https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-5
https://social.example.com
https://email.example.org
https://github.com/spring-projects/spring-security/issues/7537
https://developer.mozilla.org/en-US/docs/Web/HTTP/headers/Set-Cookie#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/headers/Set-Cookie#Browser_compatibility
http://blog.opensecurityresearch.com/2012/02/json-csrf-with-parameter-padding.html

This will produce the following JSON structure

Example 38. CSRF with JSON request

{ "amount": 100,

"routingNumber": "evilsRoutingNumber",
"account": "evilsAccountNumber",
“ignore_me": "=test"

}

If an application were not validating the Content-Type, then it would be exposed to this exploit.
Depending on the setup, a Spring MVC application that validates the Content-Type could still be
exploited by updating the URL suffix to end with . json as shown below:

Example 39. CSRF with JSON Spring MVC form

<form action="https://bank.example.com/transfer.json" method="post"
enctype="text/plain">

<input
name="'{"amount":100, "routingNumber":"evilsRoutingNumber","account":"evilsAccountNu
mber", "ignore_me":"' value='test"}"' type='hidden'>

<input type="submit"
value="Win Money!"/>
</form>

CSRF and Stateless Browser Applications

What if my application is stateless? That doesn’t necessarily mean you are protected. In fact, if a
user does not need to perform any actions in the web browser for a given request, they are likely
still vulnerable to CSRF attacks.

For example, consider an application that uses a custom cookie that contains all the state within it
for authentication instead of the JSESSIONID. When the CSRF attack is made the custom cookie will
be sent with the request in the same manner that the JSESSIONID cookie was sent in our previous
example. This application will be vulnerable to CSRF attacks.

Applications that use basic authentication are also vulnerable to CSRF attacks. The application is
vulnerable since the browser will automatically include the username and password in any
requests in the same manner that the JSESSIONID cookie was sent in our previous example.

CSRF Considerations

There are a few special considerations to consider when implementing protection against CSRF
attacks.

31

Logging In

In order to protect against forging log in requests the log in HTTP request should be protected
against CSRF attacks. Protecting against forging log in requests is necessary so that a malicious user
cannot read a victim’s sensitive information. The attack is performed as follows:

* A malicious user performs a CSRF log in using the malicious user’s credentials. The victim is
now authenticated as the malicious user.

* The malicious user then tricks the victim to visit the compromised website and enter sensitive
information

» The information is associated to the malicious user’s account so the malicious user can log in
with their own credentials and view the vicitim’s sensitive information

A possible complication to ensuring log in HTTP requests are protected against CSRF attacks is that
the user might experience a session timeout that causes the request to be rejected. A session
timeout is surprising to users who do not expect to need to have a session in order to log in. For
more information refer to CSRF and Session Timeouts.

Logging Out

In order to protect against forging log out requests, the log out HTTP request should be protected
against CSRF attacks. Protecting against forging log out requests is necessary so a malicious user
cannot read a victim’s sensitive information. For details on the attack refer to this blog post.

A possible complication to ensuring log out HTTP requests are protected against CSRF attacks is that
the user might experience a session timeout that causes the request to be rejected. A session
timeout is surprising to users who do not expect to need to have a session in order to log out. For
more information refer to CSRF and Session Timeouts.

CSRF and Session Timeouts

More often than not, the expected CSRF token is stored in the session. This means that as soon as
the session expires the server will not find an expected CSRF token and reject the HTTP request.
There are a number of options to solve timeouts each of which come with trade offs.

» The best way to mitigate the timeout is by using JavaScript to request a CSRF token on form
submission. The form is then updated with the CSRF token and submitted.

* Another option is to have some JavaScript that lets the user know their session is about to
expire. The user can click a button to continue and refresh the session.

* Finally, the expected CSRF token could be stored in a cookie. This allows the expected CSRF
token to outlive the session.

One might ask why the expected CSRF token isn’t stored in a cookie by default. This is because
there are known exploits in which headers (for example, to specify the cookies) can be set by
another domain. This is the same reason Ruby on Rails no longer skips CSRF checks when the
header X-Requested-With is present. See this webappsec.org thread for details on how to
perform the exploit. Another disadvantage is that by removing the state (that is, the timeout),
you lose the ability to forcibly invalidate the token if it is compromised.

32

https://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
https://labs.detectify.com/2017/03/15/loginlogout-csrf-time-to-reconsider/
https://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
https://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html

Multipart (file upload)

Protecting multipart requests (file uploads) from CSRF attacks causes a chicken and the egg
problem. In order to prevent a CSRF attack from occurring, the body of the HTTP request must be
read to obtain actual CSRF token. However, reading the body means that the file will be uploaded
which means an external site can upload a file.

There are two options to using CSRF protection with multipart/form-data. Each option has its trade-
offs.

» Place CSRF Token in the Body
e Place CSRF Token in the URL

Before you integrate Spring Security’s CSRF protection with multipart file upload,

o ensure that you can upload without the CSRF protection first. More information
about using multipart forms with Spring can be found within the 1.1.11. Multipart
Resolver section of the Spring reference and the MultipartFilter javadoc.

Place CSRF Token in the Body

The first option is to include the actual CSRF token in the body of the request. By placing the CSRF
token in the body, the body will be read before authorization is performed. This means that anyone
can place temporary files on your server. However, only authorized users will be able to submit a
File that is processed by your application. In general, this is the recommended approach because
the temporary file upload should have a negligible impact on most servers.

Include CSRF Token in URL

If allowing unauthorized users to upload temporary files is not acceptable, an alternative is to
include the expected CSRF token as a query parameter in the action attribute of the form. The
disadvantage to this approach is that query parameters can be leaked. More generally, it is
considered best practice to place sensitive data within the body or headers to ensure it is not
leaked. Additional information can be found in RFC 2616 Section 15.1.3 Encoding Sensitive
Information in URT’s.

HiddenHttpMethodFilter

In some applications a form parameter can be used to override the HTTP method. For example, the
form below could be used to treat the HTTP method as a delete rather than a post.

33

https://en.wikipedia.org/wiki/Chicken_or_the_egg
https://docs.spring.io/spring/docs/5.2.x/spring-framework-reference/web.html#mvc-multipart
https://docs.spring.io/spring/docs/5.2.x/spring-framework-reference/web.html#mvc-multipart
https://docs.spring.io/spring/docs/5.2.x/javadoc-api/org/springframework/web/multipart/support/MultipartFilter.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3

Example 40. CSRF Hidden HTTP Method Form

<form action="/process"
method="post">
Qlee o0 ==B
<input type="hidden"
name="_method"
value="delete"/>
</form>

Overriding the HTTP method occurs in a filter. That filter must be placed before Spring Security’s
support. Note that overriding only happens on a post, so this is actually unlikely to cause any real
problems. However, it is still best practice to ensure it is placed before Spring Security’s filters.

5.2.2. Security HTTP Response Headers

This portion of the documentation discusses the general topic of Security HTTP
o Response Headers. Refer to the relevant sections for specific information on
Security HTTP Response Headers servlet and WebFlux based applications.

There are many HTTP response headers that can be used to increase the security of web
applications. This section is dedicated to the various HTTP response headers that Spring Security
provides explicit support for. If necessary, Spring Security can also be configured to provide custom
headers.

Default Security Headers

o Refer to the relevant sections to see how to customize the defaults for both servlet
and webflux based applications.

Spring Security provides a default set of security related HTTP response headers to provide secure
defaults.

The default for Spring Security is to include the following headers:

Example 41. Default Security HTTP Response Headers

Cache-Control: no-cache, no-store, max-age=0@, must-revalidate
Pragma: no-cache

Expires: @

X-Content-Type-Options: nosniff

Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Frame-Options: DENY

X-XSS-Protection: 1; mode=block

34

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Headers

o Strict-Transport-Security is only added on HTTPS requests

If the defaults do not meet your needs, you can easily remove, modify, or add headers from these
defaults. For additional details on each of these headers, refer to the corresponding sections:

e Cache Control

* Content Type Options

HTTP Strict Transport Security

X-Frame-Options

X-XSS-Protection

Cache Control

o Refer to the relevant sections to see how to customize the defaults for both servlet
and webflux based applications.

Spring Security’s default is to disable caching to protect user’s content.

If a user authenticates to view sensitive information and then logs out, we don’t want a malicious
user to be able to click the back button to view the sensitive information. The cache control headers
that are sent by default are:

Example 42. Default Cache Control HTTP Response Headers

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: @

In order to be secure by default, Spring Security adds these headers by default. However, if your
application provides its own cache control headers Spring Security will back out of the way. This
allows for applications to ensure that static resources like CSS and JavaScript can be cached.

Content Type Options

o Refer to the relevant sections to see how to customize the defaults for both servlet
and webflux based applications.

Historically browsers, including Internet Explorer, would try to guess the content type of a request
using content sniffing. This allowed browsers to improve the user experience by guessing the
content type on resources that had not specified the content type. For example, if a browser
encountered a JavaScript file that did not have the content type specified, it would be able to guess
the content type and then run it.

35

https://en.wikipedia.org/wiki/Content_sniffing

There are many additional things one should do (i.e. only display the document in
a distinct domain, ensure Content-Type header is set, sanitize the document, etc)

e when allowing content to be uploaded. However, these measures are out of the
scope of what Spring Security provides. It is also important to point out when
disabling content sniffing, you must specify the content type in order for things to
work properly.

The problem with content sniffing is that this allowed malicious users to use polyglots (i.e. a file
that is valid as multiple content types) to perform XSS attacks. For example, some sites may allow
users to submit a valid postscript document to a website and view it. A malicious user might create
a postscript document that is also a valid JavaScript file and perform a XSS attack with it.

Spring Security disables content sniffing by default by adding the following header to HTTP
responses:

Example 43. nosniff HTTP Response Header

X-Content-Type-Options: nosniff

HTTP Strict Transport Security (HSTS)

o Refer to the relevant sections to see how to customize the defaults for both servlet
and webflux based applications.

When you type in your bank’s website, do you enter mybank.example.com or do you enter
https://mybank.example.com? If you omit the https protocol, you are potentially vulnerable to Man
in the Middle attacks. Even if the website performs a redirect to https://mybank.example.com a
malicious user could intercept the initial HTTP request and manipulate the response (e.g. redirect
to https://mibank.example.com and steal their credentials).

Many users omit the https protocol and this is why HTTP Strict Transport Security (HSTS) was
created. Once mybank.example.com is added as a HSTS host, a browser can know ahead of time
that any request to mybank.example.com should be interpreted as https://mybank.example.com.
This greatly reduces the possibility of a Man in the Middle attack occurring.

In accordance with RFC6797, the HSTS header is only injected into HTTPS

o responses. In order for the browser to acknowledge the header, the browser must
first trust the CA that signed the SSL certificate used to make the connection (not
just the SSL certificate).

One way for a site to be marked as a HSTS host is to have the host preloaded into the browser.
Another is to add the Strict-Transport-Security header to the response. For example, Spring
Security’s default behavior is to add the following header which instructs the browser to treat the
domain as an HSTS host for a year (there are approximately 31536000 seconds in a year):

36

http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
https://mybank.example.com
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://mybank.example.com
https://mibank.example.com
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797#section-5.1
https://mybank.example.com
https://tools.ietf.org/html/rfc6797#section-7.2

Example 44. Strict Transport Security HTTP Response Header

Strict-Transport-Security: max-age=31536000 ; includeSubDomains ; preload

The optional includeSubDomains directive instructs the browser that subdomains (e.g.
secure.mybank.example.com) should also be treated as an HSTS domain.

The optional preload directive instructs the browser that domain should be preloaded in browser as
HSTS domain. For more details on HSTS preload please see https://hstspreload.org.

HTTP Public Key Pinning (HPKP)

In order to remain passive Spring Security still provides support for HPKP in
o servlet environments, but for the reasons listed above HPKP is no longer
recommended by the security team.

HTTP Public Key Pinning (HPKP) specifies to a web client which public key to use with certain web
server to prevent Man in the Middle (MITM) attacks with forged certificates. When used correctly,
HPKP could add additional layers of protection against compromised certificates. However, due to
the complexity of HPKP many experts no longer recommend using it and Chrome has even
removed support for it.

For additional details around why HPKP is no longer recommended read Is HTTP Public Key
Pinning Dead? and I'm giving up on HPKP.

X-Frame-Options

o Refer to the relevant sections to see how to customize the defaults for both servlet
and webflux based applications.

Allowing your website to be added to a frame can be a security issue. For example, using clever CSS
styling users could be tricked into clicking on something that they were not intending. For example,
a user that is logged into their bank might click a button that grants access to other users. This sort
of attack is known as Clickjacking.

o Another modern approach to dealing with clickjacking is to use Content Security
Policy (CSP).

There are a number ways to mitigate clickjacking attacks. For example, to protect legacy browsers
from clickjacking attacks you can use frame breaking code. While not perfect, the frame breaking
code is the best you can do for the legacy browsers.

A more modern approach to address clickjacking is to use X-Frame-Options header. By default
Spring Security disables rendering pages within an iframe using with the following header:

37

https://hstspreload.org
https://developer.mozilla.org/en-US/docs/Web/HTTP/Public_Key_Pinning
https://www.chromestatus.com/feature/5903385005916160
https://www.chromestatus.com/feature/5903385005916160
https://blog.qualys.com/ssllabs/2016/09/06/is-http-public-key-pinning-dead
https://blog.qualys.com/ssllabs/2016/09/06/is-http-public-key-pinning-dead
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://en.wikipedia.org/wiki/Clickjacking
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet#Best-for-now_Legacy_Browser_Frame_Breaking_Script
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options

X-Frame-Options: DENY

X-XSS-Protection

o Refer to the relevant sections to see how to customize the defaults for both servlet
and webflux based applications.

Some browsers have built in support for filtering out reflected XSS attacks. This is by no means
foolproof, but does assist in XSS protection.

The filtering is typically enabled by default, so adding the header typically just ensures it is enabled
and instructs the browser what to do when a XSS attack is detected. For example, the filter might
try to change the content in the least invasive way to still render everything. At times, this type of
replacement can become a XSS vulnerability in itself. Instead, it is best to block the content rather
than attempt to fix it. By default Spring Security blocks the content using the following header:

X-XSS-Protection: 1; mode=block

Content Security Policy (CSP)

o Refer to the relevant sections to see how to configure both servlet and webflux
based applications.

Content Security Policy (CSP) is a mechanism that web applications can leverage to mitigate content
injection vulnerabilities, such as cross-site scripting (XSS). CSP is a declarative policy that provides a
facility for web application authors to declare and ultimately inform the client (user-agent) about
the sources from which the web application expects to load resources.

Content Security Policy is not intended to solve all content injection vulnerabilities.

o Instead, CSP can be leveraged to help reduce the harm caused by content injection
attacks. As a first line of defense, web application authors should validate their
input and encode their output.

A web application may employ the use of CSP by including one of the following HTTP headers in the
response:

» Content-Security-Policy

» Content-Security-Policy-Report-Only

Each of these headers are used as a mechanism to deliver a security policy to the client. A security
policy contains a set of security policy directives, each responsible for declaring the restrictions for
a particular resource representation.

For example, a web application can declare that it expects to load scripts from specific, trusted
sources, by including the following header in the response:

38

https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OWASP-DV-001)
https://hackademix.net/2009/11/21/ies-xss-filter-creates-xss-vulnerabilities/
https://www.w3.org/TR/CSP2/

Example 45. Content Security Policy Example

Content-Security-Policy: script-src https://trustedscripts.example.com

An attempt to load a script from another source other than what is declared in the script-src
directive will be blocked by the user-agent. Additionally, if the report-uri directive is declared in the
security policy, then the violation will be reported by the user-agent to the declared URL.

For example, if a web application violates the declared security policy, the following response
header will instruct the user-agent to send violation reports to the URL specified in the policy’s
report-uri directive.

Example 46. Content Security Policy with report-uri

Content-Security-Policy: script-src https://trustedscripts.example.com; report-uri
/csp-report-endpoint/

Violation reports are standard JSON structures that can be captured either by the web application’s
own API or by a publicly hosted CSP violation reporting service, such as, https://report-uri.io/.

The Content-Security-Policy-Report-Only header provides the capability for web application
authors and administrators to monitor security policies, rather than enforce them. This header is
typically used when experimenting and/or developing security policies for a site. When a policy is
deemed effective, it can be enforced by using the Content-Security-Policy header field instead.

Given the following response header, the policy declares that scripts may be loaded from one of
two possible sources.

Example 47. Content Security Policy Report Only

Content-Security-Policy-Report-Only: script-src 'self'
https://trustedscripts.example.com; report-uri /csp-report-endpoint/

If the site violates this policy, by attempting to load a script from evil.com, the user-agent will send a
violation report to the declared URL specified by the report-uri directive, but still allow the violating
resource to load nevertheless.

Applying Content Security Policy to a web application is often a non-trivial undertaking. The
following resources may provide further assistance in developing effective security policies for
your site.

An Introduction to Content Security Policy

CSP Guide - Mozilla Developer Network

39

https://www.w3.org/TR/CSP2/#directive-report-uri
https://www.w3.org/TR/CSP2/#violation-reports
https://report-uri.io/
https://www.html5rocks.com/en/tutorials/security/content-security-policy/
https://developer.mozilla.org/en-US/docs/Web/Security/CSP

W3C Candidate Recommendation

Referrer Policy

o Refer to the relevant sections to see how to configure both servlet and webflux
based applications.

Referrer Policy is a mechanism that web applications can leverage to manage the referrer field,
which contains the last page the user was on.

Spring Security’s approach is to use Referrer Policy header, which provides different policies:

Example 48. Referrer Policy Example

Referrer-Policy: same-origin

The Referrer-Policy response header instructs the browser to let the destination knows the source
where the user was previously.

Feature Policy

o Refer to the relevant sections to see how to configure both servlet and webflux
based applications.

Feature Policy is a mechanism that allows web developers to selectively enable, disable, and modify
the behavior of certain APIs and web features in the browser.

Example 49. Feature Policy Example

Feature-Policy: geolocation 'self'

With Feature Policy, developers can opt-in to a set of "policies" for the browser to enforce on
specific features used throughout your site. These policies restrict what APIs the site can access or
modify the browser’s default behavior for certain features.

Clear Site Data
o Refer to the relevant sections to see how to configure both servlet and webflux
based applications.

Clear Site Data is a mechanism by which any browser-side data - cookies, local storage, and the like
- can be removed when an HTTP response contains this header:

(lear-Site-Data: "cache", "cookies", "storage", "executionContexts"

40

https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/referrer-policy
https://www.w3.org/TR/referrer-policy/
https://www.w3.org/TR/referrer-policy/#referrer-policies
https://wicg.github.io/feature-policy/
https://www.w3.org/TR/clear-site-data/

This is a nice clean-up action to perform on logout.

Custom Headers

o Refer to the relevant sections to see how to configure both servlet based
applications.

Spring Security has mechanisms to make it convenient to add the more common security headers
to your application. However, it also provides hooks to enable adding custom headers.

5.2.3. HTTP
All HTTP based communication, including static resources, should be protected using TLS.

As a framework, Spring Security does not handle HTTP connections and thus does not provide
support for HTTPS directly. However, it does provide a number of features that help with HTTPS
usage.

Redirect to HTTPS

When a client uses HTTP, Spring Security can be configured to redirect to HTTPS both Servlet and
WebFlux environments.

Strict Transport Security

Spring Security provides support for Strict Transport Security and enables it by default.

Proxy Server Configuration

When using a proxy server it is important to ensure that you have configured your application
properly. For example, many applications will have a load balancer that responds to request for
https://example.com/ by forwarding the request to an application server at https://192.168.1:8080
Without proper configuration, the application server will not know that the load balancer exists
and treat the request as though https://192.168.1:8080 was requested by the client.

To fix this you can use RFC 7239 to specify that a load balancer is being used. To make the
application aware of this, you need to either configure your application server aware of the X-
Forwarded headers. For example Tomcat uses the RemotelpValve and Jetty wuses
ForwardedRequestCustomizer. Alternatively, Spring users can leverage ForwardedHeaderFilter.

Spring Boot users may use the server.use-forward-headers property to configure the application.
See the Spring Boot documentation for further details.

41

https://www.troyhunt.com/heres-why-your-static-website-needs-https/
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://example.com/
https://192.168.1:8080
https://192.168.1:8080
https://tools.ietf.org/html/rfc7239
https://tomcat.apache.org/tomcat-8.0-doc/api/org/apache/catalina/valves/RemoteIpValve.html
https://download.eclipse.org/jetty/stable-9/apidocs/org/eclipse/jetty/server/ForwardedRequestCustomizer.html
https://github.com/spring-projects/spring-framework/blob/v4.3.3.RELEASE/spring-web/src/main/java/org/springframework/web/filter/ForwardedHeaderFilter.java
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#howto-use-tomcat-behind-a-proxy-server

Chapter 6. Project Modules and
Dependencies

In Spring Security 3.0, the codebase was sub-divided into separate jars which more clearly separate
different functionality areas and third-party dependencies. If you use Maven to build your project,
these are the modules you should add to your pom.xml. Even if you do not use Maven, we
recommend that you consult the pom.xml files to get an idea of third-party dependencies and
versions. Another good idea is to examine the libraries that are included in the sample applications.

This section provides a reference of the modules in Spring Security and the additional
dependencies that they require in order to function in a running application. We don’t include
dependencies that are only used when building or testing Spring Security itself. Nor do we include
transitive dependencies which are required by external dependencies.

The version of Spring required is listed on the project website, so the specific versions are omitted
for Spring dependencies below. Note that some of the dependencies listed as "optional" below may
still be required for other non-security functionality in a Spring application. Also dependencies
listed as "optional” may not actually be marked as such in the project’s Maven POM files if they are
used in most applications. They are "optional” only in the sense that you don’t need them unless
you are using the specified functionality.

Where a module depends on another Spring Security module, the non-optional dependencies of the
module it depends on are also assumed to be required and are not listed separately.

6.1. Core — spring-security-core.jar

This module contains core authentication and access-contol classes and interfaces, remoting
support, and basic provisioning APIs. It is required by any application that uses Spring Security. It
supports standalone applications, remote clients, method (service layer) security, and JDBC user
provisioning. It contains the following top-level packages:

* org.springframework.security.core

* org.springframework.security.access

» org.springframework.security.authentication

* org.springframework.security.provisioning

Table 1. Core Dependencies
Dependency Version Description

ehcache 1.6.2 Required if the Ehcache-based
user cache implementation is
used (optional).

spring-aop Method security is based on
Spring AOP

42

Dependency Version Description

spring-beans Required for Spring
configuration
spring-expression Required for expression-based

method security (optional)

spring-jdbc Required if using a database to
store user data (optional).

spring-tx Required if using a database to
store user data (optional).

aspectjrt 1.6.10 Required if using Aspect]
support (optional).

jsr250-api 1.0 Required if you are using JSR-
250 method-security
annotations (optional).

6.2. Remoting — spring-security-remoting.jar

This module provides integration with Spring Remoting. You do not need this unless you are
writing a remote client that wuses Spring Remoting. The main package is
org.springframework.security.remoting.

Table 2. Remoting Dependencies

Dependency Version Description
spring-security-core

spring-web Required for clients which use
HTTP remoting support.

6.3. Web — spring-security-web.jar

This module contains filters and related web-security infrastructure code. It contains anything with
a servlet API dependency. You need it if you require Spring Security web authentication services
and URL-based access-control. The main package is org.springframework.security.web.

Table 3. Web Dependencies

Dependency Version Description
spring-security-core

spring-web Spring web support classes are
used extensively.

spring-jdbc Required for JDBC-based
persistent remember-me token
repository (optional).

43

Dependency Version Description

spring-tx Required by remember-me
persistent token repository
implementations (optional).

6.4. Config — spring-security-config.jar

This module contains the security namespace parsing code and Java configuration code. You need it
if you use the Spring Security XML namespace for configuration or Spring Security’s Java
Configuration support. The main package is org.springframework.security.config. None of the
classes are intended for direct use in an application.

Table 4. Config Dependencies
Dependency Version Description
spring-security-core

spring-security-web Required if you are using any
web-related namespace
configuration (optional).

spring-security-ldap Required if you are using the
LDAP namespace options
(optional).

spring-security-openid Required if you are using
OpenlID authentication
(optional).

aspectjweaver 1.6.10 Required if using the protect-
pointcut namespace syntax
(optional).

6.5. LDAP —spring-security-ldap.jar

This module provides LDAP authentication and provisioning code. It is required if you need to use
LDAP authentication or manage LDAP user entries. The top-level package is
org.springframework.security.ldap.

Table 5. LDAP Dependencies
Dependency Version Description

spring-security-core

spring-ldap-core 1.3.0 LDAP support is based on
Spring LDAP.

spring-tx Data exception classes are
required.

44

Dependency Version Description

apache-ds " 1.5.5 Required if you are using an
embedded LDAP server
(optional).

shared-ldap 0.9.15 Required if you are using an
embedded LDAP server
(optional).

ldapsdk 4.1 Mozilla LdapSDK. Used for
decoding LDAP password policy
controls if you are using
password-policy functionality
with OpenLDAP, for example.

6.6. OAuth 2.0 Core — spring-security-oauth2-core.jar

spring-security-oauth2-core.jar contains core classes and interfaces that provide support for the
OAuth 2.0 Authorization Framework and for OpenID Connect Core 1.0. It is required by applications
that use OAuth 2.0 or OpenID Connect Core 1.0, such as client, resource server, and authorization
server. The top-level package is org.springframework.security.oauth2.core.

6.7. OAuth 2.0 Client — spring-security-oauth2-
client.jar

spring-security-oauth2-client.jar contains Spring Security’s client support for OAuth 2.0
Authorization Framework and OpenID Connect Core 1.0. It is required by applications that use
OAuth 2.0 Login or OAuth Client support. The top-level package is
org.springframework.security.oauth2.client.

6.8. OAuth 2.0 JOSE — spring-security-oauth2-jose.jar

spring-security-oauth2-jose.jar contains Spring Security’s support for the JOSE (Javascript Object
Signing and Encryption) framework. The JOSE framework is intended to provide a method to
securely transfer claims between parties. It is built from a collection of specifications:

* JSON Web Token (JWT)

* JSON Web Signature (JWS)

* JSON Web Encryption (JWE)

* JSON Web Key (JWK)

It contains the following top-level packages:

* org.springframework.security.oauth2.jwt

* org.springframework.security.oauth2.jose

45

6.9. OAuth 2.0 Resource Server — spring-security-

oauth2-resource-server.jar

spring-security-oauth2-resource-server.jar contains Spring Security’s support for OAuth 2.0
Resource Servers. It is used to protect APIs via OAuth 2.0 Bearer Tokens. The top-level package is

org.springframework.security.oauth2.server.resource.

6.10. ACL —spring-security-acl.jar

This module contains a specialized domain object ACL implementation. It is used to apply security
to specific domain object instances within your application. The top-level package is
org.springframework.security.acls.

Table 6. ACL Dependencies
Dependency
spring-security-core

ehcache

spring-jdbc

spring-tx

6.11. CAS —spring-security-cas.jar

Version

1.6.2

Description

Required if the Ehcache-based
ACL cache implementation is
used (optional if you are using
your own implementation).

Required if you are using the
default JDBC-based AclService
(optional if you implement your
own).

Required if you are using the
default JDBC-based AclService
(optional if you implement your
own).

This module contains Spring Security’s CAS client integration. You should use it if you want to use
Spring Security web authentication with a CAS single sign-on server. The top-level package is
org.springframework.security.cas.

Table 7. CAS Dependencies
Dependency
spring-security-core
spring-security-web

cas-client-core

46

Version

3.1.12

Description

The JA-SIG CAS Client. This is
the basis of the Spring Security
integration.

Dependency Version Description

ehcache 1.6.2 Required if you are using the
Ehcache-based ticket cache
(optional).

6.12. OpenlID — spring-security-openid.jar

o The OpenID 1.0 and 2.0 protocols have been deprecated and users are encouraged
to migrate to OpenID Connect, which is supported by spring-security-oauth2.

This module contains OpenID web authentication support. It is used to authenticate users against
an external OpenID server. The top-level package is org.springframework.security.openid. It
requires OpenID4Java.

Table 8. OpenID Dependencies

Dependency Version Description
spring-security-core

spring-security-web

openid4java-nodeps 0.9.6 Spring Security’s OpenID
integration uses OpenID4Java.

httpclient 4.1.1 openid4java-nodeps depends on
HttpClient 4.

guice 2.0 openid4java-nodeps depends on
Guice 2.

6.13. Test — spring-security-test.jar

This module contains support for testing with Spring Security.

6.14. Taglibs — spring-secuity-taglibs.jar
Provides Spring Security’s JSP tag implementations.

Table 9. Taglib Dependencies

Dependency Version Description
spring-security-core

spring-security-web

spring-security-acl Required if you are using the
accesscontrollist tag or
hasPermission() expressions
with ACLs (optional).

47

Dependency

spring-expression

Version

Description

Required if you are using SPEL
expressions in your tag access
constraints.

[1] The modules apacheds-core, apacheds-core-entry, apacheds-protocol-shared, apacheds-protocol-1ldap and apacheds-server-jndi

are required.

48

Chapter 7. Samples

Spring Security includes many samples applications.

49

https://github.com/spring-projects/spring-security/tree/5.4.5/samples

Servlet Applications

Spring Security integrates with the Servlet Container by using a standard Servlet Filter. This means
it works with any application that runs in a Servlet Container. More concretely, you do not need to
use Spring in your Servlet-based application to take advantage of Spring Security.

50

Chapter 8. Hello Spring Security

This section covers the minimum setup for how to use Spring Security with Spring Boot.

The completed application can be found at samples/boot/helloworld For your
o convenience, you can download a minimal Spring Boot + Spring Security
application by clicking here.

8.1. Updating Dependencies

The only step you need to do is update the dependencies by using Maven or Gradle.

8.2. Starting Hello Spring Security Boot

You can now run the Spring Boot application by using the Maven Plugin’s run goal. The following
example shows how to do so (and the beginning of the output from doing so):

Example 50. Running Spring Boot Application

$./mvn spring-boot:run
INFO 23689 --- [restartedMain] .s.s.UserDetailsServiceAutoConfiguration :

Using generated security password: 8e557245-73e2-4286-969a-ff57fe326336

8.3. Spring Boot Auto Configuration

Spring Boot automatically:

* Enables Spring Security’s default configuration, which creates a servlet Filter as a bean named
springSecurityFilterChain. This bean is responsible for all the security (protecting the
application URLs, validating submitted username and passwords, redirecting to the log in form,
and so on) within your application.

* Creates a UserDetailsService bean with a username of user and a randomly generated password
that is logged to the console.

* Registers the Filter with a bean named springSecurityFilterChain with the Servlet container
for every request.

Spring Boot is not configuring much, but it does a lot. A summary of the features follows:

* Require an authenticated user for any interaction with the application

* Generate a default login form for you

31

https://github.com/spring-projects/spring-security/tree/5.4.5/samples/boot/helloworld
https://start.spring.io/starter.zip?type=maven-project&language=java&packaging=jar&jvmVersion=1.8&groupId=example&artifactId=hello-security&name=hello-security&description=Hello%20Security&packageName=example.hello-security&dependencies=web,security
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#using-boot-running-with-the-maven-plugin

Let the user with a username of user and a password that is logged to the console to
authenticate with form-based authentication (in the preceding example, the password is
8e557245-73e2-4286-969a-ff57fe326336)

Protects the password storage with BCrypt

Lets the user log out

CSRF attack prevention

Session Fixation protection

Security Header integration
o HTTP Strict Transport Security for secure requests
o X-Content-Type-Options integration

o Cache Control (can be overridden later by your application to allow caching of your static
resources)

o X-XSS-Protection integration

o X-Frame-Options integration to help prevent Clickjacking

* Integrate with the following Servlet API methods:

32

o HttpServletRequest#getRemoteUser()

o HttpServletRequest.html#getUserPrincipal()

o HttpServletRequest.html#isUserInRole(java.lang.String)

o HttpServletRequest.html#login(java.lang.String, java.lang.String)

o

HttpServletRequest.html#logout()

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Session_fixation
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://msdn.microsoft.com/en-us/library/ie/gg622941(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd565647(v=vs.85).aspx
https://en.wikipedia.org/wiki/Clickjacking
https://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getRemoteUser()
https://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getUserPrincipal()
https://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#isUserInRole(java.lang.String)
https://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#login(java.lang.String,%20java.lang.String)
https://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#logout()

Chapter 9. Servlet Security: The Big Picture

This section discusses Spring Security’s high level architecture within Servlet based applications.
We build on this high level understanding within Authentication, Authorization, Protection Against
Exploits sections of the reference.

9.1. A Review of Filters

Spring Security’s Servlet support is based on Servlet Filters, so it is helpful to look at the role of
Filters generally first. The picture below shows the typical layering of the handlers for a single
HTTP request.

FilterChain_ | oo

Figure 1. FilterChain

The client sends a request to the application, and the container creates a FilterChain which
contains the Filters and Servlet that should process the HttpServletRequest based on the path of
the request URL In a Spring MVC application the Servlet is an instance of DispatcherServlet. At
most one Servlet can handle a single HttpServletRequest and HttpServletResponse. However, more
than one Filter can be used to:

* Prevent downstream Filters or the Servlet from being invoked. In this instance the Filter will
typically write the HttpServletResponse.

* Modify the HttpServletRequest or HttpServletResponse used by the downstream Filters and
Servlet

33

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-servlet

The power of the Filter comes from the FilterChain that is passed into it.

Example 51. FilterChain Usage Example
Java

public void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain) {

// do something before the rest of the application

chain.doFilter(request, response); // invoke the rest of the application

// do something after the rest of the application

Kotlin

fun doFilter(request: ServletRequest, response: ServletResponse, chain:
FilterChain) {
// do something before the rest of the application
chain.doFilter(request, response) // invoke the rest of the application
// do something after the rest of the application

Since a Filter only impacts downstream Filters and the Servlet, the order each Filter is invoked is

extremely important.

9.2. DelegatingFilterProxy

Spring provides a Filter implementation named DelegatingFilterProxy that allows bridging
between the Servlet container’s lifecycle and Spring’s ApplicationContext. The Servlet container
allows registering Filters using its own standards, but it is not aware of Spring defined Beans.
DelegatingFilterProxy can be registered via standard Servlet container mechanisms, but delegate

all the work to a Spring Bean that implements Filter.

Here is a picture of how DelegatingFilterProxy fits into the Filters and the FilterChain.

54

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/web/filter/DelegatingFilterProxy.html/

FilterChain

Figure 2. DelegatingFilterProxy

DelegatingFilterProxy looks up Bean Filter, from the ApplicationContext and then invokes Bean
Filter,. The pseudo code of DelegatingFilterProxy can be seen below.

55

Example 52. DelegatingFilterProxy Pseudo Code
Java

public void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain) {

// Lazily get Filter that was registered as a Spring Bean

// For the example in DelegatingFilterProxy delegate is an instance of Bean
Filtero

Filter delegate = getFilterBean(someBeanName);

// delegate work to the Spring Bean

delegate.doFilter(request, response);

Kotlin

fun doFilter(request: ServletRequest, response: ServletResponse, chain:
FilterChain) {

// Lazily get Filter that was registered as a Spring Bean

// For the example in DelegatingFilterProxy delegate is an instance of Bean
Filtere

val delegate: Filter = getFilterBean(someBeanName)

// delegate work to the Spring Bean

delegate.doFilter(request, response)

Another benefit of DelegatingFilterProxy is that it allows delaying looking Filter bean instances.
This is important because the container needs to register the Filter instances before the container
can startup. However, Spring typically uses a ContextLoaderListener to load the Spring Beans which
will not be done until after the Filter instances need to be registered.

9.3. FilterChainProxy

Spring Security’s Servlet support is contained within FilterChainProxy. FilterChainProxy is a special
Filter provided by Spring Security that allows delegating to many Filter instances through
SecurityFilterChain. Since FilterChainProxy is a Bean, it is typically wrapped in a
DelegatingFilterProxy.

36

FilterChain

Figure 3. FilterChainProxy

9.4. SecurityFilterChain

SecurityFilterChain is used by FilterChainProxy to determine which Spring Security Filters should
be invoked for this request.

57

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/web/SecurityFilterChain.html

FilterChain

| Eiterchad
| FilterChainProx ‘

kil

Figure 4. SecurityFilterChain

The Security Filters in SecurityFilterChain are typically Beans, but they are registered with
FilterChainProxy instead of DelegatingFilterProxy. FilterChainProxy provides a number of
advantages to registering directly with the Servlet container or DelegatingFilterProxy. First, it
provides a starting point for all of Spring Security’s Servlet support. For that reason, if you are
attempting to troubleshoot Spring Security’s Servlet support, adding a debug point in
FilterChainProxy is a great place to start.

Second, since FilterChainProxy is central to Spring Security usage it can perform tasks that are not
viewed as optional. For example, it clears out the SecurityContext to avoid memory leaks. It also
applies Spring Security’s HttpFirewall to protect applications against certain types of attacks.

In addition, it provides more flexibility in determining when a SecurityFilterChain should be
invoked. In a Servlet container, Filters are invoked based upon the URL alone. However,
FilterChainProxy can determine invocation based upon anything in the HttpServletRequest by
leveraging the RequestMatcher interface.

In fact, FilterChainProxy can be used to determine which SecurityFilterChain should be used. This
allows providing a totally separate configuration for different slices of your application.

58

SecurityFilterChain_

FilterChain

Figure 5. Multiple SecurityFilterChain

In the Multiple SecurityFilterChain Figure FilterChainProxy decides which SecurityFilterChain
should be used. Only the first SecurityFilterChain that matches will be invoked. If a URL of
/api/messages/ is requested, it will first match on SecurityFilterChaine's pattern of /api/**, so only
SecurityFilterChains will be invoked even though it also matches on SecurityFilterChain,. If a URL
of /messages/ is requested, it will not match on SecurityFilterChains's pattern of /api/**, so
FilterChainProxy will continue trying each SecurityFilterChain. Assuming that no other,
SecurityFilterChain instances match SecurityFilterChain, will be invoked.

Notice that SecurityFilterChain, has only three security Filters instances configured. However,
SecurityFilterChain, has four security Filters configured. It is important to note that each
SecurityFilterChain can be unique and configured in isolation. In fact, a SecurityFilterChain might
have zero security Filters if the application wants Spring Security to ignore certain requests.

9.5. Security Filters

The Security Filters are inserted into the FilterChainProxy with the SecurityFilterChain API. The
order of Filters matters. It is typically not necessary to know the ordering of Spring Security’s
Filters. However, there are times that it is beneficial to know the ordering

Below is a comprehensive list of Spring Security Filter ordering:

* ChannelProcessingFilter
* WebAsyncManagerIntegrationFilter

» SecurityContextPersistenceFilter

39

9.6. Handling Security Exceptions

HeaderWriterFilter

CorsFilter

CsrfFilter

LogoutFilter
OAuth2AuthorizationRequestRedirectFilter
Saml2WebSsoAuthenticationRequestFilter
X509AuthenticationFilter
AbstractPreAuthenticatedProcessingFilter
CasAuthenticationFilter
OAuth2LoginAuthenticationFilter
Saml2WebSsoAuthenticationFilter
UsernamePasswordAuthenticationFilter
OpenIDAuthenticationFilter
DefaultLoginPageGeneratingFilter
DefaultLogoutPageGeneratingFilter
ConcurrentSessionFilter
DigestAuthenticationFilter
BearerTokenAuthenticationFilter
BasicAuthenticationFilter
RequestCacheAwareFilter
SecurityContextHolderAwareRequestFilter
JaasApilntegrationFilter
RememberMeAuthenticationFilter
AnonymousAuthenticationFilter
OAuth2AuthorizationCodeGrantFilter
SessionManagementFilter
ExceptionTranslationFilter
FilterSecurityInterceptor

SwitchUserFilter

The ExceptionTranslationFilter allows
AuthenticationException into HTTP responses.

ExceptionTranslationFilter is inserted into the FilterChainProxy as one of the Security Filters.

60

translation

of

AccessDeniedException

and

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/web/access/ExceptionTranslationFilter.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/access/AccessDeniedException.html
https://docs.spring.io/spring-security/site/docs/current/api//org/springframework/security/core/AuthenticationException.html

SecurityFilterChain

I
_ . @ . Continue Processing !
i ; : Request Normally
I :

Security
Exception

Start Authentication ©

. | SecurityContextHolder |: Access Denied

i RequestCache 5

AuthenticationEntryPoint |

. 0 First, the ExceptionTranslationFilter invokes FilterChain.doFilter(request, response) to
invoke the rest of the application.

. g If the user is not authenticated or it is an AuthenticationException, then Start Authentication.
o The SecurityContextHolder is cleared out

o The HttpServletRequest is saved in the RequestCache. When the user successfully
authenticates, the RequestCache is used to replay the original request.

o The AuthenticationEntryPoint is used to request credentials from the client. For example, it
might redirect to a log in page or send a WWW-Authenticate header.

. @ Otherwise if it is an AccessDeniedException, then Access Denied. The AccessDeniedHandler is
invoked to handle access denied.

o If the application does not throw an AccessDeniedException or an
AuthenticationException, then ExceptionTranslationFilter does not do anything.

The pseudocode for ExceptionTranslationFilter looks something like this:

61

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/web/savedrequest/RequestCache.html

ExceptionTranslationFilter pseudocode

try {
filterChain.doFilter(request, response); @
} catch (AccessDeniedException | AuthenticationException ex) {
if (lauthenticated || ex instanceof AuthenticationException) {
startAuthentication(); @
} else {
accessDenied(); ®

@ You will recall from A Review of Filters that invoking FilterChain.doFilter(request, response)
is the equivalent of invoking the rest of the application. This means that if another part of the
application, (i.e. FilterSecurityInterceptor =~ or method security) throws an
AuthenticationException or AccessDeniedException it will be caught and handled here.

@ If the user is not authenticated or it is an AuthenticationException, then Start Authentication.

® Otherwise, Access Denied

62

Chapter 10. Authentication

Spring Security provides comprehensive support for Authentication. This section discusses:
Architecture Components

This section describes the main architectural components of Spring Security’s used in Servlet
authentication. If you need concrete flows that explain how these pieces fit together, look at the
Authentication Mechanism specific sections.

» SecurityContextHolder - The SecurityContextHolder is where Spring Security stores the details of
who is authenticated.

» SecurityContext - is obtained from the SecurityContextHolder and contains the Authentication of
the currently authenticated user.

* Authentication - Can be the input to AuthenticationManager to provide the credentials a user has
provided to authenticate or the current user from the SecurityContext.

* GrantedAuthority - An authority that is granted to the principal on the Authentication (i.e. roles,
scopes, etc.)

* AuthenticationManager - the API that defines how Spring Security’s Filters perform
authentication.

* ProviderManager - the most common implementation of AuthenticationManager.
» AuthenticationProvider - used by ProviderManager to perform a specific type of authentication.

* Request Credentials with AuthenticationEntryPoint - used for requesting credentials from a
client (i.e. redirecting to a log in page, sending a WWW-Authenticate response, etc.)

» AbstractAuthenticationProcessingFilter - a base Filter used for authentication. This also gives a
good idea of the high level flow of authentication and how pieces work together.

Authentication Mechanisms

* Username and Password - how to authenticate with a username/password

* OAuth 2.0 Login - OAuth 2.0 Log In with OpenID Connect and non-standard OAuth 2.0 Login (i.e.
GitHub)

* SAML 2.0 Login - SAML 2.0 Log In

* Central Authentication Server (CAS) - Central Authentication Server (CAS) Support
* Remember Me - How to remember a user past session expiration

* JAAS Authentication - Authenticate with JAAS

* OpenlID - OpenID Authentication (not to be confused with OpenID Connect)

* Pre-Authentication Scenarios - Authenticate with an external mechanism such as SiteMinder or
Java EE security but still use Spring Security for authorization and protection against common
exploits.

e X509 Authentication - X509 Authentication

63

https://www.siteminder.com/

10.1. SecurityContextHolder

At the heart of Spring Security’s authentication model is the SecurityContextHolder. It contains the
SecurityContext.

SecurityContextHolder
SecurityContext

Authentication

|Credentials Authorities

Principal

The SecurityContextHolder is where Spring Security stores the details of who is authenticated.
Spring Security does not care how the SecurityContextHolder is populated. If it contains a value,
then it is used as the currently authenticated user.

The simplest way to indicate a user is authenticated is to set the SecurityContextHolder directly.

Example 53. Setting SecurityContextHolder
Java

SecurityContext context = SecurityContextHolder.createEmptyContext(); @
Authentication authentication =

new TestingAuthenticationToken("username", "password", "ROLE_USER"); @
context.setAuthentication(authentication);

SecurityContextHolder.setContext(context); ®

Kotlin

val context: SecurityContext = SecurityContextHolder.createEmptyContext() @
val authentication: Authentication = TestingAuthenticationToken("username",
"password", "ROLE_USER") @

context.authentication = authentication

SecurityContextHolder.setContext(context) @

@ We start by creating an empty SecurityContext. It is important to create a new SecurityContext
instance instead of using
SecurityContextHolder.getContext().setAuthentication(authentication) to avoid race conditions
across multiple threads.

@ Next we create a new Authentication object. Spring Security does not care what type of
Authentication implementation is set on the SecurityContext. Here we use
TestingAuthenticationToken because it is very simple. A more common production scenario is

64

UsernamePasswordAuthenticationToken(userDetails, password, authorities).

® Finally, we set the SecurityContext on the SecurityContextHolder. Spring Security will use this
information for authorization.

If you wish to obtain information about the authenticated principal, you can do so by accessing the
SecurityContextHolder.

Example 54. Access Currently Authenticated User
Java

SecurityContext context = SecurityContextHolder.getContext();
Authentication authentication = context.getAuthentication();
String username = authentication.getName();

Object principal = authentication.getPrincipal();
Collection<? extends GrantedAuthority> authorities =
authentication.getAuthorities();

Kotlin

val context = SecurityContextHolder.getContext()
val authentication = context.authentication

val username = authentication.name

val principal = authentication.principal

val authorities = authentication.authorities

By default the SecurityContextHolder uses a ThreadlLocal to store these details, which means that the
SecurityContext is always available to methods in the same thread, even if the SecurityContext is
not explicitly passed around as an argument to those methods. Using a ThreadlLocal in this way is
quite safe if care is taken to clear the thread after the present principal’s request is processed.
Spring Security’s FilterChainProxy ensures that the SecurityContext is always cleared.

Some applications aren’t entirely suitable for using a ThreadLocal, because of the specific way they
work with threads. For example, a Swing client might want all threads in a Java Virtual Machine to
use the same security context. SecurityContextHolder can be configured with a strategy on startup
to specify how you would like the context to be stored. For a standalone application you would use
the SecurityContextHolder.MODE_GLOBAL strategy. Other applications might want to have threads
spawned by the secure thread also assume the same security identity. This is achieved by using
SecurityContextHolder .MODE_INHERITABLETHREADLOCAL. You can change the mode from the default
SecurityContextHolder .MODE_THREADLOCAL in two ways. The first is to set a system property, the
second is to call a static method on SecurityContextHolder. Most applications won’t need to change
from the default, but if you do, take a look at the JavaDoc for SecurityContextHolder to learn more.

10.2. SecurityContext

The SecurityContext is obtained from the SecurityContextHolder. The SecurityContext contains an
Authentication object.

65

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/core/context/SecurityContext.html

10.3. Authentication

The Authentication serves two main purposes within Spring Security:

* An input to AuthenticationManager to provide the credentials a user has provided to
authenticate. When used in this scenario, isAuthenticated() returns false.

* Represents the currently authenticated user. The current Authentication can be obtained from
the SecurityContext.

The Authentication contains:

* principal - identifies the user. When authenticating with a username/password this is often an
instance of UserDetails.

» credentials - Often a password. In many cases this will be cleared after the user is authenticated
to ensure it is not leaked.

* authorities - the GrantedAuthoritys are high level permissions the user is granted. A few
examples are roles or scopes.

10.4. GrantedAuthority

GrantedAuthoritys are high level permissions the user is granted. A few examples are roles or
scopes.

GrantedAuthoritys can be obtained from the Authentication.getAuthorities() method. This method
provides a Collection of GrantedAuthority objects. A GrantedAuthority is, not surprisingly, an
authority that is granted to the principal. Such authorities are usually "roles", such as
ROLE_ADMINISTRATOR or ROLE_HR_SUPERVISOR. These roles are later on configured for web
authorization, method authorization and domain object authorization. Other parts of Spring
Security are capable of interpreting these authorities, and expect them to be present. When using
username/password based authentication GrantedAuthoritys are wusually loaded by the
UserDetailsService.

Usually the GrantedAuthority objects are application-wide permissions. They are not specific to a
given domain object. Thus, you wouldn’t likely have a GrantedAuthority to represent a permission to
Employee object number 54, because if there are thousands of such authorities you would quickly
run out of memory (or, at the very least, cause the application to take a long time to authenticate a
user). Of course, Spring Security is expressly designed to handle this common requirement, but
you’d instead use the project’s domain object security capabilities for this purpose.

10.5. AuthenticationManager

AuthenticationManager is the API that defines how Spring Security’s Filters perform authentication.
The Authentication that is returned is then set on the SecurityContextHolder by the controller (i.e.
Spring Security’s Filterss) that invoked the AuthenticationManager. If you are not integrating with
Spring Security’s Filterss you can set the SecurityContextHolder directly and are not required to use
an AuthenticationManager.

66

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/core/Authentication.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/core/GrantedAuthority.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/core/GrantedAuthority.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/authentication/AuthenticationManager.html

While the implementation of AuthenticationManager could be anything, the most common
implementation is ProviderManager.

10.6. ProviderManager

ProviderManager is the most commonly used implementation of AuthenticationManager.
ProviderManager delegates to a List of AuthenticationProviders. Each AuthenticationProvider has an
opportunity to indicate that authentication should be successful, fail, or indicate it cannot make a
decision and allow a downstream AuthenticationProvider to decide. If none of the configured
AuthenticationProviders can authenticate, then authentication will fail with a
ProviderNotFoundException which is a special AuthenticationException that indicates the
ProviderManager was not configured to support the type of Authentication that was passed into it.

Authentication
Providers

AuthenticatinnPruviderD !

ProviderManager

In practice each AuthenticationProvider knows how to perform a specific type of authentication.
For example, one AuthenticationProvider might be able to validate a username/password, while
another might be able to authenticate a SAML assertion. This allows each AuthenticationProvider to
do a very specific type of authentication, while supporting multiple types of authentication and
only exposing a single AuthenticationManager bean.

ProviderManager also allows configuring an optional parent AuthenticationManager which is
consulted in the event that no AuthenticationProvider can perform authentication. The parent can
be any type of AuthenticationManager, but it is often an instance of ProviderManager.

67

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/authentication/ProviderManager.html

AuthenticationManager

Parent

PrnviderManager

Authentication
' Providers

e

In fact, multiple ProviderManager instances might share the same parent AuthenticationManager. This
is somewhat common in scenarios where there are multiple SecurityFilterChain instances that
have some authentication in common (the shared parent AuthenticationManager), but also different
authentication mechanisms (the different ProviderManager instances).

AuthenticationManager

P S
,f' ~
f/” ‘\\
P Parent ™~
// \‘mn
- x“m
PrnvlderManager ProviderManager
. “Authentication | . Authentication |
5 Providers 5 i Providers 5

By default ProviderManager will attempt to clear any sensitive credentials information from the
Authentication object which is returned by a successful authentication request. This prevents
information like passwords being retained longer than necessary in the HttpSession.

This may cause issues when you are using a cache of user objects, for example, to improve
performance in a stateless application. If the Authentication contains a reference to an object in the
cache (such as a UserDetails instance) and this has its credentials removed, then it will no longer be
possible to authenticate against the cached value. You need to take this into account if you are using
a cache. An obvious solution is to make a copy of the object first, either in the cache implementation
or in the AuthenticationProvider which creates the returned Authentication object. Alternatively,
you can disable the eraseCredentialsAfterAuthentication property on ProviderManager. See the

Javadoc for more information.

68

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/authentication/ProviderManager.html

10.7. AuthenticationProvider

Multiple AuthenticationProviders can be injected into ProviderManager. Each AuthenticationProvider
performs a specific type of authentication. For example, DaoAuthenticationProvider supports
username/password based authentication while JwtAuthenticationProvider supports authenticating
a JWT token.

10.8. Request Credentials with AuthenticationEntryPoint
AuthenticationEntryPoint is used to send an HTTP response that requests credentials from a client.

Sometimes a client will proactively include credentials such as a username/password to request a
resource. In these cases, Spring Security does not need to provide an HTTP response that requests
credentials from the client since they are already included.

In other cases, a client will make an unauthenticated request to a resource that they are not
authorized to access. In this case, an implementation of AuthenticationEntryPoint is used to request
credentials from the client. The AuthenticationEntryPoint implementation might perform a redirect
to a log in page, respond with an WWW-Authenticate header, etc.

10.9. AbstractAuthenticationProcessingFilter

AbstractAuthenticationProcessingFilter is used as a base Filter for authenticating a user’s
credentials. Before the credentials can be authenticated, Spring Security typically requests the
credentials using AuthenticationEntryPoint.

Next, the AbstractAuthenticationProcessingFilter can authenticate any authentication requests that
are submitted to it.

69

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/authentication/AuthenticationProvider.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/authentication/AuthenticationProvider.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/web/AuthenticationEntryPoint.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/web/authentication/AbstractAuthenticationProcessingFilter.html

SecurityFilterChain

0 When the user submits their credentials, the AbstractAuthenticationProcessingFilter creates an
Authentication from the HttpServletRequest to be authenticated. The type of Authentication created
depends on the subclass of AbstractAuthenticationProcessingFilter. For example,
UsernamePasswordAuthenticationFilter creates a UsernamePasswordAuthenticationToken from a
username and password that are submitted in the HttpServletRequest.

@ Next, the Authentication is passed into the AuthenticationManager to be authenticated.
@ If authentication fails, then Failure

* The SecurityContextHolder is cleared out.
* RememberMeServices.loginFail is invoked. If remember me is not configured, this is a no-op.

e AuthenticationFailureHandler is invoked.
@ If authentication is successful, then Success.

* SessionAuthenticationStrategy is notified of a new log in.

* The Authentication is set on the SecurityContextHolder. Later the

70

SecurityContextPersistenceFilter saves the SecurityContext to the HttpSession.
* RememberMeServices.loginSuccess is invoked. If remember me is not configured, this is a no-op.
* ApplicationEventPublisher publishes an InteractiveAuthenticationSuccessEvent.

e AuthenticationSuccessHandler is invoked.

10.10. Username/Password Authentication

One of the most common ways to authenticate a user is by validating a username and password. As
such, Spring Security provides comprehensive support for authenticating with a username and
password.

Reading the Username & Password

Spring Security provides the following built in mechanisms for reading a username and password
from the HttpServletRequest:

* Form Login
e Basic Authentication

* Digest Authentication
Storage Mechanisms

Each of the supported mechanisms for reading a username and password can leverage any of the
supported storage mechanisms:

Simple Storage with In-Memory Authentication

Relational Databases with JDBC Authentication

¢ Custom data stores with UserDetailsService

LDAP storage with LDAP Authentication

10.10.1. Form Login

Spring Security provides support for username and password being provided through an html
form. This section provides details on how form based authentication works within Spring Security.

Let’s take a look at how form based log in works within Spring Security. First, we see how the user
is redirected to the log in form.

71

SecurityFilterChain

... -
i

@ GET /private

(28 AccessDeniedException

- I

© Location: /login LoginUrl
B AuthenticationEntryPoint

@ GET /login

(5] login.html

Figure 6. Redirecting to the Log In Page
The figure builds off our SecurityFilterChain diagram.

o First, a user makes an unauthenticated request to the resource /private for which it is not
authorized.

@ Spring Security’s FilterSecurityInterceptor indicates that the unauthenticated request is Denied
by throwing an AccessDeniedException.

@ Since the user is not authenticated, ExceptionTranslationFilter initiates Start Authentication and
sends a redirect to the log in page with the configured AuthenticationEntryPoint. In most cases the
AuthenticationEntryPoint is an instance of LoginUr1AuthenticationEntryPoint.

@ The browser will then request the log in page that it was redirected to.
6 Something within the application, must render the log in page.

When the username and password are submitted, the UsernamePasswordAuthenticationFilter
authenticates the username and password. The UsernamePasswordAuthenticationFilter extends
AbstractAuthenticationProcessingFilter, so this diagram should look pretty similar.

72

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/web/authentication/LoginUrlAuthenticationEntryPoint.html

SecurityFilterChain
(2]
: - Authenticated?

Success

Figure 7. Authenticating Username and Password
The figure builds off our SecurityFilterChain diagram.

0 When the user submits their username and password, the UsernamePasswordAuthenticationFilter
creates a UsernamePasswordAuthenticationToken which is a type of Authentication by extracting the
username and password from the HttpServletRequest.

@ Next, the UsernamePasswordAuthenticationToken is passed into the AuthenticationManager to be
authenticated. The details of what AuthenticationManager look like depend on how the user
information is stored.

© 1t authentication fails, then Failure

* The SecurityContextHolder is cleared out.
* RememberMeServices.loginFail is invoked. If remember me is not configured, this is a no-op.

e AuthenticationFailureHandler is invoked.

e’ If authentication is successful, then Success.

» SessionAuthenticationStrategy is notified of a new log in.

The Authentication is set on the SecurityContextHolder.

* RememberMeServices.loginSuccess is invoked. If remember me is not configured, this is a no-op.

ApplicationEventPublisher publishes an InteractiveAuthenticationSuccessEvent.

* The AuthenticationSuccessHandler is invoked. Typically this is a
SimpleUrlAuthenticationSuccessHandler which will redirect to a request saved by
ExceptionTranslationFilter when we redirect to the log in page.

Spring Security form log in is enabled by default. However, as soon as any servlet based
configuration is provided, form based log in must be explicitly provided. A minimal, explicit Java
configuration can be found below:

Example 55. Form Log In
Java

protected void configure(HttpSecurity http) {
http
/] ...
.formLogin(withDefaults());

XML

<http>
== ==2
<form-login />
</http>

Kotlin

fun configure(http: HttpSecurity) {
http {
/] ...
formLogin { }

In this configuration Spring Security will render a default log in page. Most production applications
will require a custom log in form.

The configuration below demonstrates how to provide a custom log in form.

74

Example 56. Custom Log In Form Configuration
Java

protected void configure(HttpSecurity http) throws Exception {
http
/] ...
.formLogin(form -> form
.loginPage("/login")
.permitAll()
)i

XML

<http>
== o =0
<intercept-url pattern="/login" access="permitAll" />
<form-login login-page="/login" />

</http>

Kotlin

fun configure(http: HttpSecurity) {
http {
/] ...
formLogin {
loginPage = "/login"
permitAll()

When the login page is specified in the Spring Security configuration, you are responsible for
rendering the page. Below is a Thymeleaf template that produces an HTML login form that
complies with a login page of /1login.:

75

https://www.thymeleaf.org/

Example 57. Log In Form

src/main/resources/templates/login.html

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:th="https://www.thymeleaf.org">
<head>
<title>Please Log In</title>
</head>
<body>
<h1>Please Log In</h1>
<div th:if="${param.error}">
Invalid username and password.</div>
<div th:if="${param.logout}">
You have been logged out.</div>
<form th:action="@{/login}" method="post">
<div>
<input type="text" name="username" placeholder="Username"/>
</div>
<div>
<input type="password" name="password" placeholder="Password"/>
</div>
<input type="submit" value="Log in" />
</form>
</body>
</html>

There are a few key points about the default HTML form:

* The form should perform a post to /login

* The form will need to include a CSRF Token which is automatically included by Thymeleaf.
* The form should specify the username in a parameter named username

* The form should specify the password in a parameter named password

* If the HTTP parameter error is found, it indicates the user failed to provide a valid username /
password

« If the HTTP parameter logout is found, it indicates the user has logged out successfully

Many users will not need much more than to customize the log in page. However, if needed
everything above can be customized with additional configuration.

If you are using Spring MVC, you will need a controller that maps GET /login to the login template
we created. A minimal sample LoginController can be see below:

76

Example 58. LoginController
Java

@Controller
class LoginController {
@GetMapping("/login")
String login() {
return "login";

}

Kotlin

@Controller
class LoginController {
@GetMapping("/login")
fun login(): String {
return "login"

}

10.10.2. Basic Authentication

This section provides details on how Spring Security provides support for Basic HTTP
Authentication for servlet based applications.

Let’s take a look at how HTTP Basic Authentication works within Spring Security. First, we see the
WWW-Authenticate header is sent back to an unauthenticated client.

@ GET /private

Spring Web Application

Y

© WWW-Authenticate

SecurityFilterChain

(2 AccessDeniedException

: |
Basic
AuthenticationEntryPoint

Figure 8. Sending WWW-Authenticate Header

The figure builds off our SecurityFilterChain diagram.

o First, a user makes an unauthenticated request to the resource /private for which it is not

77

https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7235#section-4.1

authorized.

9 Spring Security’s FilterSecurityInterceptor indicates that the unauthenticated request is Denied
by throwing an AccessDeniedException.

@ Since the user is not authenticated, ExceptionTranslationFilter initiates Start Authentication. The
configured AuthenticationEntryPoint is an instance of BasicAuthenticationEntryPoint which sends a
WWW-Authenticate header. The RequestCache is typically a NullRequestCache that does not save the
request since the client is capable of replaying the requests it originally requested.

When a client receives the WWW-Authenticate header it knows it should retry with a username
and password. Below is the flow for the username and password being processed.

SecurityFilterChain | .
: UsernamePassword

(1) [AuthenticationToken)

o
Y
AuthenticationManager

Authenticated‘?i

Failure Success
SecurityContextHolder | SecurityContextHolder
. | RememberMeServices RememberMeServices
Authentication L Continue Application
i EntryPoint | i |

Figure 9. Authenticating Username and Password
The figure builds off our SecurityFilterChain diagram.

0 When the user submits their username and password, the BasicAuthenticationFilter creates a
UsernamePasswordAuthenticationToken which is a type of Authentication by extracting the username
and password from the HttpServletRequest.

9 Next, the UsernamePasswordAuthenticationToken is passed into the AuthenticationManager to be
authenticated. The details of what AuthenticationManager look like depend on how the user
information is stored.

78

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/web/authentication/www/BasicAuthenticationEntryPoint.html

@ If authentication fails, then Failure

* The SecurityContextHolder is cleared out.
* RememberMeServices.loginFail is invoked. If remember me is not configured, this is a no-op.

* AuthenticationEntryPoint is invoked to trigger the WWW-Authenticate to be sent again.
9 If authentication is successful, then Success.

* The Authentication is set on the SecurityContextHolder.
* RememberMeServices.loginSuccess is invoked. If remember me is not configured, this is a no-op.
* The BasicAuthenticationFilter invokes FilterChain.doFilter(request,response) to continue

with the rest of the application logic.

Spring Security’s HTTP Basic Authentication support in is enabled by default. However, as soon as
any servlet based configuration is provided, HTTP Basic must be explicitly provided.

A minimal, explicit configuration can be found below:

Example 59. Explicit HTTP Basic Configuration
Java

protected void configure(HttpSecurity http) {
http
/] ...
.httpBasic(withDefaults());

XML

<http>
Q== Lo ==
<http-basic />
</http>

Kotlin

fun configure(http: HttpSecurity) {
http {
/] ...
httpBasic { }

79

10.10.3. Digest Authentication

This section provides details on how Spring Security provides support for Digest Authentication
which is provided DigestAuthenticationFilter.

You should not use Digest Authentication in modern applications because it is not
considered secure. The most obvious problem is that you must store your

A passwords in plaintext, encrypted, or an MD5 format. All of these storage formats
are considered insecure. Instead, you should store credentials using a one way
adaptive password hash (i.e. bCrypt, PBKDF2, SCrypt, etc) which is not supported
by Digest Authentication.

Digest Authentication attempts to solve many of the weaknesses of Basic authentication, specifically
by ensuring credentials are never sent in clear text across the wire. Many browsers support Digest
Authentication.

The standard governing HTTP Digest Authentication is defined by RFC 2617, which updates an
earlier version of the Digest Authentication standard prescribed by RFC 2069. Most user agents
implement RFC 2617. Spring Security’s Digest Authentication support is compatible with the “auth”
quality of protection (qop) prescribed by RFC 2617, which also provides backward compatibility
with RFC 2069. Digest Authentication was seen as a more attractive option if you need to use
unencrypted HTTP (i.e. no TLS/HTTPS) and wish to maximise security of the authentication process.
However, everyone should use HTTPS.

Central to Digest Authentication is a "nonce". This is a value the server generates. Spring Security’s
nonce adopts the following format:

Example 60. Digest Syntax

baseb4(expirationTime + ":" + md5Hex(expirationTime + ":" + key))
expirationTime: The date and time when the nonce expires, expressed in
milliseconds

key: A private key to prevent modification of the nonce token

You will need to ensure you configure insecure plain text Password Storage using
NoOpPasswordEncoder . The following provides an example of configuring Digest Authentication
with Java Configuration:

80

https://tools.ietf.org/html/rfc2617
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Digest#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Digest#Browser_compatibility
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2069

Example 61. Digest Authentication
Java

@Autowired
UserDetailsService userDetailsService;

DigestAuthenticationEntryPoint entryPoint() {
DigestAuthenticationEntryPoint result = new DigestAuthenticationEntryPoint();
result.setRealmName("My App Relam");
result.setKey("3028472b-da34-4501-bfd8-a355c42bdf92");

}

DigestAuthenticationFilter digestAuthenticationFilter() {
DigestAuthenticationFilter result = new DigestAuthenticationFilter();
result.setUserDetailsService(userDetailsService);
result.setAuthenticationEntryPoint(entryPoint());

}

protected void configure(HttpSecurity http) throws Exception {
http
/] ...
.exceptionHandling(e ->
e.authenticationEntryPoint(authenticationEntryPoint()))
.addFilterBefore(digestFilter());
}

XML
<b:bean id="digestFilter"

class="org.springframework.security.web.authentication.www.DigestAuthenticationFil
ter"
p:userDetailsService-ref="jdbcDaoImpl"
p:authenticationEntryPoint-ref="digestEntryPoint"
/>

<b:bean id="digestEntryPoint"

class="org.springframework.security.web.authentication.www.DigestAuthenticationEnt
ryPoint"

p:realmName="My App Realm"

p:key="3028472b-da34-4501-bfd8-a355c42bdf92"
/>

<http>

l-- ... -

<custom-filter ref="userFilter" position="DIGEST_AUTH_FILTER"/>
</http>

10.10.4. In-Memory Authentication

Spring Security’s InMemoryUserDetailsManager implements UserDetailsService to provide support for
username/password based authentication that is retrieved in memory. InMemoryUserDetailsManager
provides management of UserDetails by implementing the UserDetailsManager interface.
UserDetails based authentication is used by Spring Security when it is configured to accept a
username/password for authentication.

In this sample we use Spring Boot CLI to encode the password of password and get the encoded
password of {bcrypt}$2a$10$GRLdN1jSQMUv1/3u9ofL .eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W.

82

Example 62. InMemoryUserDetailsManager Java Configuration
Java

@Bean
public UserDetailsService users() {
UserDetails user = User.builder()
.username("user")

.password("{bcrypt}$2a$10$GRLdN1jSQMUv1/au90fL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W")
.roles("USER")
.build();
UserDetails admin = User.builder()
.username("admin")

.password("{bcrypt}$2a$10$GRLdN1jSQMUv1/au9ofL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W")
.roles("USER", "ADMIN")
.build();
return new InMemoryUserDetailsManager(user, admin);

XML

<user-service>
<user name="user"

password="{bcrypt}$2a$10$GRLdN1jSQMUv1/au90fL .eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W"
authorities="ROLE_USER" />
<user name="admin"

password="{bcrypt}$2a$10$6RLdN1jSQMUv1/au90fL .eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W"
authorities="ROLE_USER,ROLE_ADMIN" />
</user-service>

83

Kotlin

©Bean
fun users(): UserDetailsService {
val user = User.builder()
.username("user")

.password("{bcrypt}$2a$10\$GRLAN1jSQMUv1/au90fL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W")
.roles("USER")
.build()
val admin = User.builder()
.username("admin")

.password("{bcrypt}$2a$10\$GRLAN1jSQMUv1/au9ofL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W")
.roles("USER", "ADMIN")
.build()
return InMemoryUserDetailsManager(user, admin)

The samples above store the passwords in a secure format, but leave a lot to be desired in terms of
getting started experience.

In the sample below we leverage User.withDefaultPasswordEncoder to ensure that the password
stored in memory is protected. However, it does not protect against obtaining the password by
decompiling the source code. For this reason, User.withDefaultPasswordEncoder should only be used
for "getting started" and is not intended for production.

84

Example 63. InMemoryUserDetailsManager with User.withDefaultPasswordEncoder
Java

@Bean
public UserDetailsService users() {
// The builder will ensure the passwords are encoded before saving in memory
UserBuilder users = User.withDefaultPasswordEncoder();
UserDetails user = users
.username("user")
.password("password")
.roles("USER")
.build();
UserDetails admin = users
.username("admin")
.password("password")
.roles("USER", "ADMIN")
.build();
return new InMemoryUserDetailsManager(user, admin);

Kotlin

@Bean
fun users(): UserDetailsService {
// The builder will ensure the passwords are encoded before saving in memory
val users = User.withDefaultPasswordEncoder()
val user = users
.username("user")
.password("password")
.roles("USER")
.build()
val admin = users
.username("admin")
.password("password")
.roles("USER", "ADMIN")
.build()
return InMemoryUserDetailsManager(user, admin)

There is no simple way to use User.withDefaultPasswordEncoder with XML based configuration. For
demos or just getting started, you can choose to prefix the password with {noop} to indicate no
encoding should be used.

85

Example 64. <user-service> {noop} XML Configuration

<user-service>
<user name="user"
password="{noop}password"
authorities="ROLE_USER" />
<user name="admin"
password="{noop}password"
authorities="ROLE_USER,ROLE_ADMIN" />
</user-service>

10.10.5. JDBC Authentication

Spring Security’s JdbcDaoImpl implements UserDetailsService to provide support for
username/password based authentication that is retrieved using JDBC. JdbcUserDetailsManager
extends JdbcDaoImpl to provide management of UserDetails through the UserDetailsManager
interface. UserDetails based authentication is used by Spring Security when it is configured to
accept a username/password for authentication.

In the following sections we will discuss:

* The Default Schema used by Spring Security J]DBC Authentication
» Setting up a DataSource

* JdbcUserDetailsManager Bean

Default Schema

Spring Security provides default queries for JDBC based authentication. This section provides the
corresponding default schemas used with the default queries. You will need to adjust the schema to
match any customizations to the queries and the database dialect you are using.

User Schema

JdbcDaoImpl requires tables to load the password, account status (enabled or disabled) and a list of
authorities (roles) for the user. The default schema required can be found below.

o The default schema is also exposed as a classpath resource named
org/springframework/security/core/userdetails/jdbc/users.ddl.

86

Example 65. Default User Schema

create table users(
username varchar_ignorecase(50) not null primary key,
password varchar_ignorecase(500) not null,
enabled boolean not null

);

create table authorities (
username varchar_ignorecase(50) not null,
authority varchar_ignorecase(50) not null,
constraint fk_authorities_users foreign key(username) references

users(username)
)

create unique index ix_auth_username on authorities (username,authority);

Oracle is a popular database choice, but requires a slightly different schema. You can find the
default Oracle Schema for users below.

Example 66. Default User Schema for Oracle Databases

CREATE TABLE USERS (
USERNAME NVARCHAR2(128) PRIMARY KEY,
PASSWORD NVARCHAR2(128) NOT NULL,
ENABLED CHAR(1) CHECK (ENABLED IN ('Y','N')) NOT NULL

)

CREATE TABLE AUTHORITIES (
USERNAME NVARCHAR2(128) NOT NULL,
AUTHORITY NVARCHAR2(128) NOT NULL
);
ALTER TABLE AUTHORITIES ADD CONSTRAINT AUTHORITIES UNIQUE UNIQUE (USERNAME,

AUTHORITY);
ALTER TABLE AUTHORITIES ADD CONSTRAINT AUTHORITIES_FK1 FOREIGN KEY (USERNAME)

REFERENCES USERS (USERNAME) ENABLE;

Group Schema

If your application is leveraging groups, you will need to provide the groups schema. The default
schema for groups can be found below.

87

Example 67. Default Group Schema

create table groups (
id bigint generated by default as identity(start with @) primary key,
group_name varchar_ignorecase(50) not null

)

create table group_authorities (

group_id bigint not null,

authority varchar(50) not null,

constraint fk_group_authorities_group foreign key(group_id) references
groups(id)
)i

create table group_members (
id bigint generated by default as identity(start with @) primary key,
username varchar(50) not null,
group_id bigint not null,
constraint fk_group_members_group foreign key(group_id) references groups(id)

)

Setting up a DataSource

Before we configure JdbcUserDetailsManager, we must create a DataSource. In our example, we will
setup an embedded DataSource that is initialized with the default user schema.

88

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/data-access.html#jdbc-embedded-database-support

Example 68. Embedded Data Source
Java

@Bean
DataSource dataSource() {
return new EmbeddedDatabaseBuilder()
.setType(H2)

.addScript("classpath:org/springframework/security/core/userdetails/jdbc/users.ddl
II)

.build();
}

XML

<jdbc:embedded-database>

<jdbc:script
location="classpath:org/springframework/security/core/userdetails/jdbc/users.dd1"/
>
</jdbc:embedded-database>

Kotlin

@Bean
fun dataSource(): DataSource {
return EmbeddedDatabaseBuilder()
.setType(H2)

.addScript("classpath:org/springframework/security/core/userdetails/jdbc/users.ddl
II)

.build()
}

In a production environment, you will want to ensure you setup a connection to an external
database.

JdbcUserDetailsManager Bean

In this sample we use Spring Boot CLI to encode the password of password and get the encoded
password of {bcrypt}$2a$10$GRLdN1jSQMUv1/au9ofL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W. See the
PasswordEncoder section for more details about how to store passwords.

89

Example 69. JdbcUserDetailsManager
Java

@Bean
UserDetailsManager users(DataSource dataSource) {
UserDetails user = User.builder()
.username("user")

.password("{bcrypt}$2a$10$GRLdN1jSQMUv1/au90fL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W")
.roles("USER")
.build();
UserDetails admin = User.builder()
.username("admin")

.password("{bcrypt}$2a$10$GRLdN1jSQMUv1/au9ofL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W")
.roles("USER", "ADMIN")
.build();
JdbcUserDetailsManager users = new JdbcUserDetailsManager(dataSource);
users.createUser(user);
users.createUser(admin);

XML

<jdbc-user-service>
<user name="user"

password="{bcrypt}$2a$10$GRLdN1jSQMUv1/au9ofL .eDwmoohzzS7.rmNSJIZ.0Fx0/BTk76k1W"
authorities="ROLE_USER" />
<user name="admin"

password="{bcrypt}$2a$10$GRLdN1jSQMUv1/au90fL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W"

authorities="ROLE_USER,ROLE_ADMIN" />
</jdbc-user-service>

90

Kotlin

@Bean
fun users(dataSource: DataSource): UserDetailsManager {
val user = User.builder()
.username("user")

.password("{bcrypt}$2a$10\$GRLAN1jSQMUv1/au90fL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W")
.roles("USER")
.build();
val admin = User.builder()
.username("admin")

.password("{bcrypt}$2a$10\$GRLAN1jSQMUv1/au9ofL.eDwmoohzzS7.rmNSIZ.0Fx0/BTk76k1W")
.roles("USER", "ADMIN")
.build();
val users = JdbcUserDetailsManager(dataSource)
users.createUser(user)
users.createUser(admin)
return users

10.10.6. UserDetails

UserDetails is returned by the UserDetailsService. The DaoAuthenticationProvider validates the
UserDetails and then returns an Authentication that has a principal that is the UserDetails returned
by the configured UserDetailsService.

10.10.7. UserDetailsService

UserDetailsService is used by DaoAuthenticationProvider for retrieving a username, password, and
other attributes for authenticating with a username and password. Spring Security provides in-
memory and JDBC implementations of UserDetailsService.

You can define custom authentication by exposing a custom UserDetailsService as a bean. For
example, the following will customize authentication assuming that CustomUserDetailsService
implements UserDetailsService:

o This is only used if the AuthenticationManagerBuilder has not been populated and
no AuthenticationProviderBean is defined.

91

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/core/userdetails/UserDetails.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/core/userdetails/UserDetailsService.html

Example 70. Custom UserDetailsService Bean
Java
@Bean

CustomUserDetailsService customUserDetailsService() {
return new CustomUserDetailsService();

XML

<b:bean class="example.CustomUserDetailsService"/>

Kotlin

@Bean
fun customUserDetailsService() = CustomUserDetailsService()

10.10.8. PasswordEncoder

Spring Security’s servlet support storing passwords securely by integrating with PasswordEncoder.
Customizing the PasswordEncoder implementation used by Spring Security can be done by exposing
a PasswordEncoder Bean.

10.10.9. DaoAuthenticationProvider

DaoAuthenticationProvider 1is an AuthenticationProvider implementation that leverages a
UserDetailsService and PasswordEncoder to authenticate a username and password.

Let’'s take a look at how DaoAuthenticationProvider works within Spring Security. The figure
explains details of how the AuthenticationManager in figures from Reading the Username &
Password works.

92

https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/authentication/dao/DaoAuthenticationProvider.html

UsernamePassword h
o AuthenticationToken

Username || Password AuthenticationManager
e UsernamePassword ProviderManager
AuthenticationToken ‘

UserDetails | | Authorities

Authentication (2]
Providers

© | UserDetailsService |

*——/ DaoAuthenticationProvider -|—
@ | PasswordEncoder | : 5 ra— /I __ o

Figure 10. DaoAuthenticationProvider Usage

0 The authentication Filter from Reading the Username & Password passes a
UsernamePasswordAuthenticationToken to the AuthenticationManager which is implemented by
ProviderManager.

@ The ProviderManager is configured to wuse an AuthenticationProvider of type
DaoAuthenticationProvider.

9 DaoAuthenticationProvider looks up the UserDetails from the UserDetailsService.

9 DaoAuthenticationProvider then uses the PasswordEncoder to validate the password on the
UserDetails returned in the previous step.

@ When authentication is successful, the Authentication that is returned is of type
UsernamePasswordAuthenticationToken and has a principal that is the UserDetails returned by the
configured UserDetailsService. Ultimately, the returned UsernamePasswordAuthenticationToken will
be set on the SecurityContextHolder by the authentication Filter.

10.10.10. LDAP Authentication

LDAP is often used by organizations as a central repository for user information and as an
authentication service. It can also be used to store the role information for application users.

Spring Security’s LDAP based authentication is used by Spring Security when it is configured to
accept a username/password for authentication. However, despite leveraging a

93

username/password for authentication it does not integrate using UserDetailsService because in
bind authentication the LDAP server does not return the password so the application cannot
perform validation of the password.

There are many different scenarios for how an LDAP server may be configured so Spring Security’s
LDAP provider is fully configurable. It uses separate strategy interfaces for authentication and role
retrieval and provides default implementations which can be configured to handle a wide range of
situations.

Prerequisites

You should be familiar with LDAP before trying to use it with Spring Security. The following link
provides a good introduction to the concepts involved and a guide to setting up a directory using
the free LDAP server OpenLDAP: https://www.zytrax.com/books/ldap/. Some familiarity with the
JNDI APIs used to access LDAP from Java may also be useful. We don’t use any third-party LDAP
libraries (Mozilla, JLDAP etc.) in the LDAP provider, but extensive use is made of Spring LDAP, so
some familiarity with that project may be useful if you plan on adding your own customizations.

When using LDAP authentication, it is important to ensure that you configure LDAP connection
pooling properly. If you are unfamiliar with how to do this, you can refer to the Java LDAP
documentation.

Setting up an Embedded LDAP Server

The first thing you will need to do is to ensure that you have an LDAP Server to point your
configuration to. For simplicity, it often best to start with an embedded LDAP Server. Spring
Security supports using either:

* Embedded UnboundID Server
* Embedded ApacheDS Server

In the samples below, we expose the following as users.1dif as a classpath resource to initialize the
embedded LDAP server with the users user and admin both of which have a password of password.

94

https://www.zytrax.com/books/ldap/
https://docs.oracle.com/javase/jndi/tutorial/ldap/connect/config.html
https://docs.oracle.com/javase/jndi/tutorial/ldap/connect/config.html

users.ldif

dn: ou=groups,dc=springframework,dc=org
objectclass: top

objectclass: organizationalUnit

ou: groups

dn: ou=people,dc=springframework,dc=org
objectclass: top

objectclass: organizationalUnit

ou: people

dn: uid=admin,ou=people,dc=springframework,dc=org
objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Rod Johnson

sn: Johnson

uid: admin

userPassword: password

dn: uid=user,ou=people,dc=springframework,dc=org
objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Dianne Emu

sn: Emu

uid: user

userPassword: password

dn: cn=user,ou=groups,dc=springframework,dc=org
objectclass: top

objectclass: groupOfNames

cn: user

uniqueMember: uid=admin,ou=people,dc=springframework,dc=org
uniqueMember: uid=user,ou=people,dc=springframework,dc=org

dn: cn=admin,ou=groups,dc=springframework,dc=org
objectclass: top

objectclass: groupOfNames

cn: admin

uniqueMember: uid=admin,ou=people,dc=springframework,dc=org

Embedded UnboundID Server

If you wish to use UnboundID, then specify the following dependencies:

95

https://ldap.com/unboundid-ldap-sdk-for-java/

Example 71. UnboundID Dependencies
Maven

<dependency>
<groupId>com.unboundid</groupId>
<artifactId>unboundid-1dapsdk</artifactId>
<version>4.0.14</version>
<scope>runtime</scope>

</dependency>

Gradle

depenendencies {
runtimeOnly "com.unboundid:unboundid-1dapsdk:4.0.14"
}

You can then configure the Embedded LDAP Server

Example 72. Embedded LDAP Server Configuration
Java

@Bean
UnboundIdContainer ldapContainer() {
return new UnboundIdContainer("dc=springframework,dc=org",
"classpath:users.1dif");

XML

<b:bean class="org.springframework.security.ldap.server.UnboundIdContainer"
c:defaultPartitionSuffix="dc=springframework,dc=org"
c:1dif="classpath:users.1dif"/>

Kotlin

@Bean
fun 1dapContainer(): UnboundIdContainer {

return UnboundIdContainer("dc=springframework,dc=org","classpath:users.1dif")

}

Embedded ApacheDS Server

96

Spring Security uses ApacheDS 1.x which is no longer maintained. Unfortunately,
ApacheDS 2.x has only released milestone versions with no stable release. Once a
stable release of ApacheDS 2.x is available, we will consider updating.

If you wish to use Apache DS, then specify the following dependencies:

Example 73. ApacheDS Dependencies
Maven

<dependency>
<groupId>org.apache.directory.server</groupIld>
<artifactId>apacheds-core</artifactld>
<version>1.5.5</version>
<scope>runtime</scope>

</dependency>

<dependency>
<groupld>org.apache.directory.server</groupld>
<artifactId>apacheds-server-jndi</artifactId>
<version>1.5.5</version>
<scope>runtime</scope>

</dependency>

Gradle

depenendencies {
runtimeOnly "org.apache.directory.server:apacheds-core:1.5.5"
runtimeOnly "org.apache.directory.server:apacheds-server-jndi:1.5.5"

You can then configure the Embedded LDAP Server

https://directory.apache.org/apacheds/

Example 74. Embedded LDAP Server Configuration
Java

@Bean
ApacheDSContainer 1ldapContainer() {
return new ApacheDSContainer("dc=springframework,dc=org",
"classpath:users.1dif");

XML

<b:bean class="org.springframework.security.ldap.server.ApacheDSContainer"
c:defaultPartitionSuffix="dc=springframework,dc=org"
c:ldif="classpath:users.1dif"/>

Kotlin

@Bean
fun 1dapContainer(): ApacheDSContainer {
return ApacheDSContainer("dc=springframework,dc=org", "classpath:users.ldif")

}

LDAP ContextSource

Once you have an LDAP Server to point your configuration to, you need configure Spring Security
to point to an LDAP server that should be used to authenticate users. This is done by creating an
LDAP ContextSource, which is the equivalent of a JDBC DataSource.

98

Example 75. LDAP Context Source
Java

ContextSource contextSource(UnboundIdContainer container) {

return new
DefaultSpringSecurityContextSource("1dap://1localhost:53389/dc=springframework,dc=0
rg");
}

XML

<ldap-server
url="1dap://localhost:53389/dc=springframework,dc=org" />

Kotlin

fun contextSource(container: UnboundIdContainer): ContextSource {
return
DefaultSpringSecurityContextSource("1dap://1localhost:53389/dc=springframework,dc=0

rg")
}

Authentication

Spring Security’s LDAP support does not use the UserDetailsService because LDAP bind
authentication does not allow clients to read the password or even a hashed version of the
password. This means there is no way a password to be read and then authenticated by Spring
Security.

For this reason, LDAP support is implemented using the LdapAuthenticator interface. The
LdapAuthenticator is also responsible for retrieving any required user attributes. This is because the
permissions on the attributes may depend on the type of authentication being used. For example, if
binding as the user, it may be necessary to read them with the user’s own permissions.

There are two LdapAuthenticator implementations supplied with Spring Security:

» Using Bind Authentication

* Using Password Authentication

Using Bind Authentication

Bind Authentication is the most common mechanism for authenticating users with LDAP. In bind
authentication the users credentials (i.e. username/password) are submitted to the LDAP server
which authenticates them. The advantage to using bind authentication is that the user’s secrets (i.e.
password) do not need to be exposed to clients which helps to protect them from leaking.

An example of bind authentication configuration can be found below.

99

https://ldap.com/the-ldap-bind-operation/

Example 76. Bind Authentication
Java

@Bean

BindAuthenticator authenticator(BaseLdapPathContextSource contextSource) {
BindAuthenticator authenticator = new BindAuthenticator(contextSource);
authenticator.setUserDnPatterns(new String[] { "uid={0},ou=people" });
return authenticator;

}

@Bean
LdapAuthenticationProvider authenticationProvider(LdapAuthenticator authenticator)

{

return new LdapAuthenticationProvider(authenticator);

}

XML

<ldap-authentication-provider
user-dn-pattern="uid={0}, ou=people"/>

Kotlin

@Bean

fun authenticator(contextSource: BaselLdapPathContextSource): BindAuthenticator {
val authenticator = BindAuthenticator(contextSource)
authenticator.setUserDnPatterns(array0f("uid={0}, ou=people"))
return authenticator

@Bean
fun authenticationProvider(authenticator: LdapAuthenticator):
LdapAuthenticationProvider {

return LdapAuthenticationProvider(authenticator)

}

This simple example would obtain the DN for the user by substituting the user login name in the
supplied pattern and attempting to bind as that user with the login password. This is OK if all your
users are stored under a single node in the directory. If instead you wished to configure an LDAP
search filter to locate the user, you could use the following:

100

Example 77. Bind Authentication with Search Filter
Java

@Bean

BindAuthenticator authenticator(BaseLdapPathContextSource contextSource) {
String searchBase = "ou=people";
String filter = "(uid={0})";
FilterBasedLdapUserSearch search =

new FilterBasedLdapUserSearch(searchBase, filter, contextSource);

BindAuthenticator authenticator = new BindAuthenticator(contextSource);
authenticator.setUserSearch(search);
return authenticator;

}

@Bean
LdapAuthenticationProvider authenticationProvider(LdapAuthenticator authenticator)

{

return new LdapAuthenticationProvider(authenticator);

}

XML

<ldap-authentication-provider
user-search-filter="(uid={0})"
user-search-base="ou=people"/>

Kotlin

@Bean

fun authenticator(contextSource: BaselLdapPathContextSource): BindAuthenticator {
val searchBase = "ou=people"
val filter = "(uid={0})"
val search = FilterBasedlLdapUserSearch(searchBase, filter, contextSource)
val authenticator = BindAuthenticator(contextSource)
authenticator.setUserSearch(search)
return authenticator

}

@Bean
fun authenticationProvider(authenticator: LdapAuthenticator):
LdapAuthenticationProvider {

return LdapAuthenticationProvider(authenticator)

}

If used with the ContextSource definition above, this would perform a search under the DN
ou=people,dc=springframework,dc=org using (uid={0}) as a filter. Again the user login name is
substituted for the parameter in the filter name, so it will search for an entry with the uid attribute

101

equal to the user name. If a user search base isn’t supplied, the search will be performed from the
root.

Using Password Authentication

Password comparison is when the password supplied by the user is compared with the one stored
in the repository. This can either be done by retrieving the value of the password attribute and
checking it locally or by performing an LDAP "compare" operation, where the supplied password is
passed to the server for comparison and the real password value is never retrieved. An LDAP
compare cannot be done when the password is properly hashed with a random salt.

Example 78. Minimal Password Compare Configuration
Java

@Bean
PasswordComparisonAuthenticator authenticator(BaselLdapPathContextSource
contextSource) {

return new PasswordComparisonAuthenticator(contextSource);

@Bean
LdapAuthenticationProvider authenticationProvider(LdapAuthenticator authenticator)

{

return new LdapAuthenticationProvider(authenticator);

XML

<ldap-authentication-provider
user-dn-pattern="uid={0}, ou=people">
<password-compare />
</1ldap-authentication-provider>

Kotlin

@Bean
fun authenticator(contextSource: BaseldapPathContextSource):
PasswordComparisonAuthenticator {

return PasswordComparisonAuthenticator(contextSource)

}

@Bean
fun authenticationProvider(authenticator: LdapAuthenticator):
LdapAuthenticationProvider {

return LdapAuthenticationProvider(authenticator)

}

102

A more advanced configuration with some customizations can be found below.

103

Example 79. Password Compare Configuration

Java

@Bean
PasswordComparisonAuthenticator authenticator(BaselLdapPathContextSource
contextSource) {
PasswordComparisonAuthenticator authenticator =
new PasswordComparisonAuthenticator(contextSource);
authenticator.setPasswordAttributeName("pwd"); @®
authenticator.setPasswordEncoder (new BCryptPasswordEncoder()); @
return authenticator;

@Bean
LdapAuthenticationProvider authenticationProvider(LdapAuthenticator authenticator)

{

return new LdapAuthenticationProvider(authenticator);

}

XML

<ldap-authentication-provider
user-dn-pattern="uid={0}, ou=people">
<password-compare password-attribute="pwd"> @
<password-encoder ref="passwordEncoder" /> @
</password-compare>
</1ldap-authentication-provider>
<b:bean id="passwordEncoder"
class="org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder" />

Kotlin

104

@Bean

fun authenticator(contextSource: BaseldapPathContextSource):

PasswordComparisonAuthenticator {
val authenticator = PasswordComparisonAuthenticator(contextSource)
authenticator.setPasswordAttributeName("pwd") @
authenticator.setPasswordEncoder (BCryptPasswordEncoder()) @
return authenticator

}

@Bean
fun authenticationProvider(authenticator: LdapAuthenticator):
LdapAuthenticationProvider {

return LdapAuthenticationProvider(authenticator)

}

@ Specify the password attribute as pwd

@ Use BCryptPasswordEncoder

LdapAuthoritiesPopulator

Spring Security’s LdapAuthoritiesPopulator is used to determine what authorites are returned for
the user.

105

Example 80. LdapAuthoritiesPopulator Configuration

Java
@Bean
LdapAuthoritiesPopulator authorities(BaselLdapPathContextSource contextSource) {
String groupSearchBase = "";

DefaultlLdapAuthoritiesPopulator authorities =

new DefaultLdapAuthoritiesPopulator(contextSource, groupSearchBase);
authorities.setGroupSearchFilter("member={0}");
return authorities;

}

@Bean
LdapAuthenticationProvider authenticationProvider(LdapAuthenticator authenticator,
LdapAuthoritiesPopulator authorities) {

return new LdapAuthenticationProvider(authenticator, authorities);

}

XML

<ldap-authentication-provider
user-dn-pattern="uid={0}, ou=people"
group-search-filter="member={0}"/>

Kotlin

©Bean
fun authorities(contextSource: BaselLdapPathContextSource):
LdapAuthoritiesPopulator {
val groupSearchBase =
val authorities = DefaultlLdapAuthoritiesPopulator(contextSource,
groupSearchBase)
authorities.setGroupSearchFilter("member={0}")
return authorities

}

@Bean
fun authenticationProvider(authenticator: LdapAuthenticator, authorities:
LdapAuthoritiesPopulator): LdapAuthenticationProvider {

return LdapAuthenticationProvider(authenticator, authorities)

}

Active Directory

Active Directory supports its own non-standard authentication options, and the normal usage
pattern doesn’t fit too cleanly with the standard LdapAuthenticationProvider. Typically
authentication is performed using the domain username (in the form user@domain), rather than

106

using an LDAP distinguished name. To make this easier, Spring Security has an authentication
provider which is customized for a typical Active Directory setup.

Configuring ActiveDirectorylLdapAuthenticationProvider is quite straightforward. You just need to
supply the domain name and an LDAP URL supplying the address of the server . An example
configuration can be seen below:

Example 81. Example Active Directory Configuration
Java

@Bean

ActiveDirectorylLdapAuthenticationProvider authenticationProvider() {
return new ActiveDirectorylLdapAuthenticationProvider("example.com",

"1dap://company.example.com/");

}

XML
<bean id="authenticationProvider"

class="org.springframework.security.ldap.authentication.ad.ActiveDirectoryLdapAuth
enticationProvider">

<constructor-arg value="example.com" />

<constructor-arg value="1dap://company.example.com/" />
</bean>

Kotlin

@Bean

fun authenticationProvider(): ActiveDirectorylLdapAuthenticationProvider {
return ActiveDirectorylLdapAuthenticationProvider("example.com",

"ldap://company.example.com/")

}

10.11. Session Management

HTTP session related functionality is handled by a combination of the SessionManagementFilter and
the SessionAuthenticationStrategy interface, which the filter delegates to. Typical usage includes
session-fixation protection attack prevention, detection of session timeouts and restrictions on how
many sessions an authenticated user may have open concurrently.

10.11.1. Detecting Timeouts

You can configure Spring Security to detect the submission of an invalid session ID and redirect the
user to an appropriate URL. This is achieved through the session-management element:

107

<http>

<session-management invalid-session-url="/invalidSession.htm" />
</http>

Note that if you use this mechanism to detect session timeouts, it may falsely report an error if the
user logs out and then logs back in without closing the browser. This is because the session cookie is
not cleared when you invalidate the session and will be resubmitted even if the user has logged out.
You may be able to explicitly delete the JSESSIONID cookie on logging out, for example by using the
following syntax in the logout handler:

<http>
<logout delete-cookies="JSESSIONID" />
</http>

Unfortunately this can’t be guaranteed to work with every servlet container, so you will need to test
it in your environment

If you are running your application behind a proxy, you may also be able to
remove the session cookie by configuring the proxy server. For example, using
Apache HTTPD’s mod_headers, the following directive would delete the JSESSIONID
cookie by expiring it in the response to a logout request (assuming the application
is deployed under the path /tutorial):

<LocationMatch "/tutorial/logout">

Header always set Set-Cookie "JSESSIONID=;Path=/tutorial;Expires=Thu,
01 Jan 1970 00:00:00 GMT"

</LocationMatch>

10.11.2. Concurrent Session Control

If you wish to place constraints on a single user’s ability to log in to your application, Spring
Security supports this out of the box with the following simple additions. First you need to add the
following listener to your web.xml file to keep Spring Security updated about session lifecycle
events:

<listener>

<listener-class>
org.springframework.security.web.session.HttpSessionEventPublisher

</listener-class>

</listener>

Then add the following lines to your application context:

108

<http>

<session-management>

<concurrency-control max-sessions="1" />
</session-management>
</http>

This will prevent a user from logging in multiple times - a second login will cause the first to be
invalidated. Often you would prefer to prevent a second login, in which case you can use

<http>

<session-management>

<concurrency-control max-sessions="1" error-if-maximum-exceeded="true" />
</session-management>
</http>

The second login will then be rejected. By "rejected”, we mean that the user will be sent to the
authentication-failure-url if form-based login is being used. If the second authentication takes
place through another non-interactive mechanism, such as "remember-me"”, an "unauthorized"
(401) error will be sent to the client. If instead you want to use an error page, you can add the
attribute session-authentication-error-url to the session-management element.

If you are using a customized authentication filter for form-based login, then you have to configure
concurrent session control support explicitly. More details can be found in the Session Management
chapter.

10.11.3. Session Fixation Attack Protection

Session fixation attacks are a potential risk where it is possible for a malicious attacker to create a
session by accessing a site, then persuade another user to log in with the same session (by sending
them a link containing the session identifier as a parameter, for example). Spring Security protects
against this automatically by creating a new session or otherwise changing the session ID when a
user logs in. If you don’t require this protection, or it conflicts with some other requirement, you
can control the behavior using the session-fixation-protection attribute on <session-management>,
which has four options

* none - Don’t do anything. The original session will be retained.

* newSession - Create a new "clean" session, without copying the existing session data (Spring
Security-related attributes will still be copied).

* migrateSession - Create a new session and copy all existing session attributes to the new session.
This is the default in Servlet 3.0 or older containers.

* changeSessionld - Do not create a new session. Instead, use the session fixation protection
provided by the Servlet container (HttpServletRequest#changeSessionId()). This option is only
available in Servlet 3.1 (Java EE 7) and newer containers. Specifying it in older containers will
result in an exception. This is the default in Servlet 3.1 and newer containers.

109

https://en.wikipedia.org/wiki/Session_fixation

When session fixation protection occurs, it results in a SessionFixationProtectionEvent being
published in the application context. If you use changeSessionld, this protection will also result in
any javax.servlet.http.HttpSessionIdListener s being notified, so use caution if your code listens
for both events. See the Session Management chapter for additional information.

10.11.4. SessionManagementFilter

The SessionManagementFilter checks the contents of the SecurityContextRepository against the
current contents of the SecurityContextHolder to determine whether a user has been authenticated
during the current request, typically by a non-interactive authentication mechanism, such as pre-
authentication or remember-me . If the repository contains a security context, the filter does
nothing. If it doesn’t, and the thread-local SecurityContext contains a (non-anonymous)
Authentication object, the filter assumes they have been authenticated by a previous filter in the
stack. It will then invoke the configured SessionAuthenticationStrategy.

If the user is not currently authenticated, the filter will check whether an invalid session ID has
been requested (because of a timeout, for example) and will invoke the configured
InvalidSessionStrategy, if one is set. The most common behaviour is just to redirect to a fixed URL
and this is encapsulated in the standard implementation SimpleRedirectInvalidSessionStrategy. The
latter is also used when configuring an invalid session URL through the namespace,as described
earlier.

10.11.5. SessionAuthenticationStrategy

SessionAuthenticationStrategy is used by both SessionManagementFilter and
AbstractAuthenticationProcessingFilter, so if you are using a customized form-login class, for
example, you will need to inject it into both of these. In this case, a typical configuration, combining
the namespace and custom beans might look like this:

<http>

<custom-filter position="FORM_LOGIN_FILTER" ref="myAuthFilter" />
<session-management session-authentication-strategy-ref="sas"/>
</http>

<beans:bean id="myAuthFilter" class=
"org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter"
>

<beans:property name="sessionAuthenticationStrategy" ref="sas" />

</beans:bean>
<beans:bean id="sas" class=

"org.springframework.security.web.authentication.session.SessionFixationProtectionStra
tegy" />

Note that the use of the default, SessionFixationProtectionStrategy may cause issues if you are
storing beans in the session which implement HttpSessionBindingListener, including Spring session-
scoped beans. See the Javadoc for this class for more information.

110

10.11.6. Concurrency Control

Spring Security is able to prevent a principal from concurrently authenticating to the same
application more than a specified number of times. Many ISVs take advantage of this to enforce
licensing, whilst network administrators like this feature because it helps prevent people from
sharing login names. You can, for example, stop user "Batman" from logging onto the web
application from two different sessions. You can either expire their previous login or you can
report an error when they try to log in again, preventing the second login. Note that if you are using
the second approach, a user who has not explicitly logged out (but who has just closed their
browser, for example) will not be able to log in again until their original session expires.

Concurrency control is supported by the namespace, so please check the earlier namespace chapter
for the simplest configuration. Sometimes you need to customize things though.

The implementation uses a specialized version of SessionAuthenticationStrategy, called
ConcurrentSessionControlAuthenticationStrategy.

Previously the concurrent authentication check was made by the ProviderManager,
which could be injected with a ConcurrentSessionController. The latter would
check if the user was attempting to exceed the number of permitted sessions.

o However, this approach required that an HTTP session be created in advance,
which is undesirable. In Spring Security 3, the user is first authenticated by the
AuthenticationManager and once they are successfully authenticated, a session is
created and the check is made whether they are allowed to have another session
open.

To use concurrent session support, youw’ll need to add the following to web. xm1:

<listener>
<listener-class>
org.springframework.security.web.session.HttpSessionEventPublisher
</listener-class>

</listener>

In addition, you will need to add the ConcurrentSessionFilter to your FilterChainProxy. The
ConcurrentSessionFilter requires two constructor arguments, sessionRegistry, which generally
points to an instance of SessionRegistryImpl, and sessionInformationExpiredStrategy, which defines
the strategy to apply when a session has expired. A configuration using the namespace to create the
FilterChainProxy and other default beans might look like this:

<http>
<custom-filter position="CONCURRENT_SESSION_FILTER" ref="concurrencyFilter" />
<custom-filter position="FORM_LOGIN_FILTER" ref="myAuthFilter" />

<session-management session-authentication-strategy-ref="sas"/>
</http>

<beans:bean id="redirectSessionInformationExpiredStrategy"

111

class="org.springframework.security.web.session.SimpleRedirectSessionInformationExpire
dStrategy">

<beans:constructor-arg name="invalidSessionUrl" value="/session-expired.htm" />
</beans:bean>

<beans:bean id="concurrencyFilter"
class="org.springframework.security.web.session.ConcurrentSessionFilter">
<beans:constructor-arg name="sessionRegistry" ref="sessionRegistry" />
<beans:constructor-arg name="sessionInformationExpiredStrategy"
ref="redirectSessionInformationExpiredStrategy" />

</beans:bean>

<beans:bean id="myAuthFilter" class=
"org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter"
>

<beans:property name="sessionAuthenticationStrategy" ref="sas" />

<beans:property name="authenticationManager" ref="authenticationManager" />
</beans:bean>

<beans:bean id="sas"
class="org.springframework.security.web.authentication.session.CompositeSessionAuthent
icationStrategy">
<beans:constructor-arg>
<beans:list>
<beans:bean
class="org.springframework.security.web.authentication.session.ConcurrentSessionContro
1AuthenticationStrategy">
<beans:constructor-arg ref="sessionRegistry"/>
<beans:property name="maximumSessions" value="1" />
<beans:property name="exceptionIfMaximumExceeded" value="true" />
</beans:bean>
<beans:bean
class="org.springframework.security.web.authentication.session.SessionFixationProtecti
onStrategy">
</beans:bean>
<beans:bean
class="org.springframework.security.web.authentication.session.RegisterSessionAuthenti
cationStrategy">
<beans:constructor-arg ref="sessionRegistry"/>
</beans:bean>
</beans:list>
</beans:constructor-arg>
</beans:bean>

<beans:bean id="sessionRegistry"
class="org.springframework.security.core.session.SessionRegistryImpl" />

Adding the listener to web.xml causes an ApplicationEvent to be published to the Spring
ApplicationContext every time a HttpSession commences or ends. This is critical, as it allows the
SessionRegistryImpl to be notified when a session ends. Without it, a user will never be able to log

112

back in again once they have exceeded their session allowance, even if they log out of another
session or it times out.

Querying the SessionRegistry for currently authenticated users and their sessions

Setting up concurrency-control, either through the namespace or using plain beans has the useful
side effect of providing you with a reference to the SessionRegistry which you can use directly
within your application, so even if you don’t want to restrict the number of sessions a user may
have, it may be worth setting up the infrastructure anyway. You can set the maximumSession property
to -1 to allow unlimited sessions. If you’re using the namespace, you can set an alias for the
internally-created SessionRegistry wusing the session-registry-alias attribute, providing a
reference which you can inject into your own beans.

The getAllPrincipals() method supplies you with a list of the currently authenticated users. You
can list a wuser’s sessions by calling the getAllSessions(Object principal, boolean
includeExpiredSessions) method, which returns a list of SessionInformation objects. You can also
expire a user’s session by calling expireNow() on a SessionInformation instance. When the user
returns to the application, they will be prevented from proceeding. You may find these methods
useful in an administration application, for example. Have a look at the Javadoc for more
information.

10.12. Remember-Me Authentication

10.12.1. Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the
identity of a principal between sessions. This is typically accomplished by sending a cookie to the
browser, with the cookie being detected during future sessions and causing automated login to take
place. Spring Security provides the necessary hooks for these operations to take place, and has two
concrete remember-me implementations. One uses hashing to preserve the security of cookie-based
tokens and the other uses a database or other persistent storage mechanism to store the generated
tokens.

Note that both implementations require a UserDetailsService. If you are using an authentication
provider which doesn’t use a UserDetailsService (for example, the LDAP provider) then it won’t
work unless you also have a UserDetailsService bean in your application context.

10.12.2. Simple Hash-Based Token Approach

This approach uses hashing to achieve a useful remember-me strategy. In essence a cookie is sent to
the browser upon successful interactive authentication, with the cookie being composed as follows:

113

base64(username + ":" + expirationTime + ":" +

md5Hex(username + ":" + expirationTime + ":" password + ":" + key))

username: As identifiable to the UserDetailsService

password: That matches the one in the retrieved UserDetails

expirationTime: The date and time when the remember-me token expires, expressed in
milliseconds

key: A private key to prevent modification of the remember-me token

As such the remember-me token is valid only for the period specified, and provided that the
username, password and key does not change. Notably, this has a potential security issue in that a
captured remember-me token will be usable from any user agent until such time as the token
expires. This is the same issue as with digest authentication. If a principal is aware a token has been
captured, they can easily change their password and immediately invalidate all remember-me
tokens on issue. If more significant security is needed you should use the approach described in the
next section. Alternatively remember-me services should simply not be used at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can
enable remember-me authentication just by adding the <remember-me> element:

<http>

<remember-me key="myAppKey"/>
</http>

The UserDetailsService will normally be selected automatically. If you have more than one in your
application context, you need to specify which one should be used with the user-service-ref
attribute, where the value is the name of your UserDetailsService bean.

10.12.3. Persistent Token Approach

This approach is based on the article
http://jaspan.com/improved_persistent_login_cookie_best_practice with some minor modifications [
4. To use the this approach with namespace configuration, you would supply a datasource
reference:

<http>

<remember-me data-source-ref="someDataSource"/>
</http>

The database should contain a persistent_logins table, created using the following SQL (or
equivalent):

114

http://jaspan.com/improved_persistent_login_cookie_best_practice

create table persistent_logins (username varchar(64) not null,
series varchar(64) primary key,
token varchar(64) not null,
last_used timestamp not null)

10.12.4. Remember-Me Interfaces and Implementations

Remember-me is used with UsernamePasswordAuthenticationFilter, and is implemented via hooks in
the AbstractAuthenticationProcessingFilter superclass. It is also used within
BasicAuthenticationFilter. The hooks will invoke a concrete RememberMeServices at the appropriate
times. The interface looks like this:

Authentication autologin(HttpServletRequest request, HttpServletResponse response);
void loginFail(HttpServletRequest request, HttpServletResponse response);

void loginSuccess(HttpServletRequest request, HttpServletResponse response,
Authentication successfulAuthentication);

Please refer to the Javadoc for a fuller discussion on what the methods do, although note at this
stage that AbstractAuthenticationProcessingFilter only calls the loginFail() and loginSuccess()
methods. The autolLogin() method is called by RememberMeAuthenticationFilter whenever the
SecurityContextHolder does not contain an Authentication. This interface therefore provides the
underlying remember-me implementation with sufficient notification of authentication-related
events, and delegates to the implementation whenever a candidate web request might contain a
cookie and wish to be remembered. This design allows any number of remember-me
implementation strategies. We’ve seen above that Spring Security provides two implementations.
We’ll look at these in turn.

TokenBasedRememberMeServices

This implementation supports the simpler approach described in Simple Hash-Based Token
Approach. TokenBasedRememberMeServices generates a RememberMeAuthenticationToken, which is
processed by RememberMeAuthenticationProvider. A key is shared between this authentication
provider and the TokenBasedRememberMeServices. In addition, TokenBasedRememberMeServices requires
A UserDetailsService from which it can retrieve the username and password for signature
comparison purposes, and generate the RememberMeAuthenticationToken to contain the correct
GrantedAuthority s. Some sort of logout command should be provided by the application that
invalidates the cookie if the user requests this. TokenBasedRememberMeServices also implements
Spring Security’s LogoutHandler interface so can be used with LogoutFilter to have the cookie
cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

115

<bean id="rememberMeFilter" class=
"org.springframework.security.web.authentication.rememberme.RememberMeAuthenticationFi
lter">

<property name="rememberMeServices" ref="rememberMeServices"/>

<property name="authenticationManager" ref="theAuthenticationManager" />

</bean>

<bean id="rememberMeServices" class=
"org.springframework.security.web.authentication.rememberme.TokenBasedRememberMeServic
es">

<property name="userDetailsService" ref="myUserDetailsService"/>

<property name="key" value="springRocks"/>

</bean>

<bean id="rememberMeAuthenticationProvider" class=
"org.springframework.security.authentication.RememberMeAuthenticationProvider">
<property name="key" value="springRocks"/>

</bean>

Don’t forget to add your RememberMeServices implementation to your
UsernamePasswordAuthenticationFilter.setRememberMeServices() property, include the
RememberMeAuthenticationProvider in your AuthenticationManager.setProviders() list, and add
RememberMeAuthenticationFilter into your FilterChainProxy (typically immediately after your
UsernamePasswordAuthenticationFilter).

PersistentTokenBasedRememberMeServices

This class can be used in the same way as TokenBasedRememberMeServices, but it additionally needs to
be configured with a PersistentTokenRepository to store the tokens. There are two standard
implementations.

* InMemoryTokenRepositoryImpl which is intended for testing only.

* JdbcTokenRepositoryImpl which stores the tokens in a database.

The database schema is described above in Persistent Token Approach.

10.13. OpenID Support

o The OpenID 1.0 and 2.0 protocols have been deprecated and users are encouraged
to migrate to OpenID Connect, which is supported by spring-security-oauth2.

The namespace supports OpenlID login either instead of, or in addition to normal form-based login,
with a simple change:

116

https://openid.net/

<http>

<intercept-url pattern="/**" access="ROLE_USER" />
<openid-login />

</http>

You should then register yourself with an OpenID provider (such as myopenid.com), and add the
user information to your in-memory <user-service>:

<user name="https://jimi.hendrix.myopenid.com/" authorities="ROLE_USER" />

You should be able to login using the myopenid.com site to authenticate. It is also possible to select a
specific UserDetailsService bean for use OpenID by setting the user-service-ref attribute on the
openid-login element. Note that we have omitted the password attribute from the above user
configuration, since this set of user data is only being used to load the authorities for the user. A
random password will be generated internally, preventing you from accidentally using this user
data as an authentication source elsewhere in your configuration.

10.13.1. Attribute Exchange

Support for OpenlID attribute exchange. As an example, the following configuration would attempt
to retrieve the email and full name from the OpenID provider, for use by the application:

<openid-login>
<attribute-exchange>

<openid-attribute name="email" type="https://axschema.org/contact/email"
required="true"/>

<openid-attribute name="name" type="https://axschema.org/namePerson"/>
</attribute-exchange>
</openid-login>

The "type" of each OpenID attribute is a URI, determined by a particular schema, in this case
https://axschema.org/. If an attribute must be retrieved for successful authentication, the required
attribute can be set. The exact schema and attributes supported will depend on your OpenID
provider. The attribute values are returned as part of the authentication process and can be
accessed afterwards using the following code:

OpenIDAuthenticationToken token =
(OpenIDAuthenticationToken)SecurityContextHolder.getContext().getAuthentication();
List<OpenIDAttribute> attributes = token.getAttributes();

We can obtain the OpenIDAuthenticationToken from the SecurityContextHolder. The OpenIDAttribute
contains the attribute type and the retrieved value (or values in the case of multi-valued attributes).
You can supply multiple attribute-exchange elements, using an identifier-matcher attribute on
each. This contains a regular expression which will be matched against the OpenID identifier
supplied by the user. See the OpenID sample application in the codebase for an example

117

https://openid.net/specs/openid-attribute-exchange-1_0.html
https://axschema.org/

configuration, providing different attribute lists for the Google, Yahoo and MyOpenID providers.

10.14. Anonymous Authentication

10.14.1. Overview

It’s generally considered good security practice to adopt a "deny-by-default” where you explicitly
specify what is allowed and disallow everything else. Defining what is accessible to
unauthenticated users is a similar situation, particularly for web applications. Many sites require
that users must be authenticated for anything other than a few URLs (for example the home and
login pages). In this case it is easiest to define access configuration attributes for these specific URLs
rather than have for every secured resource. Put differently, sometimes it is nice to say
ROLE_SOMETHING is required by default and only allow certain exceptions to this rule, such as for
login, logout and home pages of an application. You could also omit these pages from the filter
chain entirely, thus bypassing the access control checks, but this may be undesirable for other
reasons, particularly if the pages behave differently for authenticated users.

This is what we mean by anonymous authentication. Note that there is no real conceptual
difference between a user who is "anonymously authenticated" and an unauthenticated user.
Spring Security’s anonymous authentication just gives you a more convenient way to configure
your access-control attributes. Calls to servlet API calls such as getCallerPrincipal, for example, will
still return null even though there is actually an anonymous authentication object in the
SecurityContextHolder.

There are other situations where anonymous authentication is useful, such as when an auditing
interceptor queries the SecurityContextHolder to identify which principal was responsible for a
given operation. Classes can be authored more robustly if they know the SecurityContextHolder
always contains an Authentication object, and never null.

10.14.2. Configuration

Anonymous authentication support is provided automatically when using the HTTP configuration
Spring Security 3.0 and can be customized (or disabled) using the <anonymous> element. You don’t
need to configure the beans described here unless you are using traditional bean configuration.

Three classes that together provide the anonymous authentication feature.
AnonymousAuthenticationToken is an implementation of Authentication, and stores the
GrantedAuthority s which apply to the anonymous principal. There is a corresponding
AnonymousAuthenticationProvider, which is chained into the ProviderManager so that
AnonymousAuthenticationToken s are accepted. Finally, there is an AnonymousAuthenticationFilter,
which is chained after the normal authentication mechanisms and automatically adds an
AnonymousAuthenticationToken to the SecurityContextHolder if there is no existing Authentication
held there. The definition of the filter and authentication provider appears as follows:

118

<bean id="anonymousAuthFilter"

class="org.springframework.security.web.authentication.AnonymousAuthenticationFilter">
<property name="key" value="foobar"/>

<property name="userAttribute" value="anonymousUser,ROLE_ANONYMOUS"/>

</bean>

<bean id="anonymousAuthenticationProvider"

class="org.springframework.security.authentication.AnonymousAuthenticationProvider">
<property name="key" value="foobar"/>
</bean>

The key is shared between the filter and authentication provider, so that tokens created by the
former are accepted by the latter . The userAttribute is expressed in the form of
usernameInTheAuthenticationToken,grantedAuthority[,grantedAuthority]. This is the same syntax as
used after the equals sign for the userMap property of InMemoryDaoImpl.

As explained earlier, the benefit of anonymous authentication is that all URI patterns can have
security applied to them. For example

<bean id="filterSecurityInterceptor"

class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="accessDecisionManager" ref="httpRequestAccessDecisionManager"/>

<property name="securityMetadata">
<security:filter-security-metadata-source>
<security:intercept-url pattern='/index.jsp' access="ROLE_ANONYMOUS,ROLE_USER'/>
<security:intercept-url pattern='/hello.htm' access="ROLE_ANONYMOUS,ROLE_USER'/>
<security:intercept-url pattern='/logoff.jsp' access="ROLE_ANONYMOUS,ROLE_USER'/>
<security:intercept-url pattern='/login.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>
<security:intercept-url pattern='/**' access="ROLE_USER'/>
</security:filter-security-metadata-source>" +

</property>

</bean>

10.14.3. AuthenticationTrustResolver

Rounding out the anonymous authentication discussion is the AuthenticationTrustResolver
interface, with its corresponding AuthenticationTrustResolverImpl implementation. This interface
provides an isAnonymous(Authentication) method, which allows interested classes to take into
account this special type of authentication status. The ExceptionTranslationFilter uses this
interface in processing AccessDeniedException s. If an AccessDeniedException is thrown, and the
authentication is of an anonymous type, instead of throwing a 403 (forbidden) response, the filter
will instead commence the AuthenticationEntryPoint so the principal can authenticate properly.
This is a necessary distinction, otherwise principals would always be deemed "authenticated" and

119

never be given an opportunity to login via form, basic, digest or some other normal authentication
mechanism.

You will often see the ROLE_ANONYMOUS attribute in the above interceptor configuration replaced with
IS_AUTHENTICATED_ANONYMOUSLY, which is effectively the same thing when defining access controls.
This is an example of the use of the AuthenticatedVoter which we will see in the authorization
chapter. It uses an AuthenticationTrustResolver to process this particular configuration attribute
and grant access to anonymous users. The AuthenticatedVoter approach is more powerful, since it
allows you to differentiate between anonymous, remember-me and fully-authenticated users. If
you don’t need this functionality though, then you can stick with ROLE_ANONYMOUS, which will be
processed by Spring Security’s standard RoleVoter.

10.15. Pre-Authentication Scenarios

There are situations where you want to use Spring Security for authorization, but the user has
already been reliably authenticated by some external system prior to accessing the application. We
refer to these situations as "pre-authenticated" scenarios. Examples include X.509, Siteminder and
authentication by the Java EE container in which the application is running. When using pre-
authentication, Spring Security has to

* Identify the user making the request.

e Obtain the authorities for the user.

The details will depend on the external authentication mechanism. A user might be identified by
their certificate information in the case of X.509, or by an HTTP request header in the case of
Siteminder. If relying on container authentication, the user will be identified by calling the
getUserPrincipal() method on the incoming HTTP request. In some cases, the external mechanism
may supply role/authority information for the user but in others the authorities must be obtained
from a separate source, such as a UserDetailsService.

10.15.1. Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set of
classes which provide an internal framework for implementing pre-authenticated authentication
providers. This removes duplication and allows new implementations to be added in a structured
fashion, without having to write everything from scratch. You don’t need to know about these
classes if you want to use something like X.509 authentication, as it already has a namespace
configuration option which is simpler to use and get started with. If you need to use explicit bean
configuration or are planning on writing your own implementation then an understanding of how
the provided implementations work will be useful. You will find classes under the
org.springframework.security.web.authentication.preauth. We just provide an outline here so you
should consult the Javadoc and source where appropriate.

AbstractPreAuthenticatedProcessingFilter

This class will check the current contents of the security context and, if empty, it will attempt to
extract user information from the HTTP request and submit it to the AuthenticationManager.
Subclasses override the following methods to obtain this information:

120

Example 82. Override AbstractPreAuthenticatedProcessingFilter
Java

protected abstract Object getPreAuthenticatedPrincipal(HttpServietRequest
request);

protected abstract Object getPreAuthenticatedCredentials(HttpServletRequest
request);

Kotlin

protected abstract fun getPreAuthenticatedPrincipal(request: HttpServletRequest):
Any?

protected abstract fun getPreAuthenticatedCredentials(request:
HttpServletRequest): Any?

After calling these, the filter will create a PreAuthenticatedAuthenticationToken containing the
returned data and submit it for authentication. By "authentication" here, we really just mean
further processing to perhaps load the user’s authorities, but the standard Spring Security
authentication architecture is followed.

Like other Spring Security authentication filters, the pre-authentication filter has an
authenticationDetailsSource property which by default will create a WebAuthenticationDetails
object to store additional information such as the session-identifier and originating IP address in
the details property of the Authentication object. In cases where user role information can be
obtained from the pre-authentication mechanism, the data is also stored in this property, with the
details implementing the GrantedAuthoritiesContainer interface. This enables the authentication
provider to read the authorities which were externally allocated to the user. We’ll look at a concrete
example next.

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an authenticationDetailsSource which is an instance of this class, the
authority information is obtained by calling the isUserInRole(String role) method for each of a
pre-determined set of "mappable roles". The class gets these from a configured
MappableAttributesRetriever. Possible implementations include hard-coding a list in the application
context and reading the role information from the <security-role> information in a web.xml file.
The pre-authentication sample application uses the latter approach.

There is an additional stage where the roles (or attributes) are mapped to Spring Security
GrantedAuthority objects using a configured Attributes2GrantedAuthoritiesMapper. The default will
just add the usual ROLE _ prefix to the names, but it gives you full control over the behaviour.

PreAuthenticatedAuthenticationProvider

The pre-authenticated provider has little more to do than load the UserDetails object for the user. It

121

does this by delegating to an AuthenticationUserDetailsService. The latter is similar to the standard
UserDetailsService but takes an Authentication object rather than just user name:

public interface AuthenticationUserDetailsService {
UserDetails loadUserDetails(Authentication token) throws
UsernameNotFoundException;

}

This interface may have also other uses but with pre-authentication it allows access to the
authorities which were packaged in the Authentication object, as we saw in the previous section.
The PreAuthenticatedGrantedAuthoritiesUserDetailsService class does this. Alternatively, it may
delegate to a standard UserDetailsService via the UserDetailsByNameServiceWrapper implementation.

Http403ForbiddenEntryPoint

The AuthenticationEntryPoint is responsible for kick-starting the authentication process for an
unauthenticated user (when they try to access a protected resource), but in the pre-authenticated
case this doesn’t apply. You would only configure the ExceptionTranslationFilter with an instance
of this class if you aren’t using pre-authentication in combination with other authentication
mechanisms. It will be called if the user is rejected by the AbstractPreAuthenticatedProcessingFilter
resulting in a null authentication. It always returns a 403-forbidden response code if called.

10.15.2. Concrete Implementations

X.509 authentication is covered in its own chapter. Here we’ll look at some classes which provide
support for other pre-authenticated scenarios.

Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific
headers on the HTTP request. A well-known example of this is Siteminder, which passes the
username in a header called SM_USER. This mechanism is supported by the class
RequestHeaderAuthenticationFilter which simply extracts the username from the header. It defaults
to using the name SM_USER as the header name. See the Javadoc for more details.

Note that when wusing a system like this, the framework performs no

authentication checks at all and it is extremely important that the external system

O is configured properly and protects all access to the application. If an attacker is

et able to forge the headers in their original request without this being detected then
they could potentially choose any username they wished.

Siteminder Example Configuration

A typical configuration using this filter would look like this:

122

<security:http>

<!-- Additional http configuration omitted -->

<security:custom-filter position="PRE_AUTH_FILTER" ref="siteminderFilter" />
</security:http>

<bean id="siteminderFilter"
class="org.springframework.security.web.authentication.preauth.RequestHeaderAuthentica
tionFilter">

<property name="principalRequestHeader" value="SM_USER"/>

<property name="authenticationManager" ref="authenticationManager" />

</bean>

<bean id="preauthAuthProvider"
class="org.springframework.security.web.authentication.preauth.PreAuthenticatedAuthent
icationProvider">
<property name="preAuthenticatedUserDetailsService">

<bean id="userDetailsServiceWrapper"

class="org.springframework.security.core.userdetails.UserDetailsByNameServiceWrapper">
<property name="userDetailsService" ref="userDetailsService"/>
</bean>

</property>

</bean>

<security:authentication-manager alias="authenticationManager">
<security:authentication-provider ref="preauthAuthProvider" />
</security:authentication-manager>

We’ve assumed here that the security namespace is being used for configuration. It’s also assumed
that you have added a UserDetailsService (called "userDetailsService") to your configuration to load
the user’s roles.

Java EE Container Authentication

The class J2eePreAuthenticatedProcessingFilter will extract the username from the userPrincipal
property of the HttpServletRequest. Use of this filter would usually be combined with the use of Java
EE roles as described above in J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource.

There is a sample application in the codebase which uses this approach, so get hold of the code
from github and have a look at the application context file if you are interested. The code is in the
samples/xml/preauth directory.

10.16. Java Authentication and Authorization Service
(JAAS) Provider

10.16.1. Overview

Spring Security provides a package able to delegate authentication requests to the Java

123

Authentication and Authorization Service (JAAS). This package is discussed in detail below.

10.16.2. AbstractJaasAuthenticationProvider

The AbstractJaasAuthenticationProvider is the basis for the provided JAAS AuthenticationProvider
implementations. Subclasses must implement a method that creates the LoginContext. The
AbstractJaasAuthenticationProvider has a number of dependencies that can be injected into it that
are discussed below.

JAAS CallbackHandler

Most JAAS LoginModule s require a callback of some sort. These callbacks are usually used to obtain
the username and password from the user.

In a Spring Security deployment, Spring Security is responsible for this user interaction (via the
authentication mechanism). Thus, by the time the authentication request is delegated through to
JAAS, Spring Security’s authentication mechanism will already have fully-populated an
Authentication object containing all the information required by the JAAS LoginModule.

Therefore, the JAAS package for Spring Security provides two default callback handlers,
JaasName(CallbackHandler and JaasPasswordCallbackHandler. Each of these callback handlers
implement JaasAuthenticationCallbackHandler. In most cases these callback handlers can simply be
used without understanding the internal mechanics.

For those needing full control over the callback Dbehavior, internally
AbstractJaasAuthenticationProvider wraps these JaasAuthenticationCallbackHandler s with an
InternalCallbackHandler. The InternalCallbackHandler is the class that actually implements JAAS
normal CallbackHandler interface. Any time that the JAAS LoginModule is used, it is passed a list of
application context configured InternalCallbackHandler s. If the LoginModule requests a callback
against the InternalCallbackHandler s, the callback is in-turn passed to the
JaasAuthenticationCallbackHandler s being wrapped.

JAAS AuthorityGranter

JAAS works with principals. Even "roles" are represented as principals in JAAS. Spring Security, on
the other hand, works with Authentication objects. Each Authentication object contains a single
principal, and multiple GrantedAuthority s. To facilitate mapping between these different concepts,
Spring Security’s JAAS package includes an AuthorityGranter interface.

An AuthorityGranter is responsible for inspecting a JAAS principal and returning a set of String s,
representing the authorities assigned to the principal. For each returned authority string, the
AbstractJaasAuthenticationProvider creates a JaasGrantedAuthority (which implements Spring
Security’s GrantedAuthority interface) containing the authority string and the JAAS principal that
the AuthorityGranter was passed. The AbstractJaasAuthenticationProvider obtains the JAAS
principals by firstly successfully authenticating the user’s credentials using the JAAS LoginModule,
and then accessing the LoginContext it returns. A call to LoginContext.getSubject().getPrincipals()
is made, with each resulting principal passed to each AuthorityGranter defined against the
AbstractJaasAuthenticationProvider.setAuthorityGranters(List) property.

Spring Security does not include any production AuthorityGranter s given that every JAAS principal

124

has an implementation-specific meaning. However, there is a TestAuthorityGranter in the unit tests
that demonstrates a simple AuthorityGranter implementation.

10.16.3. DefaultjaasAuthenticationProvider

The DefaultJaasAuthenticationProvider allows a JAAS Configuration object to be injected into it as a
dependency. It then creates a LoginContext using the injected JAAS Configuration. This means that
DefaultJaasAuthenticationProvider is not bound any particular implementation of Configuration as
JaasAuthenticationProvider is.

InMemoryConfiguration

In order to make it easy to inject a Configuration into DefaultJaasAuthenticationProvider, a default
in-memory implementation named InMemoryConfiguration is provided. The implementation
constructor accepts a Map where each key represents a login configuration name and the value
represents an Array of AppConfigurationEntry s. InMemoryConfiguration also supports a default Array
of AppConfiqurationEntry objects that will be used if no mapping is found within the provided Map.
For details, refer to the class level javadoc of InMemoryConfiguration.

DefaultJaasAuthenticationProvider Example Configuration

While the Spring configuration for InMemoryConfiguration can be more verbose than the standarad
JAAS configuration files, using it in conjuction with DefaultJaasAuthenticationProvider is more
flexible than JaasAuthenticationProvider since it not dependant on the default Configuration
implementation.

An example configuration of DefaultJaasAuthenticationProvider using InMemoryConfiguration is
provided below. Note that custom implementations of Configuration can easily be injected into
DefaultJaasAuthenticationProvider as well.

125

<bean id="jaasAuthProvider"
class="org.springframework.security.authentication.jaas.DefaultJaasAuthenticationProvi
der">
<property name="configuration">
<bean
class="org.springframework.security.authentication.jaas.memory.InMemoryConfiguration">
<constructor-arg>
<map>
<I--
SPRINGSECURITY is the default loginContextName
for AbstractJaasAuthenticationProvider
-->
<entry key="SPRINGSECURITY">
<array>
<bean class="javax.security.auth.login.AppConfigurationEntry">
<constructor-arg value="sample.SampleLoginModule" />
<constructor-arg>
<util:constant static-field=

"javax.security.auth.login.AppConfigurationEntry$LoginModuleControlFlag.REQUIRED" />
</constructor-arg>
<constructor-arg>
<map></map>
</constructor-arg>
</bean>
</array>
</entry>
</map>
</constructor-arg>
</bean>
</property>
<property name="authorityGranters">
<list>
<!-- You will need to write your own implementation of AuthorityGranter -->
<bean
class="org.springframework.security.authentication.jaas.TestAuthorityGranter"/>
</list>
</property>
</bean>

10.16.4. JaasAuthenticationProvider

The JaasAuthenticationProvider assumes the default Configuration is an instance of ConfigFile. This
assumption is made in order to attempt to wupdate the Configuration. The
JaasAuthenticationProvider then uses the default Configuration to create the LoginContext.

Let’s assume we have a JAAS login configuration file, /WEB-INF/login.conf, with the following
contents:

126

https://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html

JAASTest {
sample.SamplelLoginModule required;

+

Like all Spring Security beans, the JaasAuthenticationProvider is configured via the application
context. The following definitions would correspond to the above JAAS login configuration file:

<bean id="jaasAuthenticationProvider"

class="org.springframework.security.authentication.jaas.JaasAuthenticationProvider">

<property name="loginConfig" value="/WEB-INF/login.conf"/>

<property name="loginContextName" value="JAASTest"/>

<property name="callbackHandlers">

<list>

<bean
class="org.springframework.security.authentication.jaas.JaasNameCallbackHandler"/>

<bean

class="org.springframework.security.authentication.jaas.JaasPasswordCallbackHandler"/>
</list>
</property>
<property name="authorityGranters">
<list>
<bean
class="org.springframework.security.authentication.jaas.TestAuthorityGranter"/>
</list>
</property>
</bean>

10.16.5. Running as a Subject

If configured, the JaasApilntegrationFilter will attempt to run as the Subject on the
JaasAuthenticationToken. This means that the Subject can be accessed using:

Subject subject = Subject.getSubject(AccessController.getContext());

This integration can easily be configured using the jaas-api-provision attribute. This feature is
useful when integrating with legacy or external APT’s that rely on the JAAS Subject being populated.

10.17. CAS Authentication

10.17.1. Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives,
JA-SIG’s Central Authentication Service is open source, widely used, simple to understand, platform
independent, and supports proxy capabilities. Spring Security fully supports CAS, and provides an
easy migration path from single-application deployments of Spring Security through to multiple-

127

application deployments secured by an enterprise-wide CAS server.

You can learn more about CAS at https://www.apereo.org. You will also need to visit this site to
download the CAS Server files.

10.17.2. How CAS Works

Whilst the CAS web site contains documents that detail the architecture of CAS, we present the
general overview again here within the context of Spring Security. Spring Security 3.x supports CAS
3. At the time of writing, the CAS server was at version 3.4.

Somewhere in your enterprise you will need to setup a CAS server. The CAS server is simply a
standard WAR file, so there isn’t anything difficult about setting up your server. Inside the WAR file
you will customise the login and other single sign on pages displayed to users.

When deploying a CAS 3.4 server, you will also need to specify an AuthenticationHandler in the
deployerConfigContext.xml included with CAS. The AuthenticationHandler has a simple method that
returns a boolean as to whether a given set of Credentials is valid. Your AuthenticationHandler
implementation will need to link into some type of backend authentication repository, such as an
LDAP server or database. CAS itself includes numerous AuthenticationHandler s out of the box to
assist with this. When you download and deploy the server war file, it is set up to successfully
authenticate users who enter a password matching their username, which is useful for testing.

Apart from the CAS server itself, the other key players are of course the secure web applications
deployed throughout your enterprise. These web applications are known as "services". There are
three types of services. Those that authenticate service tickets, those that can obtain proxy tickets,
and those that authenticate proxy tickets. Authenticating a proxy ticket differs because the list of
proxies must be validated and often times a proxy ticket can be reused.

Spring Security and CAS Interaction Sequence

The basic interaction between a web browser, CAS server and a Spring Security-secured service is
as follows:

* The web user is browsing the service’s public pages. CAS or Spring Security is not involved.

* The user eventually requests a page that is either secure or one of the beans it uses is secure.
Spring Security’s ExceptionTranslationFilter will detect the AccessDeniedException or
AuthenticationException.

* Because the user’s Authentication object (or lack thereof) caused an AuthenticationException,
the ExceptionTranslationFilter will call the configured AuthenticationEntryPoint. If using CAS,
this will be the CasAuthenticationEntryPoint class.

* The CasAuthenticationEntryPoint will redirect the user’s browser to the CAS server. It will also
indicate a service parameter, which is the callback URL for the Spring Security service (your
application). For example, the URL to which the browser is redirected might be
https://my.company.com/cas/login?
service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas.

» After the user’s browser redirects to CAS, they will be prompted for their username and
password. If the user presents a session cookie which indicates they’ve previously logged on,

128

https://www.apereo.org
https://my.company.com/cas/login?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas
https://my.company.com/cas/login?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas

they will not be prompted to login again (there is an exception to this procedure, which we’ll
cover later). CAS will use the PasswordHandler (or AuthenticationHandler if using CAS 3.0)
discussed above to decide whether the username and password is valid.

Upon successful login, CAS will redirect the user’s browser back to the original service. It will
also include a ticket parameter, which is an opaque string representing the "service ticket".
Continuing our earlier example, the URL the browser is redirected to might be
https://server3.company.com/webapp/login/cas?ticket=ST-0-ER94xM]Jmn6pha35CQRoOZ.

Back in the service web application, the CasAuthenticationFilter is always listening for requests
to /login/cas (this is configurable, but we’ll use the defaults in this introduction). The processing
filter will construct a UsernamePasswordAuthenticationToken representing the service ticket. The
principal will be equal to CasAuthenticationFilter.CAS_STATEFUL_IDENTIFIER, whilst the
credentials will be the service ticket opaque value. This authentication request will then be
handed to the configured AuthenticationManager.

The AuthenticationManager implementation will be the ProviderManager, which is in turn
configured with the CasAuthenticationProvider. The CasAuthenticationProvider only responds to
UsernamePasswordAuthenticationToken s containing the CAS-specific principal (such as
CasAuthenticationFilter.CAS_STATEFUL_IDENTIFIER) and CasAuthenticationToken s (discussed
later).

CasAuthenticationProvider will validate the service ticket using a TicketValidator
implementation. This will typically be a Cas20ServiceTicketValidator which is one of the classes
included in the CAS client library. In the event the application needs to validate proxy tickets,
the Cas20ProxyTicketValidator is used. The TicketValidator makes an HTTPS request to the CAS
server in order to validate the service ticket. It may also include a proxy callback URL, which is
included in this example: https://my.company.com/cas/proxyValidate?
service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-
ER94xM]Jmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/
proxyreceptor.

Back on the CAS server, the validation request will be received. If the presented service ticket
matches the service URL the ticket was issued to, CAS will provide an affirmative response in
XML indicating the username. If any proxy was involved in the authentication (discussed
below), the list of proxies is also included in the XML response.

[OPTIONAL] If the request to the CAS validation service included the proxy callback URL (in the
pgtUrl parameter), CAS will include a pgtIou string in the XML response. This pgtIou represents
a proxy-granting ticket IOU. The CAS server will then create its own HTTPS connection back to
the pgtUrl. This is to mutually authenticate the CAS server and the claimed service URL. The
HTTPS connection will be used to send a proxy granting ticket to the original web application.
For example, https://server3.company.com/webapp/login/cas/proxyreceptor?pgtlou=PGTIOU-0-
ROzlgrl4pdAQwBvJWO3vnNpevwqStbhSGcq3vKB2SqSFFRnjPHt&pgtld=PGT-1-
si9YKKHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH.

The Cas20TicketValidator will parse the XML received from the CAS server. It will return to the
CasAuthenticationProvider a TicketResponse, which includes the username (mandatory), proxy
list (if any were involved), and proxy-granting ticket IOU (if the proxy callback was requested).

Next CasAuthenticationProvider will call a configured CasProxyDecider. The CasProxyDecider
indicates whether the proxy list in the TicketResponse is acceptable to the service. Several
implementations are provided with Spring Security: RejectProxyTickets, AcceptAnyCasProxy and

129

https://server3.company.com/webapp/login/cas?ticket=ST-0-ER94xMJmn6pha35CQRoZ
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor
https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH
https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH
https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH

NamedCasProxyDecider. These names are largely self-explanatory, except NamedCasProxyDecider
which allows a List of trusted proxies to be provided.

» CasAuthenticationProvider will next request a AuthenticationUserDetailsService to load the
GrantedAuthority objects that apply to the user contained in the Assertion.

» If there were no problems, CasAuthenticationProvider constructs a CasAuthenticationToken
including the details contained in the TicketResponse and the GrantedAuthoritys.

e Control then returns to CasAuthenticationFilter, which places the created
CasAuthenticationToken in the security context.

* The user’s browser is redirected to the original page that caused the AuthenticationException (or
a custom destination depending on the configuration).

It’s good that you’re still here! Let’s now look at how this is configured

10.17.3. Configuration of CAS Client

The web application side of CAS is made easy due to Spring Security. It is assumed you already
know the basics of using Spring Security, so these are not covered again below. We’ll assume a
namespace based configuration is being used and add in the CAS beans as required. Each section
builds upon the previous section. A full CAS sample application can be found in the Spring Security
Samples.

Service Ticket Authentication

This section describes how to setup Spring Security to authenticate Service Tickets. Often times this
is all a web application requires. You will need to add a ServiceProperties bean to your application
context. This represents your CAS service:

<bean id="serviceProperties"
class="org.springframework.security.cas.ServiceProperties">

<property name="service"
value="https://localhost:8443/cas-sample/login/cas"/>

<property name="sendRenew" value="false"/>

</bean>

The service must equal a URL that will be monitored by the CasAuthenticationFilter. The sendRenew
defaults to false, but should be set to true if your application is particularly sensitive. What this
parameter does is tell the CAS login service that a single sign on login is unacceptable. Instead, the
user will need to re-enter their username and password in order to gain access to the service.

The following beans should be configured to commence the CAS authentication process (assuming
you’re using a namespace configuration):

130

<security:http entry-point-ref="casEntryPoint">

<security:custom-filter position="CAS_FILTER" ref="casFilter" />
</security:http>

<bean id="casFilter"

class="org.springframework.security.cas.web.CasAuthenticationFilter">
<property name="authenticationManager" ref="authenticationManager"/>
</bean>

<bean id="casEntryPoint"
class="org.springframework.security.cas.web.CasAuthenticationEntryPoint">

<property name="loginUrl" value="https://localhost:9443/cas/login"/>

<property name="serviceProperties" ref="serviceProperties"/>

</bean>

For CAS to operate, the ExceptionTranslationFilter must have its authenticationEntryPoint property
set to the CasAuthenticationEntryPoint bean. This can easily be done using entry-point-ref as is done
in the example above. The CasAuthenticationEntryPoint must refer to the ServiceProperties bean
(discussed above), which provides the URL to the enterprise’s CAS login server. This is where the
user’s browser will be redirected.

The CasAuthenticationFilter has very similar properties to the
UsernamePasswordAuthenticationFilter (used for form-based logins). You can use these properties to
customize things like behavior for authentication success and failure.

Next you need to add a CasAuthenticationProvider and its collaborators:

131

<security:authentication-manager alias="authenticationManager">
<security:authentication-provider ref="casAuthenticationProvider" />
</security:authentication-manager>

<bean id="casAuthenticationProvider"
class="org.springframework.security.cas.authentication.CasAuthenticationProvider">
<property name="authenticationUserDetailsService">
<bean
class="org.springframework.security.core.userdetails.UserDetailsByNameServiceWrapper">
<constructor-arg ref="userService" />
</bean>
</property>
<property name="serviceProperties" ref="serviceProperties" />
<property name="ticketValidator">
<bean class="org.jasig.cas.client.validation.Cas2@ServiceTicketValidator">
<constructor-arg index="0" value="https://localhost:9443/cas" />
</bean>
</property>
<property name="key" value="an_id_for_this_auth_provider_only"/>
</bean>

<security:user-service id="userService">

<!-- Password 1is prefixed with {noop} to indicate to DelegatingPasswordEncoder that
NoOpPasswordEncoder should be used.

This is not safe for production, but makes reading

in samples easier.

Normally passwords should be hashed using BCrypt -->

<security:user name="joe" password="{noop}joe" authorities="ROLE_USER" />

</security:user-service>

The CasAuthenticationProvider uses a UserDetailsService instance to load the authorities for a user,
once they have been authenticated by CAS. We’ve shown a simple in-memory setup here. Note that
the CasAuthenticationProvider does not actually use the password for authentication, but it does use
the authorities.

The beans are all reasonably self-explanatory if you refer back to the How CAS Works section.

This completes the most basic configuration for CAS. If you haven’t made any mistakes, your web
application should happily work within the framework of CAS single sign on. No other parts of
Spring Security need to be concerned about the fact CAS handled authentication. In the following
sections we will discuss some (optional) more advanced configurations.

Single Logout

The CAS protocol supports Single Logout and can be easily added to your Spring Security
configuration. Below are updates to the Spring Security configuration that handle Single Logout

132

<security:http entry-point-ref="casEntryPoint">

<security:logout logout-success-url="/cas-logout.jsp"/>

<security:custom-filter ref="requestSingleLogoutFilter" before="LOGOUT_FILTER"/>
<security:custom-filter ref="singleLogoutFilter" before="CAS_FILTER"/>
</security:http>

<!-- This filter handles a Single Logout Request from the CAS Server -->
<bean id="singleLogoutFilter"
class="org.jasig.cas.client.session.SingleSignOutFilter"/>

<!-- This filter redirects to the CAS Server to signal Single Logout should be
performed -->
<bean id="requestSingleLogoutFilter"
class="org.springframework.security.web.authentication.logout.LogoutFilter">
<constructor-arg value="https://localhost:9443/cas/logout"/>
<constructor-arg>
<bean class=

"org.springframework.security.web.authentication.logout.SecurityContextLogoutHandler"/
>

</constructor-arg>

<property name="filterProcessesUr1l" value="/logout/cas"/>

</bean>

The logout element logs the user out of the local application, but does not end the session with the
CAS server or any other applications that have been logged into. The requestSingleLogoutFilter
filter will allow the URL of /spring_security_cas_logout to be requested to redirect the application
to the configured CAS Server logout URL. Then the CAS Server will send a Single Logout request to
all the services that were signed into. The singleLogoutFilter handles the Single Logout request by
looking up the HttpSession in a static Map and then invalidating it.

It might be confusing why both the logout element and the singleLogoutFilter are needed. It is
considered best practice to logout locally first since the SingleSignOutFilter just stores the
HttpSession in a static Map in order to call invalidate on it. With the configuration above, the flow of
logout would be:

* The user requests /logout which would log the user out of the local application and send the
user to the logout success page.

» The logout success page, /cas-logout.jsp, should instruct the user to click a link pointing to
/logout/cas in order to logout out of all applications.

* When the wuser clicks the link, the user is redirected to the CAS single logout URL
(https://localhost:9443/cas/logout).

* On the CAS Server side, the CAS single logout URL then submits single logout requests to all the
CAS Services. On the CAS Service side, JASIG’s SingleSignOutFilter processes the logout request
by invalidating the original session.

The next step is to add the following to your web.xml

133

https://localhost:9443/cas/logout

<filter>

<filter-name>characterEncodingFilter</filter-name>

<filter-class>
org.springframework.web.filter.CharacterEncodingFilter

</filter-class>

<init-param>
<param-name>encoding</param-name>
<param-value>UTF-8</param-value>

</init-param>

</filter>

<filter-mapping>

<filter-name>characterEncodingFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

<listener>

<listener-class>
org.jasig.cas.client.session.SingleSignOutHttpSessionListener

</listener-class>

</listener>

When using the SingleSignOutFilter you might encounter some encoding issues. Therefore it is
recommended to add the CharacterEncodingFilter to ensure that the character encoding is correct
when using the SingleSignOutFilter. Again, refer to JASIG’s documentation for details. The
SingleSignOutHttpSessionListener ensures that when an HttpSession expires, the mapping used for
single logout is removed.

Authenticating to a Stateless Service with CAS

This section describes how to authenticate to a service using CAS. In other words, this section
discusses how to setup a client that uses a service that authenticates with CAS. The next section
describes how to setup a stateless service to Authenticate using CAS.

Configuring CAS to Obtain Proxy Granting Tickets

In order to authenticate to a stateless service, the application needs to obtain a proxy granting
ticket (PGT). This section describes how to configure Spring Security to obtain a PGT building upon
thencas-st[Service Ticket Authentication] configuration.

The first step is to include a ProxyGrantingTicketStorage in your Spring Security configuration. This
is used to store PGT’s that are obtained by the CasAuthenticationFilter so that they can be used to
obtain proxy tickets. An example configuration is shown below

134

<l==

NOTE: In a real application you should not use an in memory implementation.
You will also want to ensure to clean up expired tickets by calling
ProxyGrantingTicketStorage.cleanup()

-->

<bean id="pgtStorage"
class="org.jasig.cas.client.proxy.ProxyGrantingTicketStorageImpl"/>

The next step is to update the CasAuthenticationProvider to be able to obtain proxy tickets. To do
this replace the C(as20ServiceTicketValidator with a Cas20ProxyTicketValidator. The
proxyCallbackUrl should be set to a URL that the application will receive PGT’s at. Last, the
configuration should also reference the ProxyGrantingTicketStorage so it can use a PGT to obtain
proxy tickets. You can find an example of the configuration changes that should be made below.

<bean id="casAuthenticationProvider"
class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

<property name="ticketValidator">
<bean class="org.jasig.cas.client.validation.Cas2@ProxyTicketValidator">
<constructor-arg value="https://localhost:9443/cas"/>
<property name="proxyCallbackUr1"
value="https://localhost:8443/cas-sample/login/cas/proxyreceptor”/>
<property name="proxyGrantingTicketStorage" ref="pgtStorage"/>
</bean>
</property>
</bean>

The last step is to update the CasAuthenticationFilter to accept PGT and to store them in the
ProxyGrantingTicketStorage. It is important the proxyReceptorUrl matches the proxyCallbackUrl of
the Cas20ProxyTicketValidator. An example configuration is shown below.

<bean id="casFilter"
class="org.springframework.security.cas.web.CasAuthenticationFilter">

<property name="proxyGrantingTicketStorage" ref="pgtStorage"/>
<property name="proxyReceptorUrl" value="/login/cas/proxyreceptor"/>
</bean>

Calling a Stateless Service Using a Proxy Ticket

Now that Spring Security obtains PGTs, you can use them to create proxy tickets which can be used
to authenticate to a stateless service. The CAS sample application contains a working example in the
ProxyTicketSampleServlet. Example code can be found below:

135

protected void doGet(HttpServletRequest request, HttpServlietResponse response)
throws ServletException, IOException {

// NOTE: The CasAuthenticationToken can also be obtained using

// SecurityContextHolder.getContext().getAuthentication()

final CasAuthenticationToken token = (CasAuthenticationToken)

request.getUserPrincipal();

// proxyTicket could be reused to make calls to the CAS service even if the

// target url differs

final String proxyTicket =

token.getAssertion().getPrincipal().getProxyTicketFor(targetUrl);

// Make a remote call using the proxy ticket

final String serviceUrl = targetUr1+"?ticket="+URLEncoder.encode(proxyTicket, "UTF-
8“);

String proxyResponse = CommonUtils.getResponseFromServer(serviceUrl, "UTF-8");

}

Proxy Ticket Authentication

The CasAuthenticationProvider distinguishes between stateful and stateless clients. A stateful client
is considered any that submits to the filterProcessUrl of the CasAuthenticationFilter. A stateless
client is any that presents an authentication request to CasAuthenticationFilter on a URL other than
the filterProcessUrl.

Because remoting protocols have no way of presenting themselves within the context of an
HttpSession, it isn’t possible to rely on the default practice of storing the security context in the
session between requests. Furthermore, because the CAS server invalidates a ticket after it has been
validated by the TicketValidator, presenting the same proxy ticket on subsequent requests will not
work.

One obvious option is to not use CAS at all for remoting protocol clients. However, this would
eliminate many of the desirable features of CAS. As a middle-ground, the CasAuthenticationProvider
uses a StatelessTicketCache. This is used solely for stateless clients which use a principal equal to
CasAuthenticationFilter.CAS_STATELESS_IDENTIFIER. What happens is the CasAuthenticationProvider
will store the resulting CasAuthenticationToken in the StatelessTicketCache, keyed on the proxy
ticket. Accordingly, remoting protocol clients can present the same proxy ticket and the
CasAuthenticationProvider will not need to contact the CAS server for validation (aside from the
first request). Once authenticated, the proxy ticket could be used for URLs other than the original
target service.

This section builds upon the previous sections to accommodate proxy ticket authentication. The
first step is to specify to authenticate all artifacts as shown below.

136

<bean id="serviceProperties"
class="org.springframework.security.cas.ServiceProperties">

<property name="authenticateAllArtifacts" value="true"/>
</bean>

The next step is to specify serviceProperties and the authenticationDetailsSource for the
CasAuthenticationFilter. The serviceProperties property instructs the CasAuthenticationFilter to
attempt to authenticate all artifacts instead of only ones present on the filterProcessUrl. The
ServiceAuthenticationDetailsSource creates a ServiceAuthenticationDetails that ensures the
current URL, based upon the HttpServletRequest, is used as the service URL when validating the
ticket. The method for generating the service URL can be customized by injecting a custom
AuthenticationDetailsSource that returns a custom ServiceAuthenticationDetails.

<bean id="casFilter"
class="org.springframework.security.cas.web.CasAuthenticationFilter">

<property name="serviceProperties" ref="serviceProperties"/>
<property name="authenticationDetailsSource">
<bean class=

"org.springframework.security.cas.web.authentication.ServiceAuthenticationDetailsSourc
e">
<constructor-arg ref="serviceProperties"/>
</bean>
</property>
</bean>

You will also need to update the CasAuthenticationProvider to handle proxy tickets. To do this
replace the (as20ServiceTicketValidator with a C(as2@ProxyTicketValidator. You will need to
configure the statelessTicketCache and which proxies you want to accept. You can find an example
of the updates required to accept all proxies below.

137

<bean id="casAuthenticationProvider"
class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

<property name="ticketValidator">
<bean class="org.jasig.cas.client.validation.Cas20ProxyTicketValidator">
<constructor-arg value="https://localhost:9443/cas"/>
<property name="acceptAnyProxy" value="true"/>
</bean>
</property>
<property name="statelessTicketCache">
<bean
class="org.springframework.security.cas.authentication.EhCacheBasedTicketCache">
<property name="cache">
<bean class="net.sf.ehcache.Cache"
init-method="1initialise" destroy-method="dispose">
<constructor-arg value="casTickets"/>
<constructor-arg value="50"/>
<constructor-arg value="true"/>
<constructor-arg value="false"/>
<constructor-arg value="3600"/>
<constructor-arg value="900"/>
</bean>
</property>
</bean>
</property>
</bean>

10.18. X.509 Authentication

10.18.1. Overview

The most common use of X.509 certificate authentication is in verifying the identity of a server
when using SSL, most commonly when using HTTPS from a browser. The browser will
automatically check that the certificate presented by a server has been issued (ie digitally signed)
by one of a list of trusted certificate authorities which it maintains.

You can also use SSL with "mutual authentication"; the server will then request a valid certificate
from the client as part of the SSL handshake. The server will authenticate the client by checking
that its certificate is signed by an acceptable authority. If a valid certificate has been provided, it
can be obtained through the servlet API in an application. Spring Security X.509 module extracts
the certificate using a filter. It maps the certificate to an application user and loads that user’s set of
granted authorities for use with the standard Spring Security infrastructure.

You should be familiar with using certificates and setting up client authentication for your servlet
container before attempting to use it with Spring Security. Most of the work is in creating and
installing suitable certificates and keys. For example, if you’re using Tomcat then read the
instructions here https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html. It’s important that you
get this working before trying it out with Spring Security

138

https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html

10.18.2. Adding X.509 Authentication to Your Web Application

Enabling X.509 client authentication is very straightforward. Just add the <x509/> element to your
http security namespace configuration.

<http>

<x509 subject-principal-regex="CN=(.*?)," user-service-ref="userService"/>;
</http>

The element has two optional attributes:

* subject-principal-regex. The regular expression used to extract a username from the
certificate’s subject name. The default value is shown above. This is the username which will be
passed to the UserDetailsService to load the authorities for the user.

» user-service-ref. This is the bean Id of the UserDetailsService to be used with X.509. It isn’t
needed if there is only one defined in your application context.

The subject-principal-regex should contain a single group. For example the default expression
"CN=(.*?)," matches the common name field. So if the subject name in the certificate is "CN=]Jimi
Hendrix, OU=...", this will give a user name of "Jimi Hendrix". The matches are case insensitive. So
"emailAddress=(.*?)," will match "EMAILADDRESS=jimi@hendrix.org,CN=..." giving a user name
"limi@hendrix.org". If the client presents a certificate and a valid username is successfully
extracted, then there should be a valid Authentication object in the security context. If no certificate
is found, or no corresponding user could be found then the security context will remain empty. This
means that you can easily use X.509 authentication with other options such as a form-based login.

10.18.3. Setting up SSL in Tomcat

There are some pre-generated certificates in the samples/certificate directory in the Spring
Security project. You can use these to enable SSL for testing if you don’t want to generate your own.
The file server.jks contains the server certificate, private key and the issuing certificate authority
certificate. There are also some client certificate files for the users from the sample applications.
You can install these in your browser to enable SSL client authentication.

To run tomcat with SSL support, drop the server.jks file into the tomcat conf directory and add the
following connector to the server.xml file

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" scheme="https"

secure="true"
clientAuth="true" ss1Protocol="TLS"
keystoreFile="${catalina.home}/conf/server.jks"
keystoreType="]KS" keystorePass="password"
truststoreFile="${catalina.home}/conf/server.jks"
truststoreType="JKS" truststorePass="password"

/>

139

mailto:jimi@hendrix.org
mailto:jimi@hendrix.org

clientAuth can also be set to want if you still want SSL connections to succeed even if the client
doesn’t provide a certificate. Clients which don’t present a certificate won’t be able to access any
objects secured by Spring Security unless you use a non-X.509 authentication mechanism, such as
form authentication.

10.19. Run-As Authentication Replacement

10.19.1. Overview

The AbstractSecurityInterceptor is able to temporarily replace the Authentication object in the
SecurityContext and SecurityContextHolder during the secure object callback phase. This only
occurs if the original Authentication object was successfully processed by the AuthenticationManager
and AccessDecisionManager. The RunAsManager will indicate the replacement Authentication object, if
any, that should be used during the SecurityInterceptorCallback.

By temporarily replacing the Authentication object during the secure object callback phase, the
secured invocation will be able to call other objects which require different authentication and
authorization credentials. It will also be able to perform any internal security checks for specific
GrantedAuthority objects. Because Spring Security provides a number of helper classes that
automatically configure remoting protocols based on the contents of the SecurityContextHolder,
these run-as replacements are particularly useful when calling remote web services

10.19.2. Configuration

A RunAsManager interface is provided by Spring Security:

Authentication buildRunAs(Authentication authentication, Object object,
List<ConfigAttribute> config);

boolean supports(ConfigAttribute attribute);

boolean supports(Class clazz);

The first method returns the Authentication object that should replace the existing Authentication
object for the duration of the method invocation. If the method returns null, it indicates no
replacement should be made. The second method is used by the AbstractSecurityInterceptor as
part of its startup validation of configuration attributes. The supports(Class) method is called by a
security interceptor implementation to ensure the configured RunAsManager supports the type of
secure object that the security interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The
RunAsManagerImpl class returns a replacement RunAsUserToken if any ConfigAttribute starts with
RUN_AS_. If any such ConfigAttribute is found, the replacement RunAsUserToken will contain the same
principal, credentials and granted authorities as the original Authentication object, along with a
new SimpleGrantedAuthority for each RUN_AS_ ConfigAttribute. Each new SimpleGrantedAuthority will
be prefixed with ROLE_, followed by the RUN_AS ConfigAttribute. For example, a RUN_AS_SERVER will
result in the replacement RunAsUserToken containing a ROLE_RUN_AS_SERVER granted authority.

140

The replacement RunAsUserToken is just like any other Authentication object. It needs to be
authenticated by the AuthenticationManager, probably via delegation to a suitable
AuthenticationProvider. The RunAsImplAuthenticationProvider performs such authentication. It
simply accepts as valid any RunAsUserToken presented.

To ensure malicious code does not create a RunAsUserToken and present it for guaranteed acceptance
by the RunAsImplAuthenticationProvider, the hash of a key is stored in all generated tokens. The
RunAsManagerImpl and RunAsImplAuthenticationProvider is created in the bean context with the same
key:

<bean id="runAsManager"
class="org.springframework.security.access.intercept.RunAsManagerImpl">

<property name="key" value="my_run_as_password"/>

</bean>

<bean id="runAsAuthenticationProvider"

class="org.springframework.security.access.intercept.RunAsImplAuthenticationProvider">
<property name="key" value="my_run_as_password"/>
</bean>

By using the same key, each RunAsUserToken can be validated it was created by an approved
RunAsManagerImpl. The RunAsUserToken is immutable after creation for security reasons

10.20. Handling Logouts

10.20.1. Logout Java/Kotlin Configuration

When using the WebSecurityConfigurerAdapter, logout capabilities are automatically applied. The
default is that accessing the URL /logout will log the user out by:

 Invalidating the HTTP Session

¢ Cleaning up any RememberMe authentication that was configured

Clearing the SecurityContextHolder

* Redirect to /login?logout

Similar to conf