
Spring LDAP - Reference Documentation

MattiasArthursson, UlrikSandberg, EricDalquist, KeithBarlow

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation ii

Table of Contents

Preface .. v
1. Introduction .. 1

1.1. Overview ... 1
1.2. Packaging overview ... 3
1.3. Package structure ... 4

org.springframework.transaction.compensating ... 4
org.springframework.ldap .. 4
org.springframework.ldap.core ... 4
org.springframework.ldap.core.support ... 4
org.springframework.ldap.core.simple .. 5
org.springframework.ldap.pool ... 5
org.springframework.ldap.pool.factory .. 5
org.springframework.ldap.pool.validation .. 5
org.springframework.ldap.support .. 5
org.springframework.ldap.authentication .. 5
org.springframework.ldap.control ... 5
org.springframework.ldap.filter ... 5
org.springframework.ldap.transaction.compensating ... 6
org.springframework.ldap.transaction.compensating.manager 6
org.springframework.ldap.transaction.compensating.support ... 6
org.springframework.ldap.ldif ... 6
org.springframework.ldap.ldif.batch .. 6
org.springframework.ldap.ldif.parser ... 6
org.springframework.ldap.ldif.support ... 6
org.springframework.ldap.odm ... 6

1.4. Support ... 7
2. Basic Operations .. 8

2.1. Search and Lookup Using AttributesMapper .. 8
2.2. Building Dynamic Filters .. 9
2.3. Building Dynamic Distinguished Names .. 10
2.4. Binding and Unbinding ... 11

Binding Data .. 11
Unbinding Data .. 12

2.5. Modifying .. 12
Modifying using rebind ... 12
Modifying using modifyAttributes ... 13

2.6. Sample applications ... 13
3. Simpler Attribute Access and Manipulation with DirContextAdapter .. 14

3.1. Introduction ... 14
3.2. Search and Lookup Using ContextMapper .. 14

The AbstractContextMapper .. 15
3.3. Binding and Modifying Using DirContextAdapter .. 15

Binding .. 15
Modifying ... 16

3.4. A Complete PersonDao Class .. 17
4. Adding Missing Overloaded API Methods .. 20

4.1. Implementing Custom Search Methods ... 20

please define productname in your docbook file!

Spring LDAP - Reference
Documentation iii

4.2. Implementing Other Custom Context Methods ... 21
5. Processing the DirContext .. 23

5.1. Custom DirContext Pre/Postprocessing ... 23
5.2. Implementing a Request Control DirContextProcessor ... 23
5.3. Paged Search Results ... 24

6. Transaction Support ... 26
6.1. Introduction ... 26
6.2. Configuration ... 26
6.3. JDBC Transaction Integration ... 27
6.4. LDAP Compensating Transactions Explained .. 28

Renaming Strategies .. 29
7. Java 5 Support .. 30

7.1. SimpleLdapTemplate ... 30
8. Configuration .. 31

8.1. ContextSource Configuration .. 31
LDAP Server URLs .. 31
Base LDAP path .. 31
DirContext Authentication .. 31

Custom DirContext Authentication Processing .. 32
Custom Principal and Credentials Management ... 32
Default Authentication ... 33

Native Java LDAP Pooling .. 34
Advanced ContextSource Configuration ... 34

Alternate ContextFactory ... 34
Custom DirObjectFactory .. 34
Custom DirContext Environment Properties ... 35

8.2. LdapTemplate Configuration ... 35
Ignoring PartialResultExceptions ... 35

8.3. Obtaining a reference to the base LDAP path ... 35
9. Pooling Support ... 37

9.1. Introduction ... 37
9.2. DirContext Validation ... 37
9.3. Pool Properties .. 37
9.4. Configuration ... 39

Validation Configuration .. 40
9.5. Known Issues .. 41

Custom Authentication .. 41
10. User Authentication using Spring LDAP ... 42

10.1. Basic Authentication ... 42
10.2. Performing Operations on the Authenticated Context ... 43
10.3. Retrieving the Authentication Exception .. 44
10.4. Use Spring Security ... 45

11. LDIF Parsing .. 46
11.1. Introduction ... 46
11.2. Object Representation .. 46
11.3. The Parser .. 46
11.4. Schema Validation ... 47
11.5. Spring Batch Integration ... 47

12. Object-Directory Mapping (ODM) ... 48
12.1. Introduction ... 48

please define productname in your docbook file!

Spring LDAP - Reference
Documentation iv

12.2. OdmManager ... 48
12.3. Annotations ... 49
12.4. Type Conversion ... 49
12.5. Execution .. 52

13. Utilities ... 53
13.1. Incremental Retrieval of Multi-Valued Attributes ... 53

please define productname in your docbook file!

Spring LDAP - Reference
Documentation v

Preface
The Java Naming and Directory Interface (JNDI) is for LDAP programming what Java Database
Connectivity (JDBC) is for SQL programming. There are several similarities between JDBC and JNDI/
LDAP (Java LDAP). Despite being two completely different APIs with different pros and cons, they share
a number of less flattering characteristics:

• They require extensive plumbing code, even to perform the simplest of tasks.
• All resources need to be correctly closed, no matter what happens.
• Exception handling is difficult.

The above points often lead to massive code duplication in common usages of the APIs. As we all
know, code duplication is one of the worst code smells. All in all, it boils down to this: JDBC and LDAP
programming in Java are both incredibly dull and repetitive.

Spring JDBC, a part of the Spring framework, provides excellent utilities for simplifying SQL
programming. We need a similar framework for Java LDAP programming.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 1

1. Introduction

1.1. Overview

Spring LDAP (http://www.springframework.org/ldap) is a library for simpler LDAP programming
in Java, built on the same principles as the JdbcTemplate in Spring JDBC. It completely
eliminates the need to worry about creating and closing LdapContext and looping through
NamingEnumeration. It also provides a more comprehensive unchecked Exception hierarchy, built on
Spring's DataAccessException. As a bonus, it also contains classes for dynamically building LDAP
filters and DNs (Distinguished Names), LDAP attribute management, and client-side LDAP transaction
management.

Consider, for example, a method that should search some storage for all persons and return their names
in a list. Using JDBC, we would create a connection and execute a query using a statement. We would
then loop over the result set and retrieve the column we want, adding it to a list. In contrast, using Java
LDAP, we would create a context and perform a search using a search filter. We would then loop over
the resulting naming enumeration and retrieve the attribute we want, adding it to a list.

The traditional way of implementing this person name search method in Java LDAP looks like this,
where the code marked as bold actually performs tasks related to the business purpose of the method:

http://www.springframework.org/ldap
http://static.springframework.org/spring/docs/current/api/org/springframework/jdbc/core/JdbcTemplate.html

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 2

package com.example.dao;

public class TraditionalPersonDaoImpl implements PersonDao {

 public List getAllPersonNames() {

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");

 env.put(Context.PROVIDER_URL, "ldap://localhost:389/dc=example,dc=com");

 DirContext ctx;

 try {

 ctx = new InitialDirContext(env);

 } catch (NamingException e) {

 throw new RuntimeException(e);

 }

 LinkedList list = new LinkedList();

 NamingEnumeration results = null;

 try {

 SearchControls controls = new SearchControls();

 controls.setSearchScope(SearchControls.SUBTREE_SCOPE);

 results = ctx.search("", "(objectclass=person)", controls);

 while (results.hasMore()) {

 SearchResult searchResult = (SearchResult) results.next();

 Attributes attributes = searchResult.getAttributes();

 Attribute attr = attributes.get("cn");

 String cn = (String) attr.get();

 list.add(cn);

 }

 } catch (NameNotFoundException e) {

 // The base context was not found.

 // Just clean up and exit.

 } catch (NamingException e) {

 throw new RuntimeException(e);

 } finally {

 if (results != null) {

 try {

 results.close();

 } catch (Exception e) {

 // Never mind this.

 }

 }

 if (ctx != null) {

 try {

 ctx.close();

 } catch (Exception e) {

 // Never mind this.

 }

 }

 }

 return list;

 }

}

By using the Spring LDAP classes AttributesMapper and LdapTemplate, we get the exact same
functionality with the following code:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 3

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 public void setLdapTemplate(LdapTemplate ldapTemplate) {

 this.ldapTemplate = ldapTemplate;

 }

 public List getAllPersonNames() {

 return ldapTemplate.search(

 "", "(objectclass=person)",

 new AttributesMapper() {

 public Object mapFromAttributes(Attributes attrs)

 throws NamingException {

 return attrs.get("cn").get();

 }

 });

 }

}

The amount of boiler-plate code is significantly less than in the traditional example. The LdapTemplate
version of the search method performs the search, maps the attributes to a string using the given
AttributesMapper, collects the strings in an internal list, and finally returns the list.

Note that the PersonDaoImpl code simply assumes that it has an LdapTemplate instance, rather
than looking one up somewhere. It provides a set method for this purpose. There is nothing Spring-
specific about this "Inversion of Control". Anyone that can create an instance of PersonDaoImpl can
also set the LdapTemplate on it. However, Spring provides a very flexible and easy way of achieving
this. The Spring container can be told to wire up an instance of LdapTemplate with its required
dependencies and inject it into the PersonDao instance. This wiring can be defined in various ways,
but the most common is through XML:

<beans>

 <bean id="contextSource"

 class="org.springframework.ldap.core.support.LdapContextSource">

 <property name="url" value="ldap://localhost:389" />

 <property name="base" value="dc=example,dc=com" />

 <property name="userDn" value="cn=Manager" />

 <property name="password" value="secret" />

 </bean>

 <bean id="ldapTemplate" class="org.springframework.ldap.core.LdapTemplate">

 <constructor-arg ref="contextSource" />

 </bean>

 <bean id="personDao" class="com.example.dao.PersonDaoImpl">

 <property name="ldapTemplate" ref="ldapTemplate" />

 </bean>

</beans>

1.2. Packaging overview

At a minimum, to use Spring LDAP you need:

• spring-ldap-core (the Spring LDAP library)
• spring-core (miscellaneous utility classes used internally by the framework)
• spring-beans (contains interfaces and classes for manipulating Java beans)

http://static.springframework.org/spring/docs/current/reference/beans.html
http://static.springframework.org/spring/docs/current/reference/beans.html

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 4

• commons-logging (a simple logging facade, used internally)
• commons-lang (misc utilities, used internally)

In addition to the required dependencies the following optional dependencies are required for certain
functionality:

• spring-context (If your application is wired up using the Spring Application Context - adds the ability for
application objects to obtain resources using a consistent API. Definitely needed if you are planning
on using the BaseLdapPathBeanPostProcessor.)

• spring-tx (If you are planning to use the client side compensating transaction support)

• spring-jdbc (If you are planning to use the client side compensating transaction support)

• ldapbp (Sun LDAP Booster Pack - if you will use the LDAP v3 Server controls integration and you're
not using Java5 or higher)

• commons-pool (If you are planning to use the pooling functionality)

• spring-batch (If you are planning to use the LDIF parsing functionality together with Spring Batch)

1.3. Package structure

This section provides an overview of the logical package structure of the Spring LDAP codebase. The
dependencies for each package are clearly noted.

Figure 1.1. Spring LDAP package structure

org.springframework.transaction.compensating

The transaction.compensating package contains the generic compensating transaction support. This is
not LDAP-specific or JNDI-specific in any way.

• Dependencies: commons-logging

org.springframework.ldap

The ldap package contains the exceptions of the library. These exceptions form an unchecked hierarchy
that mirrors the NamingException hierarchy.

• Dependencies: spring-core

org.springframework.ldap.core

The ldap.core package contains the central abstractions of the library. These abstractions include
AuthenticationSource, ContextSource, DirContextProcessor, and NameClassPairCallbackHandler.
This package also contains the central class LdapTemplate, plus various mappers and executors.

• Dependencies: ldap, ldap.support, spring-beans, spring-core, spring-tx, commons-lang, commons-
logging

org.springframework.ldap.core.support

The ldap.core.support package contains supporting implementations of some of the core interfaces.

• Dependencies: ldap, ldap.core, ldap.support, spring-core, spring-beans, spring-context, commons-
lang, commons-logging

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 5

org.springframework.ldap.core.simple

The ldap.core.simple package contains Java5-specific parts of Spring LDAP. It's mainly a simplification
layer that takes advantage of the generics support in Java5, in order to get typesafe context mappers
as well as typesafe search and lookup methods.

• Dependencies: ldap.core

org.springframework.ldap.pool

The ldap.pool package contains support for detailed pool configuration on a per-ContextSource basis.
Pooling support is provided by PoolingContextSource which can wrap any ContextSource and pool both
read-only and read-write DirContext objects. Jakarta Commons-Pool is used to provide the underlying
pool implementation.

• Dependencies: ldap.core, commons-lang, commons-pool

org.springframework.ldap.pool.factory

The ldap.pool.factory package contains the actual pooling context source and other classes for context
creation.

• Dependencies: ldap, ldap.core, ldap.pool, ldap.pool.validation, spring-beans, spring-tx, commons-
lang, commons-logging, commons-pool

org.springframework.ldap.pool.validation

The ldap.pool.validation package contains the connection validation support.

• Dependencies: ldap.pool, commons-lang, commons-logging

org.springframework.ldap.support

The ldap.support package contains supporting utilities, like the exception translation mechanism.

• Dependencies: ldap, spring-core, commons-lang, commons-logging

org.springframework.ldap.authentication

The ldap.authentication package contains an implementation of the AuthenticationSource interface that
can be used if the user should be allowed to read some information even though not logged in.

• Dependencies: ldap.core, spring-beans, commons-lang

org.springframework.ldap.control

The ldap.control package contains an abstract implementation of the DirContextProcessor interface that
can be used as a basis for processing RequestControls and ResponseControls. There is also a concrete
implementation that handles paged search results and one that handles sorting. The LDAP Booster
Pack is used to get support for controls, unless Java5 is used.

• Dependencies: ldap, ldap.core, LDAP booster pack (optional), spring-core, commons-lang,
commons-logging

org.springframework.ldap.filter

The ldap.filter package contains the Filter abstraction and several implementations of it.

• Dependencies: ldap.core, spring-core, commons-lang

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 6

org.springframework.ldap.transaction.compensating

The ldap.transaction.compensating package contains the core LDAP-specific implementation of
compensating transactions.

• Dependencies: ldap.core, ldap.core.support, transaction.compensating, spring-core, commons-lang,
commons-logging

org.springframework.ldap.transaction.compensating.manager

The ldap.transaction.compensating.manager package contains the core implementation classes for
client-side compensating transactions.

• Dependencies: ldap, ldap.core, ldap.support, ldap.transaction.compensating,
ldap.transaction.compensating.support, transaction.compensating, spring-tx, spring-jdbc, spring-
orm, commons-logging

org.springframework.ldap.transaction.compensating.support

The ldap.transaction.compensating.support package contains useful helper classes for client-side
compensating transactions.

• Dependencies: ldap.core, ldap.transaction.compensating

org.springframework.ldap.ldif

The ldap.ldif package provides support for parsing LDIF files.

• Dependencies: ldap.core

org.springframework.ldap.ldif.batch

The ldap.ldif.batch package provides the classes necessary to use the LDIF parser in the Spring Batch
framework.

• Dependencies: ldap.core, ldap.ldif.parser, spring-batch, spring-core, spring-beans, commons-logging

org.springframework.ldap.ldif.parser

The ldap.ldif.parser package provides the parser classes and interfaces.

• Dependencies: ldap.core, ldap.schema, ldap.ldif, ldap.ldif.support, spring-core, spring-beans,
commons-lang, commons-logging

org.springframework.ldap.ldif.support

The ldap.ldif.support package provides the necessary auxiliary classes utilized by the LDIF Parser.

• Dependencies: ldap.core, ldap.ldif, commons-lang, commons-logging

org.springframework.ldap.odm

The ldap.odm package provides the classes and interfaces enabling annotation based object-directory
mapping.

• Dependencies: ldap, ldap.core, ldap.core.simple, ldap.filter, spring-beans, commons-cli, commons-
logging, freemarker

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 7

For the exact list of jar dependencies, see the Spring LDAP Maven2 Project Object Model (POM) files
in the source tree.

1.4. Support

Spring LDAP 1.3 is supported on Spring 2.0 and later.

The community support forum is located at http://forum.springframework.org, and the project web page
is http://www.springframework.org/ldap.

http://forum.springframework.org
http://www.springframework.org/ldap

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 8

2. Basic Operations

2.1. Search and Lookup Using AttributesMapper

In this example we will use an AttributesMapper to easily build a List of all common names of all
person objects.

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 public void setLdapTemplate(LdapTemplate ldapTemplate) {

 this.ldapTemplate = ldapTemplate;

 }

 public List getAllPersonNames() {

 return ldapTemplate.search(

 "", "(objectclass=person)",

 new AttributesMapper() {

 public Object mapFromAttributes(Attributes attrs)

 throws NamingException {

 return attrs.get("cn").get();

 }

 });

 }

}

Example 2.1 AttributesMapper that returns a single attribute

The inline implementation of AttributesMapper just gets the desired attribute value from the
Attributes and returns it. Internally, LdapTemplate iterates over all entries found, calling the given
AttributesMapper for each entry, and collects the results in a list. The list is then returned by the
search method.

Note that the AttributesMapper implementation could easily be modified to return a full Person
object:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 9

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 ...

 private class PersonAttributesMapper implements AttributesMapper {

 public Object mapFromAttributes(Attributes attrs) throws NamingException {

 Person person = new Person();

 person.setFullName((String)attrs.get("cn").get());

 person.setLastName((String)attrs.get("sn").get());

 person.setDescription((String)attrs.get("description").get());

 return person;

 }

 }

 public List getAllPersons() {

 return ldapTemplate.search("", "(objectclass=person)", new

 PersonAttributesMapper());

 }

}

Example 2.2 AttributesMapper that returns a Person object

If you have the distinguished name (dn) that identifies an entry, you can retrieve the entry directly,
without searching for it. This is called a lookup in Java LDAP. The following example shows how a
lookup results in a Person object:

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 ...

 public Person findPerson(String dn) {

 return (Person) ldapTemplate.lookup(dn, new PersonAttributesMapper());

 }

}

Example 2.3 A lookup resulting in a Person object

This will look up the specified dn and pass the found attributes to the supplied AttributesMapper,
in this case resulting in a Person object.

2.2. Building Dynamic Filters

We can build dynamic filters to use in searches, using the classes from the
org.springframework.ldap.filter package. Let's say that we want the following filter:
(&(objectclass=person)(sn=?)), where we want the ? to be replaced with the value of the
parameter lastName. This is how we do it using the filter support classes:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 10

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 ...

 public List getPersonNamesByLastName(String lastName) {

 AndFilter filter = new AndFilter();

 filter.and(new EqualsFilter("objectclass", "person"));

 filter.and(new EqualsFilter("sn", lastName));

 return ldapTemplate.search(

 "", filter.encode(),

 new AttributesMapper() {

 public Object mapFromAttributes(Attributes attrs)

 throws NamingException {

 return attrs.get("cn").get();

 }

 });

 }

}

Example 2.4 Building a search filter dynamically

To perform a wildcard search, it's possible to use the WhitespaceWildcardsFilter:

AndFilter filter = new AndFilter();

filter.and(new EqualsFilter("objectclass", "person"));

filter.and(new WhitespaceWildcardsFilter("cn", cn));

Example 2.5 Building a wildcard search filter

Note
In addition to simplifying building of complex search filters, the Filter classes also provide
proper escaping of any unsafe characters. This prevents "ldap injection", where a user might use
such characters to inject unwanted operations into your LDAP operations.

2.3. Building Dynamic Distinguished Names

The standard Name interface represents a generic name, which is basically an ordered sequence of
components. The Name interface also provides operations on that sequence; e.g., add or remove.
LdapTemplate provides an implementation of the Name interface: DistinguishedName. Using this
class will greatly simplify building distinguished names, especially considering the sometimes complex
rules regarding escapings and encodings. As with the Filter classes this helps preventing potentially
malicious data being injected into your LDAP operations.

The following example illustrates how DistinguishedName can be used to dynamically construct a
distinguished name:

http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/Name.html

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 11

package com.example.dao;

import org.springframework.ldap.core.support.DistinguishedName;

import javax.naming.Name;

public class PersonDaoImpl implements PersonDao {

 public static final String BASE_DN = "dc=example,dc=com";

 ...

 protected Name buildDn(Person p) {

 DistinguishedName dn = new DistinguishedName(BASE_DN);

 dn.add("c", p.getCountry());

 dn.add("ou", p.getCompany());

 dn.add("cn", p.getFullname());

 return dn;

 }

}

Example 2.6 Building a distinguished name dynamically

Assuming that a Person has the following attributes:

country Sweden

company Some Company

fullname Some Person

The code above would then result in the following distinguished name:

cn=Some Person, ou=Some Company, c=Sweden, dc=example, dc=com

In Java 5, there is an implementation of the Name interface: LdapName. If you are in the Java 5 world,
you might as well use LdapName. However, you may still use DistinguishedName if you so wish.

2.4. Binding and Unbinding

Binding Data

Inserting data in Java LDAP is called binding. In order to do that, a distinguished name that
uniquely identifies the new entry is required. The following example shows how data is bound using
LdapTemplate:

http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/ldap/LdapName.html

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 12

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 ...

 public void create(Person p) {

 Name dn = buildDn(p);

 ldapTemplate.bind(dn, null, buildAttributes(p));

 }

 private Attributes buildAttributes(Person p) {

 Attributes attrs = new BasicAttributes();

 BasicAttribute ocattr = new BasicAttribute("objectclass");

 ocattr.add("top");

 ocattr.add("person");

 attrs.put(ocattr);

 attrs.put("cn", "Some Person");

 attrs.put("sn", "Person");

 return attrs;

 }

}

Example 2.7 Binding data using Attributes

The Attributes building is--while dull and verbose--sufficient for many purposes. It is, however, possible
to simplify the binding operation further, which will be described in Chapter 3, Simpler Attribute Access
and Manipulation with DirContextAdapter.

Unbinding Data

Removing data in Java LDAP is called unbinding. A distinguished name (dn) is required to identify
the entry, just as in the binding operation. The following example shows how data is unbound using
LdapTemplate:

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 ...

 public void delete(Person p) {

 Name dn = buildDn(p);

 ldapTemplate.unbind(dn);

 }

}

Example 2.8 Unbinding data

2.5. Modifying

In Java LDAP, data can be modified in two ways: either using rebind or modifyAttributes.

Modifying using rebind

A rebind is a very crude way to modify data. It's basically an unbind followed by a bind. It looks
like this:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 13

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 ...

 public void update(Person p) {

 Name dn = buildDn(p);

 ldapTemplate.rebind(dn, null, buildAttributes(p));

 }

}

Example 2.9 Modifying using rebind

Modifying using modifyAttributes

If only the modified attributes should be replaced, there is a method called modifyAttributes that
takes an array of modifications:

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 ...

 public void updateDescription(Person p) {

 Name dn = buildDn(p);

 Attribute attr = new BasicAttribute("description", p.getDescription())

 ModificationItem item = new ModificationItem(DirContext.REPLACE_ATTRIBUTE, attr);

 ldapTemplate.modifyAttributes(dn, new ModificationItem[] {item});

 }

}

Example 2.10 Modifying using modifyAttributes

Building Attributes and ModificationItem arrays is a lot of work, but as you will see in Chapter 3,
Simpler Attribute Access and Manipulation with DirContextAdapter, the update operations can be
simplified.

2.6. Sample applications

It is recommended that you review the Spring LDAP sample applications included in the release
distribution for best-practice illustrations of the features of this library. A description of each sample is
provided below:

1. spring-ldap-person - the sample demonstrating most features.

2. spring-ldap-article - the sample application that was written to accompany a java.net article about
Spring LDAP.

http://today.java.net/pub/a/today/2006/04/18/ldaptemplate-java-ldap-made-simple.html

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 14

3. Simpler Attribute Access and Manipulation with
DirContextAdapter

3.1. Introduction

A little-known--and probably underestimated--feature of the Java LDAP API is the ability to register a
DirObjectFactory to automatically create objects from found contexts. One of the reasons why it
is seldom used is that you will need an implementation of DirObjectFactory that creates instances
of a meaningful implementation of DirContext. The Spring LDAP library provides the missing
pieces: a default implementation of DirContext called DirContextAdapter, and a corresponding
implementation of DirObjectFactory called DefaultDirObjectFactory. Used together with
DefaultDirObjectFactory, the DirContextAdapter can be a very powerful tool.

3.2. Search and Lookup Using ContextMapper

The DefaultDirObjectFactory is registered with the ContextSource by default, which means
that whenever a context is found in the LDAP tree, its Attributes and Distinguished Name (DN) will
be used to construct a DirContextAdapter. This enables us to use a ContextMapper instead of
an AttributesMapper to transform found values:

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 ...

 private static class PersonContextMapper implements ContextMapper {

 public Object mapFromContext(Object ctx) {

 DirContextAdapter context = (DirContextAdapter)ctx;

 Person p = new Person();

 p.setFullName(context.getStringAttribute("cn"));

 p.setLastName(context.getStringAttribute("sn"));

 p.setDescription(context.getStringAttribute("description"));

 return p;

 }

 }

 public Person findByPrimaryKey(

 String name, String company, String country) {

 Name dn = buildDn(name, company, country);

 return ldapTemplate.lookup(dn, new PersonContextMapper());

 }

}

Example 3.1 Searching using a ContextMapper

The above code shows that it is possible to retrieve the attributes directly by name, without
having to go through the Attributes and BasicAttribute classes. This is particularly useful
when working with multi-value attributes. Extracting values from multi-value attributes normally
requires looping through a NamingEnumeration of attribute values returned from the Attributes
implementation. The DirContextAdapter can do this for you, using the getStringAttributes()
or getObjectAttributes() methods:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 15

private static class PersonContextMapper implements ContextMapper {

 public Object mapFromContext(Object ctx) {

 DirContextAdapter context = (DirContextAdapter)ctx;

 Person p = new Person();

 p.setFullName(context.getStringAttribute("cn"));

 p.setLastName(context.getStringAttribute("sn"));

 p.setDescription(context.getStringAttribute("description"));

 // The roleNames property of Person is an String array

 p.setRoleNames(context.getStringAttributes("roleNames"));

 return p;

 }

}

Example 3.2 Getting multi-value attribute values using getStringAttributes()

The AbstractContextMapper

Spring LDAP provides an abstract base implementation of ContextMapper,
AbstractContextMapper. This automatically takes care of the casting of the supplied Object
parameter to DirContexOperations. The PersonContextMapper above can thus be re-written as
follows:

 private static class PersonContextMapper extends AbstractContextMapper {

 public Object doMapFromContext(DirContextOperations ctx) {

 Person p = new Person();

 p.setFullName(context.getStringAttribute("cn"));

 p.setLastName(context.getStringAttribute("sn"));

 p.setDescription(context.getStringAttribute("description"));

 return p;

 }

 }

Example 3.3 Using an AbstractContextMapper

3.3. Binding and Modifying Using DirContextAdapter

While very useful when extracting attribute values, DirContextAdapter is even more powerful for
hiding attribute details when binding and modifying data.

Binding

This is an example of an improved implementation of the create DAO method. Compare it with the
previous implementation in the section called “Binding Data”.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 16

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 ...

 public void create(Person p) {

 Name dn = buildDn(p);

 DirContextAdapter context = new DirContextAdapter(dn);

 context.setAttributeValues("objectclass", new String[] {"top", "person"});

 context.setAttributeValue("cn", p.getFullname());

 context.setAttributeValue("sn", p.getLastname());

 context.setAttributeValue("description", p.getDescription());

 ldapTemplate.bind(context);

 }

}

Example 3.4 Binding using DirContextAdapter

Note that we use the DirContextAdapter instance as the second parameter to bind, which should
be a Context. The third parameter is null, since we're not using any Attributes.

Also note the use of the setAttributeValues() method when setting the objectclass
attribute values. The objectclass attribute is multi-value, and similar to the troubles of extracting
muti-value attribute data, building multi-value attributes is tedious and verbose work. Using the
setAttributeValues() mehtod you can have DirContextAdapter handle that work for you.

Modifying

The code for a rebind would be pretty much identical to Example 3.4, “Binding using
DirContextAdapter”, except that the method called would be rebind. As we saw in the
section called “Modifying using modifyAttributes” a more correct approach would be to build a
ModificationItem array containing the actual modifications you want to do. This would require you
to determine the actual modifications compared to the data present in the LDAP tree. Again, this is
something that DirContextAdapter can help you with; the DirContextAdapter has the ability to
keep track of its modified attributes. The following example takes advantage of this feature:

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 ...

 public void update(Person p) {

 Name dn = buildDn(p);

 DirContextOperations context = ldapTemplate.lookupContext(dn);

 context.setAttributeValues("objectclass", new String[] {"top", "person"});

 context.setAttributeValue("cn", p.getFullname());

 context.setAttributeValue("sn", p.getLastname());

 context.setAttributeValue("description", p.getDescription());

 ldapTemplate.modifyAttributes(context);

 }

}

Example 3.5 Modifying using DirContextAdapter

When no mapper is passed to a ldapTemplate.lookup() operation, the result will be a
DirContextAdapter instance. While the lookup method returns an Object, the convenience

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 17

method lookupContext method automatically casts the return value to a DirContextOperations
(the interface that DirContextAdapter implements.

The observant reader will see that we have duplicated code in the create and update methods. This
code maps from a domain object to a context. It can be extracted to a separate method:

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 ...

 public void create(Person p) {

 Name dn = buildDn(p);

 DirContextAdapter context = new DirContextAdapter(dn);

 mapToContext(p, context);

 ldapTemplate.bind(context);

 }

 public void update(Person p) {

 Name dn = buildDn(p);

 DirContextOperations context = ldapTemplate.lookupContext(dn);

 mapToContext(person, context);

 ldapTemplate.modifyAttributes(context);

 }

 protected void mapToContext (Person p, DirContextOperations context) {

 context.setAttributeValues("objectclass", new String[] {"top", "person"});

 context.setAttributeValue("cn", p.getFullName());

 context.setAttributeValue("sn", p.getLastName());

 context.setAttributeValue("description", p.getDescription());

 }

}

Example 3.6 Binding and modifying using DirContextAdapter

3.4. A Complete PersonDao Class

To illustrate the power of Spring LDAP, here is a complete Person DAO implementation for LDAP in
just 68 lines:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 18

package com.example.dao;

import java.util.List;

import javax.naming.Name;

import javax.naming.NamingException;

import javax.naming.directory.Attributes;

import org.springframework.ldap.core.AttributesMapper;

import org.springframework.ldap.core.ContextMapper;

import org.springframework.ldap.core.LdapTemplate;

import org.springframework.ldap.core.DirContextAdapter;

import org.springframework.ldap.core.support.DistinguishedName;

import org.springframework.ldap.filter.AndFilter;

import org.springframework.ldap.filter.EqualsFilter;

import org.springframework.ldap.filter.WhitespaceWildcardsFilter;

public class PersonDaoImpl implements PersonDao {

 private LdapTemplate ldapTemplate;

 public void setLdapTemplate(LdapTemplate ldapTemplate) {

 this.ldapTemplate = ldapTemplate;

 }

 public void create(Person person) {

 DirContextAdapter context = new DirContextAdapter(buildDn(person));

 mapToContext(person, context);

 ldapTemplate.bind(context);

 }

 public void update(Person person) {

 Name dn = buildDn(person);

 DirContextOperations context = ldapTemplate.lookupContext(dn);

 mapToContext(person, context);

 ldapTemplate.modifyAttributes(context);

 }

 public void delete(Person person) {

 ldapTemplate.unbind(buildDn(person));

 }

 public Person findByPrimaryKey(String name, String company, String country) {

 Name dn = buildDn(name, company, country);

 return (Person) ldapTemplate.lookup(dn, getContextMapper());

 }

 public List findByName(String name) {

 AndFilter filter = new AndFilter();

 filter.and(new EqualsFilter("objectclass", "person")).and(new

 WhitespaceWildcardsFilter("cn",name));

 return ldapTemplate.search(DistinguishedName.EMPTY_PATH, filter.encode(),

 getContextMapper());

 }

 public List findAll() {

 EqualsFilter filter = new EqualsFilter("objectclass", "person");

 return ldapTemplate.search(DistinguishedName.EMPTY_PATH, filter.encode(),

 getContextMapper());

 }

 protected ContextMapper getContextMapper() {

 return new PersonContextMapper();

 }

 protected Name buildDn(Person person) {

 return buildDn(person.getFullname(), person.getCompany(), person.getCountry());

 }

 protected Name buildDn(String fullname, String company, String country) {

 DistinguishedName dn = new DistinguishedName();

 dn.add("c", country);

 dn.add("ou", company);

 dn.add("cn", fullname);

 return dn;

 }

 protected void mapToContext(Person person, DirContextOperations context) {

 context.setAttributeValues("objectclass", new String[] {"top", "person"});

 context.setAttributeValue("cn", person.getFullName());

 context.setAttributeValue("sn", person.getLastName());

 context.setAttributeValue("description", person.getDescription());

 }

 private static class PersonContextMapper extends AbstractContextMapper {

 public Object doMapFromContext(DirContextOperations context) {

 Person person = new Person();

 person.setFullName(context.getStringAttribute("cn"));

 person.setLastName(context.getStringAttribute("sn"));

 person.setDescription(context.getStringAttribute("description"));

 return person;

 }

 }

}

Example 3.7 A complete PersonDao class

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 19

Note

In several cases the Distinguished Name (DN) of an object is constructed using properties of the
object. E.g. in the above example, the country, company and full name of the Person are used
in the DN, which means that updating any of these properties will actually require moving the
entry in the LDAP tree using the rename() operation in addition to updating the Attribute
values. Since this is highly implementation specific this is something you'll need to keep track of
yourself - either by disallowing the user to change these properties or performing the rename()
operation in your update() method if needed.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 20

4. Adding Missing Overloaded API Methods

4.1. Implementing Custom Search Methods

While LdapTemplate contains several overloaded versions of the most common operations in
DirContext, we have not provided an alternative for each and every method signature, mostly because
there are so many of them. We have, however, provided a means to call whichever DirContext method
you want and still get the benefits that LdapTemplate provides.

Let's say that you want to call the following DirContext method:

NamingEnumeration search(Name name, String filterExpr, Object[] filterArgs, SearchControls

 ctls)

There is no corresponding overloaded method in LdapTemplate. The way to solve this is to use a custom
SearchExecutor implementation:

public interface SearchExecutor {

 public NamingEnumeration executeSearch(DirContext ctx) throws NamingException;

}

In your custom executor, you have access to a DirContext object, which you use to call
the method you want. You then provide a handler that is responsible for mapping attributes
and collecting the results. You can for example use one of the available implementations of
CollectingNameClassPairCallbackHandler, which will collect the mapped results in an internal
list. In order to actually execute the search, you call the search method in LdapTemplate that takes an
executor and a handler as arguments. Finally, you return whatever your handler has collected.

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 ...

 public List search(final Name base, final String filter, final String[] params,

 final SearchControls ctls) {

 SearchExecutor executor = new SearchExecutor() {

 public NamingEnumeration executeSearch(DirContext ctx) {

 return ctx.search(base, filter, params, ctls);

 }

 };

 CollectingNameClassPairCallbackHandler handler =

 new AttributesMapperCallbackHandler(new PersonAttributesMapper());

 ldapTemplate.search(executor, handler);

 return handler.getList();

 }

}

Example 4.1 A custom search method using SearchExecutor and AttributesMapper

If you prefer the ContextMapper to the AttributesMapper, this is what it would look like:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 21

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 ...

 public List search(final Name base, final String filter, final String[] params,

 final SearchControls ctls) {

 SearchExecutor executor = new SearchExecutor() {

 public NamingEnumeration executeSearch(DirContext ctx) {

 return ctx.search(base, filter, params, ctls);

 }

 };

 CollectingNameClassPairCallbackHandler handler =

 new ContextMapperCallbackHandler(new PersonContextMapper());

 ldapTemplate.search(executor, handler);

 return handler.getList();

 }

}

Example 4.2 A custom search method using SearchExecutor and ContextMapper

Note

When using the ContextMapperCallbackHandler you must make sure that you have called
setReturningObjFlag(true) on your SearchControls instance.

4.2. Implementing Other Custom Context Methods

In the same manner as for custom search methods, you can actually execute any method in
DirContext by using a ContextExecutor.

public interface ContextExecutor {

 public Object executeWithContext(DirContext ctx) throws NamingException;

}

When implementing a custom ContextExecutor, you can choose between using the
executeReadOnly() or the executeReadWrite() method. Let's say that we want to call this
method:

Object lookupLink(Name name)

It's available in DirContext, but there is no matching method in LdapTemplate. It's a lookup method,
so it should be read-only. We can implement it like this:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 22

package com.example.dao;

public class PersonDaoImpl implements PersonDao {

 ...

 public Object lookupLink(final Name name) {

 ContextExecutor executor = new ContextExecutor() {

 public Object executeWithContext(DirContext ctx) {

 return ctx.lookupLink(name);

 }

 };

 return ldapTemplate.executeReadOnly(executor);

 }

}

In the same manner you can execute a read-write operation using the executeReadWrite() method.

Example 4.3 A custom DirContext method using ContextExecutor

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 23

5. Processing the DirContext

5.1. Custom DirContext Pre/Postprocessing

In some situations, one would like to perform operations on the DirContext before and after the search
operation. The interface that is used for this is called DirContextProcessor:

public interface DirContextProcessor {

 public void preProcess(DirContext ctx) throws NamingException;

 public void postProcess(DirContext ctx) throws NamingException;

}

The LdapTemplate class has a search method that takes a DirContextProcessor:

public void search(SearchExecutor se, NameClassPairCallbackHandler handler,

 DirContextProcessor processor) throws DataAccessException;

Before the search operation, the preProcess method is called on the given DirContextProcessor
instance. After the search has been executed and the resulting NamingEnumeration has been
processed, the postProcess method is called. This enables a user to perform operations on the
DirContext to be used in the search, and to check the DirContext when the search has been
performed. This can be very useful for example when handling request and response controls.

There are also a few convenience methods for those that don't need a custom SearchExecutor:

public void search(Name base, String filter,

 SearchControls controls, NameClassPairCallbackHandler handler, DirContextProcessor

 processor)

public void search(String base, String filter,

 SearchControls controls, NameClassPairCallbackHandler handler, DirContextProcessor

 processor)

public void search(Name base, String filter,

 SearchControls controls, AttributesMapper mapper, DirContextProcessor processor)

public void search(String base, String filter,

 SearchControls controls, AttributesMapper mapper, DirContextProcessor processor)

public void search(Name base, String filter,

 SearchControls controls, ContextMapper mapper, DirContextProcessor processor)

public void search(String base, String filter,

 SearchControls controls, ContextMapper mapper, DirContextProcessor processor)

5.2. Implementing a Request Control DirContextProcessor

The LDAPv3 protocol uses Controls to send and receive additional data to affect
the behavior of predefined operations. In order to simplify the implementation of
a request control DirContextProcessor, Spring LDAP provides the base class
AbstractRequestControlDirContextProcessor. This class handles the retrieval of the current
request controls from the LdapContext, calls a template method for creating a request control, and
adds it to the LdapContext. All you have to do in the subclass is to implement the template method

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 24

createRequestControl, and of course the postProcess method for performing whatever you need
to do after the search.

public abstract class AbstractRequestControlDirContextProcessor implements

 DirContextProcessor {

 public void preProcess(DirContext ctx) throws NamingException {

 ...

 }

 public abstract Control createRequestControl();

}

A typical DirContextProcessor will be similar to the following:

package com.example.control;

public class MyCoolRequestControl extends AbstractRequestControlDirContextProcessor {

 private static final boolean CRITICAL_CONTROL = true;

 private MyCoolCookie cookie;

 ...

 public MyCoolCookie getCookie() {

 return cookie;

 }

 public Control createRequestControl() {

 return new SomeCoolControl(cookie.getCookie(), CRITICAL_CONTROL);

 }

 public void postProcess(DirContext ctx) throws NamingException {

 LdapContext ldapContext = (LdapContext) ctx;

 Control[] responseControls = ldapContext.getResponseControls();

 for (int i = 0; i < responseControls.length; i++) {

 if (responseControls[i] instanceof SomeCoolResponseControl) {

 SomeCoolResponseControl control = (SomeCoolResponseControl)

 responseControls[i];

 this.cookie = new MyCoolCookie(control.getCookie());

 }

 }

 }

}

Example 5.1 A request control DirContextProcessor implementation

Note

Make sure you use LdapContextSource when you use Controls. The Control interface is
specific for LDAPv3 and requires that LdapContext is used instead of DirContext. If an
AbstractRequestControlDirContextProcessor subclass is called with an argument that
is not an LdapContext, it will throw an IllegalArgumentException.

5.3. Paged Search Results

Some searches may return large numbers of results. When there is no easy way to filter out a smaller
amount, it would be convenient to have the server return only a certain number of results each time
it is called. This is known as paged search results. Each "page" of the result could then be displayed
at the time, with links to the next and previous page. Without this functionality, the client must either

http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/ldap/Control.html

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 25

manually limit the search result into pages, or retrieve the whole result and then chop it into pages of
suitable size. The former would be rather complicated, and the latter would be consuming unnecessary
amounts of memory.

Some LDAP servers have support for the PagedResultsControl, which requests that the results of
a search operation are returned by the LDAP server in pages of a specified size. The user controls the
rate at which the pages are returned, simply by the rate at which the searches are called. However, the
user must keep track of a cookie between the calls. The server uses this cookie to keep track of where
it left off the previous time it was called with a paged results request.

Spring LDAP provides support for paged results by leveraging the concept for pre- and
postprocessing of an LdapContext that was discussed in the previous sections. It does so
by providing two classes: PagedResultsRequestControl and PagedResultsCookie. The
PagedResultsRequestControl class creates a PagedResultsControl with the requested page
size and adds it to the LdapContext. After the search, it gets the PagedResultsResponseControl
and retrieves two pieces of information from it: the estimated total result size and a cookie. This
cookie is a byte array containing information that the server needs the next time it is called with a
PagedResultsControl. In order to make it easy to store this cookie between searches, Spring LDAP
provides the wrapper class PagedResultsCookie.

Below is an example of how the paged search results functionality may be used:

public PagedResult getAllPersons(PagedResultsCookie cookie) {

 PagedResultsRequestControl control = new PagedResultsRequestControl(PAGE_SIZE, cookie);

 SearchControls searchControls = new SearchControls();

 searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);

 List persons = ldapTemplate.search("", "objectclass=person", searchControls, control);

 return new PagedResult(persons, control.getCookie());

 }

Example 5.2 Paged results using PagedResultsRequestControl

In the first call to this method, null will be supplied as the cookie parameter. On subsequent
calls the client will need to supply the cookie from the last search (returned wrapped in
the PagedResult) each time the method is called. When the actual cookie is null (i.e.
pagedResult.getCookie().getCookie() returns null), the last batch has been returned from
the search.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 26

6. Transaction Support

6.1. Introduction

Programmers used to working with relational databases coming to the LDAP world often express
surprise to the fact that there is no notion of transactions. It is not specified in the protocol, and thus
no servers support it. Recognizing that this may be a major problem, Spring LDAP provides support for
client-side, compensating transactions on LDAP resources.

LDAP transaction support is provided by ContextSourceTransactionManager, a
PlatformTransactionManager implementation that manages Spring transaction support for LDAP
operations. Along with its collaborators it keeps track of the LDAP operations performed in a transaction,
making record of the state before each operation and taking steps to restore the initial state should the
transaction need to be rolled back.

In addition to the actual transaction management, Spring LDAP transaction support also makes sure that
the same DirContext instance will be used throughout the same transaction, i.e. the DirContext
will not actually be closed until the transaction is finished, allowing for more efficient resources usage.

Note
It is important to note that while the approach used by Spring LDAP to provide transaction support
is sufficient for many cases it is by no means "real" transactions in the traditional sense. The
server is completely unaware of the transactions, so e.g. if the connection is broken there will
be no hope to rollback the transaction. While this should be carefully considered it should also
be noted that the alternative will be to operate without any transaction support whatsoever; this
is pretty much as good as it gets.

Note
The client side transaction support will add some overhead in addition to the work required by the
original operations. While this overhead should not be something to worry about in most cases,
if your application will not perform several LDAP operations within the same transaction (e.g. a
modifyAttributes followed by a rebind), or if transaction synchronization with a JDBC data
source is not required (see below) there will be nothing to gain by using the LDAP transaction
support.

Note
While the default setup will work fine for most simple use cases, some more complex scenarios
will require additional configuration; more specifically if you will be creating or deleting subtrees
within transactions, you will need to use an alternative TempEntryRenamingStrategy, as
described in the section called “Renaming Strategies” below

6.2. Configuration

Configuring Spring LDAP transactions should look very familiar if you're used to configuring Spring
transactions. You will create a TransactionManager instance and wrap your target object
using a TransactionProxyFactoryBean. In addition to this, you will also need to wrap your
ContextSource in a TransactionAwareContextSourceProxy.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 27

<beans>

 ...

 <bean id="contextSourceTarget"

 class="org.springframework.ldap.core.support.LdapContextSource">

 <property name="url" value="ldap://localhost:389" />

 <property name="base" value="dc=example,dc=com" />

 <property name="userDn" value="cn=Manager" />

 <property name="password" value="secret" />

 </bean>

 <bean id="contextSource"

 class="org.springframework.ldap.transaction.compensating.manager.TransactionAwareContextSourceProxy">

 <constructor-arg ref="contextSourceTarget" />

 </bean>

 <bean id="ldapTemplate" class="org.springframework.ldap.core.LdapTemplate">

 <constructor-arg ref="contextSource" />

 </bean>

 <bean id="transactionManager"

 class="org.springframework.ldap.transaction.compensating.manager.ContextSourceTransactionManager">

 <property name="contextSource" ref="contextSource" />

 </bean>

 <bean id="myDataAccessObjectTarget" class="com.example.MyDataAccessObject">

 <property name="ldapTemplate" ref="ldapTemplate" />

 </bean>

 <bean id="myDataAccessObject"

 class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">

 <property name="transactionManager" ref="transactionManager" />

 <property name="target" ref="myDataAccessObjectTarget" />

 <property name="transactionAttributes">

 <props>

 <prop key="*">PROPAGATION_REQUIRES_NEW</prop>

 </props>

 </property>

 </bean>

 ...

In a real world example you would probably apply the transactions on the service object level rather
than the DAO level; the above serves as an example to demonstrate the general idea.

Note
You'll notice that the actual ContextSource and DAO instances get ids with a "Target"
suffix. The beans you will actually refer to are the Proxies that are created around the targets;
contextSource and myDataAccessObject

6.3. JDBC Transaction Integration

A common use case when working against LDAP is that some of the data is stored in the LDAP tree,
but other data is stored in a relational database. In this case, transaction support becomes even more
important, since the update of the different resources should be synchronized.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 28

While actual XA transactions is not supported, support is provided to
conceptually wrap JDBC and LDAP access within the same transaction using the
ContextSourceAndDataSourceTransactionManager. A DataSource and a ContextSource
is supplied to the ContextSourceAndDataSourceTransactionManager, which will then manage
the two transactions, virtually as if they were one. When performing a commit, the LDAP part
of the operation will always be performed first, allowing both transactions to be rolled back
should the LDAP commit fail. The JDBC part of the transaction is managed exactly as in
DataSourceTransactionManager, except that nested transactions is not supported.

Note
Once again it should be noted that the provided support is all client side. The wrapped transaction
is not an XA transaction. No two-phase as such commit is performed, as the LDAP server will
be unable to vote on its outcome. Once again, however, for the majority of cases the supplied
support will be sufficient.

6.4. LDAP Compensating Transactions Explained

Spring LDAP manages compensating transactions by making record of the state in the LDAP tree before
each modifying operation (bind, unbind, rebind, modifyAttributes, and rename).

This enables the system to perform compensating operations should the transaction need to be rolled
back. In many cases the compensating operation is pretty straightforward. E.g. the compensating
rollback operation for a bind operation will quite obviously be to unbind the entry. Other operations
however require a different, more complicated approach because of some particular characteristics of
LDAP databases. Specifically, it is not always possible to get the values of all Attributes of an entry,
making the above strategy insufficient for e.g. an unbind operation.

This is why each modifying operation performed within a Spring LDAP managed transaction is internally
split up in four distinct operations - a recording operation, a preparation operation, a commit operation,
and a rollback operation. The specifics for each LDAP operation is described in the table below:

Table 6.1.

LDAP Operation Recording Preparation Commit Rollback

bind Make record of
the DN of the
entry to bind.

Bind the entry. No operation. Unbind the
entry using the
recorded DN.

rename Make record of
the original and
target DN.

Rename the
entry.

No operation. Rename the entry
back to its original
DN.

unbind Make record of
the original DN
and calculate a
temporary DN.

Rename the entry
to the temporary
location.

Unbind the
temporary entry.

Rename the
entry from the
temporary
location back to
its original DN.

rebind Make record
of the original
DN and the new
Attributes,

Rename the entry
to a temporary
location.

Bind the new
Attributes at
the original DN,
and unbind the

Rename the
entry from the
temporary

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 29

LDAP Operation Recording Preparation Commit Rollback

and calculate a
temporary DN.

original entry from
its temporary
location.

location back to
its original DN.

modifyAttributesMake record of
the DN of the
entry to modify
and calculate
compensating
ModificationItems
for the
modifications to
be done.

Perform the
modifyAttributes

operation.

No operation. Perform a
modifyAttributes

operation using
the calculated
compensating
ModificationItems.

A more detailed description of the internal workings of the Spring LDAP transaction support is available
in the javadocs.

Renaming Strategies
As described in the table above, the transaction management of some operations require the original
entry affected by the operation to be temporarily renamed before the actual modification can be
made in the commit. The manner in which the temporary DN of the entry is calculated is managed
by a TempEntryRenamingStrategy supplied to the ContextSourceTransactionManager. Two
implementations are supplied with Spring LDAP, but if specific behaviour is required a custom
implementation can easily be implemented by the user. The provided TempEntryRenamingStrategy
implementations are:

• DefaultTempEntryRenamingStrategy (the default). Adds a suffix to the least significant part of
the entry DN. E.g. for the DN cn=john doe, ou=users, this strategy would return the temporary
DN cn=john doe_temp, ou=users. The suffix is configurable using the tempSuffix property

• DifferentSubtreeTempEntryRenamingStrategy. Takes the least significant part of the DN
and appends a subtree DN to this. This makes all temporary entries be placed at a specific location
in the LDAP tree. The temporary subtree DN is configured using the subtreeNode property. E.g., if
subtreeNode is ou=tempEntries and the original DN of the entry is cn=john doe, ou=users,
the temporary DN will be cn=john doe, ou=tempEntries. Note that the configured subtree node
needs to be present in the LDAP tree.

Note
There are some situations where the DefaultTempEntryRenamingStrategy will
not work. E.g. if your are planning to do recursive deletes you'll need to use
DifferentSubtreeTempEntryRenamingStrategy. This is because the recursive delete
operation actually consists of a depth-first delete of each node in the sub tree
individually. Since it is not allowed to rename an entry that has any children, and
DefaultTempEntryRenamingStrategy would leave each node in the same subtree (with a
different name) in stead of actually removing it, this operation would fail. When in doubt, use
DifferentSubtreeTempEntryRenamingStrategy.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 30

7. Java 5 Support

7.1. SimpleLdapTemplate

As of version 1.3 Spring LDAP includes the spring-ldap-core-tiger.jar distributable, which adds a thin
layer of Java 5 functionality on top of Spring LDAP.

The SimpleLdapTemplate class adds search and lookup methods that take a
ParameterizedContextMapper, adding generics support to these methods.

ParametrizedContextMapper is a typed version of ContextMapper, which simplifies working with
searches and lookups:

public List<Person> getAllPersons(){

 return simpleLdapTemplate.search("", "(objectclass=person)",

 new ParameterizedContextMapper<Person>() {

 public Person mapFromContext(Object ctx) {

 DirContextAdapter adapter = (DirContextAdapter) ctx;

 Person person = new Person();

 // Fill the domain object with data from the DirContextAdapter

 return person;

 }

 };

}

Example 7.1 Using ParameterizedContextMapper

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 31

8. Configuration

8.1. ContextSource Configuration

There are several properties in AbstractContextSource (superclass of DirContextSource and
LdapContextSource) that can be used to modify its behaviour.

LDAP Server URLs

The URL of the LDAP server is specified using the url property. The URL should be in the
format ldap://myserver.example.com:389. For SSL access, use the ldaps protocol and the
appropriate port, e.g. ldaps://myserver.example.com:636

It is possible to configure multiple alternate LDAP servers using the urls property. In this case, supply
all server urls in a String array to the urls property.

Base LDAP path

It is possible to specify the root context for all LDAP operations using the base property of
AbstractContextSource. When a value has been specified to this property, all Distinguished Names
supplied to and received from LDAP operations will be relative to the LDAP path supplied. This can
significantly simplify working against the LDAP tree; however there are several occations when you
will need to have access to the base path. For more information on this, please refer to Section 8.3,
“Obtaining a reference to the base LDAP path”

DirContext Authentication

When DirContext instances are created to be used for performing operations on an LDAP server
these contexts often need to be authenticated. There are different options for configuring this using
Spring LDAP, described in this chapter.

Note

This section refers to authenticating contexts in the core functionality of the ContextSource
- to construct DirContext instances for use by LdapTemplate. LDAP is commonly used for
the sole purpose of user authentication, and the ContextSource may be used for that as well.
This process is discussed in Chapter 10, User Authentication using Spring LDAP.

Authenticated contexts are created for both read-only and read-write operations by default. You specify
userDn and password of the LDAP user to be used for authentication on the ContextSource.

Note

The userDn needs to be the full Distinguished Name (DN) of the user from the root of the LDAP
tree, regardless of whether a base LDAP path has been supplied to the ContextSource.

Some LDAP server setups allow anonymous read-only access. If you want to use anonymous Contexts
for read-only operations, set the anonymousReadOnly property to true.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 32

Custom DirContext Authentication Processing

The default authentication mechanism used in Spring LDAP is SIMPLE authentication. This means that
in the user DN (as specified to the userDn property) and the credentials (as specified to the password)
are set in the Hashtable sent to the DirContext implementation constructor.

There are many occasions when this processing is not sufficient. For instance, LDAP Servers are
commonly set up to only accept communication on a secure TLS channel; there might be a need to use
the particular LDAP Proxy Auth mechanism, etc.

It is possible to specify an alternative authentication mechanism by supplying a
DirContextAuthenticationStrategy implementation to the ContextSource in the
configuration.

TLS

Spring LDAP provides two different configuration options for LDAP servers requiring
TLS secure channel communication: DefaultTlsDirContextAuthenticationStrategy and
ExternalTlsDirContextAuthenticationStrategy. Both these implementations will negotiate
a TLS channel on the target connection, but they differ in the actual authentication
mechanism. Whereas the DefaultTlsDirContextAuthenticationStrategy will apply SIMPLE
authentication on the secure channel (using the specified userDn and password), the
ExternalDirContextAuthenticationStrategy will use EXTERNAL SASL authentication,
applying a client certificate configured using system properties for authentication.

Since different LDAP server implementations respond differently to explicit shutdown of the TLS channel
(some servers require the connection be shutdown gracefully; others do not support it), the TLS
DirContextAuthenticationStrategy implementations support specifying the shutdown behavior
using the shutdownTlsGracefully parameter. If this property is set to false (the default), no explicit
TLS shutdown will happen; if it is true, Spring LDAP will try to shutdown the TLS channel gracefully
before closing the target context.

Note

When working with TLS connections you need to make sure that the native LDAP Pooling
functionality is turned off. As of release 1.3, the default setting is off. For earlier versions, simply
set the pooled property to false. This is particularly important if shutdownTlsGracefully
is set to false. However, since the TLS channel negotiation process is quite expensive, great
performance benefits will be gained by using the Spring LDAP Pooling Support, described in
Chapter 9, Pooling Support.

Custom Principal and Credentials Management

While the user name (i.e. user DN) and password used for creating an authenticated Context are
static by default - the ones set on the ContextSource on startup will be used throughout the
lifetime of the ContextSource - there are however several cases in which this is not the desired
behaviour. A common scenario is that the principal and credentials of the current user should be used
when executing LDAP operations for that user. The default behaviour can be modified by supplying
a custom AuthenticationSource implementation to the ContextSource on startup, instead of
explicitly specifying the userDn and password. The AuthenticationSource will be queried by the
ContextSource for principal and credentials each time an authenticated Context is to be created.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 33

If you are using Spring Security you can make sure the principal and credentials of the currently
logged in user is used at all times by configuring your ContextSource with an instance of the
SpringSecurityAuthenticationSource shipped with Spring Security.

<beans>

 ...

 <bean id="contextSource"

 class="org.springframework.ldap.core.support.LdapContextSource">

 <property name="url" value="ldap://localhost:389" />

 <property name="base" value="dc=example,dc=com" />

 <property name="authenticationSource" ref="springSecurityAuthenticationSource" />

 </bean>

 <bean id="springSecurityAuthenticationSource"

 class="org.springframework.security.ldap.SpringSecurityAuthenticationSource" />

 ...

</beans>

Example 8.1 The Spring bean definition for a SpringSecurityAuthenticationSource

Note

We don't specify any userDn or password to our ContextSource when using an
AuthenticationSource - these properties are needed only when the default behaviour is
used.

Note

When using the SpringSecurityAuthenticationSource you need to use Spring Security's
LdapAuthenticationProvider to authenticate the users against LDAP.

Default Authentication

When using SpringSecurityAuthenticationSource, authenticated contexts will only be possible
to create once the user is logged in using Spring Security. To use default authentication information
when no user is logged in, use the DefaultValuesAuthenticationSourceDecorator:

http://springsecurity.org

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 34

<beans>

 ...

 <bean id="contextSource"

 class="org.springframework.ldap.core.support.LdapContextSource">

 <property name="url" value="ldap://localhost:389" />

 <property name="base" value="dc=example,dc=com" />

 <property name="authenticationSource" ref="authenticationSource" />

 </bean>

 <bean id="authenticationSource"

 class="org.springframework.ldap.authentication.DefaultValuesAuthenticationSourceDecorator">

 <property name="target" ref="springSecurityAuthenticationSource" />

 <property name="defaultUser" value="cn=myDefaultUser" />

 <property name="defaultPassword" value="pass" />

 </bean>

 <bean id="springSecurityAuthenticationSource"

 class="org.springframework.security.ldap.SpringSecurityAuthenticationSource" />

 ...

</beans>

Example 8.2 Configuring a DefaultValuesAuthenticationSourceDecorator

Native Java LDAP Pooling

The internal Java LDAP provider provides some very basic pooling capabilities. This LDAP connection
pooling can be turned on/off using the pooled flag on AbstractContextSource. The default value
is false (since release 1.3), i.e. the native Java LDAP pooling will be turned on. The configuration of
LDAP connection pooling is managed using System properties, so this needs to be handled manually,
outside of the Spring Context configuration. Details of the native pooling configuration can be found here.

Note
There are several serious deficiencies in the built-in LDAP connection pooling, which is why
Spring LDAP provides a more sophisticated approach to LDAP connection pooling, described
in Chapter 9, Pooling Support. If pooling functionality is required, this is the recommended
approach.

Note
Regardless of the pooling configuration, the ContextSource#getContext(String

principal, String credentials) method will always explicitly not use native Java LDAP
Pooling, in order for reset passwords to take effect as soon as possible.

Advanced ContextSource Configuration

Alternate ContextFactory

It is possible to configure the ContextFactory that the ContextSource is to use
when creating Contexts using the contextFactory property. The default value is
com.sun.jndi.ldap.LdapCtxFactory.

Custom DirObjectFactory

As described in Chapter 3, Simpler Attribute Access and Manipulation with DirContextAdapter, a
DirObjectFactory can be used to translate the Attributes of found Contexts to a more useful
DirContext implementation. This can be configured using the dirObjectFactory property. You
can use this property if you have your own, custom DirObjectFactory implementation.

http://java.sun.com/products/jndi/tutorial/ldap/connect/config.html

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 35

The default value is DefaultDirObjectFactory.

Custom DirContext Environment Properties

In some cases the user might want to specify additional environment setup properties in addition to the
ones directly configurable from AbstractContextSource. Such properties should be set in a Map
and supplied to the baseEnvironmentProperties property.

8.2. LdapTemplate Configuration

Ignoring PartialResultExceptions

Some Active Directory (AD) servers are unable to automatically following referrals, which
often leads to a PartialResultException being thrown in searches. You can specify that
PartialResultException is to be ignored by setting the ignorePartialResultException
property to true.

Note
This causes all referrals to be ignored, and no notice will be given that a
PartialResultException has been encountered. There is currently no way of manually
following referrals using LdapTemplate.

8.3. Obtaining a reference to the base LDAP path

As described above, a base LDAP path may be supplied to the ContextSource, specifying the root
in the LDAP tree to which all operations will be relative. This means that you will only be working with
relative distinguished names throughout your system, which is typically rather handy. There are however
some cases in which you will need to have access to the base path in order to be able to construct
full DNs, relative to the actual root of the LDAP tree. One example would be when working with LDAP
groups (e.g. groupOfNames objectclass), in which case each group member attribute value will need
to be the full DN of the referenced member.

For that reason, Spring LDAP has a mechanism by which any Spring controlled bean may be supplied
the base path on startup. For beans to be notified of the base path, two things need to be in place:
First of all, the bean that wants the base path reference needs to implement the BaseLdapPathAware
interface. Secondly, a BaseLdapPathBeanPostProcessor needs to be defined in the application
context

package com.example.service;

public class PersonService implements PersonService, BaseLdapPathAware {

 ...

 private DistinguishedName basePath;

 public void setBaseLdapPath(DistinguishedName basePath) {

 this.basePath = basePath;

 }

 ...

 private DistinguishedName getFullPersonDn(Person person) {

 return new DistinguishedName(basePath).append(person.getDn());

 }

 ...

}

Example 8.3 Implementing BaseLdapPathAware

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 36

<beans>

 ...

 <bean id="contextSource"

 class="org.springframework.ldap.core.support.LdapContextSource">

 <property name="url" value="ldap://localhost:389" />

 <property name="base" value="dc=example,dc=com" />

 <property name="authenticationSource" ref="authenticationSource" />

 </bean>

 ...

 <bean class="org.springframework.ldap.core.support.BaseLdapPathBeanPostProcessor" />

</beans>

Example 8.4 Specifying a BaseLdapPathBeanPostProcessor in your ApplicationContext

The default behaviour of the BaseLdapPathBeanPostProcessor is to use the base path of the
single defined BaseLdapPathSource (AbstractContextSource)in the ApplicationContext.
If more than one BaseLdapPathSource is defined, you will need to specify which one to use with the
baseLdapPathSourceName property.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 37

9. Pooling Support

9.1. Introduction

Pooling LDAP connections helps mitigate the overhead of creating a new LDAP connection for each
LDAP interaction. While Java LDAP pooling support exists it is limited in its configuration options
and features, such as connection validation and pool maintenance. Spring LDAP provides support for
detailed pool configuration on a per- ContextSource basis.

Pooling support is provided by PoolingContextSource which can wrap any ContextSource and
pool both read-only and read-write DirContext objects. Jakarta Commons-Pool is used to provide
the underlying pool implementation.

9.2. DirContext Validation

Validation of pooled connections is the primary motivation for using a custom pooling library versus
the JDK provided LDAP pooling functionality. Validation allows pooled DirContext connections to be
checked to ensure they are still properly connected and configured when checking them out of the pool,
in to the pool or while idle in the pool

The DirContextValidator interface is used by the PoolingContextSource for validation
and DefaultDirContextValidator is provided as the default validation implementation.
DefaultDirContextValidator does a DirContext.search(String, String,

SearchControls) , with an empty name, a filter of "objectclass=*" and SearchControls
set to limit a single result with the only the objectclass attribute and a 500ms timeout. If the returned
NamingEnumeration has results the DirContext passes validation, if no results are returned or an
exception is thrown the DirContext fails validation. The DefaultDirContextValidator should
work with no configuration changes on most LDAP servers and provide the fastest way to validate the
DirContext .

9.3. Pool Properties

The following properties are available on the PoolingContextSource for configuration of the
DirContext pool. The contextSource property must be set and the dirContextValidator property
must be set if validation is enabled, all other properties are optional.

Table 9.1. Pooling Configuration Properties

Parameter Default Description

contextSource null The ContextSource
implementation to get
DirContext s from to
populate the pool.

dirContextValidator null The DirContextValidator
implementation to use when
validating connections. This
is required if testOnBorrow
, testOnReturn , or

http://java.sun.com/products/jndi/tutorial/ldap/connect/pool.html
http://commons.apache.org/pool/index.html

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 38

Parameter Default Description

testWhileIdle options are
set to true .

maxActive 8 The maximum number of active
connections of each type (read-
only|read-write) that can be
allocated from this pool at the
same time, or non-positive for
no limit.

maxTotal -1 The overall maximum number
of active connections (for all
types) that can be allocated
from this pool at the same time,
or non-positive for no limit.

maxIdle 8 The maximum number of active
connections of each type (read-
only|read-write) that can remain
idle in the pool, without extra
ones being released, or non-
positive for no limit.

minIdle 0 The minimum number of active
connections of each type (read-
only|read-write) that can remain
idle in the pool, without extra
ones being created, or zero to
create none.

maxWait -1 The maximum number of
milliseconds that the pool
will wait (when there are no
available connections) for a
connection to be returned
before throwing an exception,
or non-positive to wait
indefinitely.

whenExhaustedAction 1 (BLOCK) Specifies the behaviour when
the pool is exhausted.

• The FAIL (0)
option will throw a
NoSuchElementException

when the pool is exhausted.

• The BLOCK (1) option
will wait until a new
object is available. If
maxWait is positive a

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 39

Parameter Default Description

NoSuchElementException

is thrown if no new object is
available after the maxWait
time expires.

• The GROW (2) option will
create and return a new
object (essentially making
maxActive meaningless).

testOnBorrow false The indication of whether
objects will be validated before
being borrowed from the pool. If
the object fails to validate, it will
be dropped from the pool, and
an attempt to borrow another
will be made.

testOnReturn false The indication of whether
objects will be validated before
being returned to the pool.

testWhileIdle false The indication of whether
objects will be validated by the
idle object evictor (if any). If an
object fails to validate, it will be
dropped from the pool.

timeBetweenEvictionRunsMillis-1 The number of milliseconds to
sleep between runs of the idle
object evictor thread. When
non-positive, no idle object
evictor thread will be run.

numTestsPerEvictionRun 3 The number of objects to
examine during each run of
the idle object evictor thread (if
any).

minEvictableIdleTimeMillis1000 * 60 * 30 The minimum amount of time
an object may sit idle in the pool
before it is eligible for eviction
by the idle object evictor (if
any).

9.4. Configuration

Configuring pooling should look very familiar if you're used to Jakarta Commons-Pool or Commons-
DBCP. You will first create a normal ContextSource then wrap it in a PoolingContextSource .

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 40

<beans>

 ...

 <bean id="contextSource"

 class="org.springframework.ldap.pool.factory.PoolingContextSource">

 <property name="contextSource" ref="contextSourceTarget" />

 </bean>

 <bean id="contextSourceTarget"

 class="org.springframework.ldap.core.support.LdapContextSource">

 <property name="url" value="ldap://localhost:389" />

 <property name="base" value="dc=example,dc=com" />

 <property name="userDn" value="cn=Manager" />

 <property name="password" value="secret" />

 <property name="pooled" value="false"/>

 </bean>

 ...

</beans>

In a real world example you would probably configure the pool options and enable connection validation;
the above serves as an example to demonstrate the general idea.

Note

Ensure that the pooled property is set to false on any ContextSource that will be wrapped
in a PoolingContextSource . The PoolingContextSource must be able to create new
connections when needed and if pooled is set to true that may not be possible.

Note

You'll notice that the actual ContextSource gets an id with a "Target" suffix. The bean you will
actually refer to is the PoolingContextSource that wraps the target contextSource

Validation Configuration

Adding validation and a few pool configuration tweaks to the above example is straight forward. Inject
a DirContextValidator and set when validation should occur and the pool is ready to go.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 41

<beans>

 ...

 <bean id="contextSource"

 class="org.springframework.ldap.pool.factory.PoolingContextSource">

 <property name="contextSource" ref="contextSourceTarget" />

 <property name="dirContextValidator" ref="dirContextValidator" />

 <property name="testOnBorrow" value="true" />

 <property name="testWhileIdle" value="true" />

 </bean>

 <bean id="dirContextValidator"

 class="org.springframework.ldap.pool.validation.DefaultDirContextValidator" />

 <bean id="contextSourceTarget"

 class="org.springframework.ldap.core.support.LdapContextSource">

 <property name="url" value="ldap://localhost:389" />

 <property name="base" value="dc=example,dc=com" />

 <property name="userDn" value="cn=Manager" />

 <property name="password" value="secret" />

 <property name="pooled" value="false"/>

 </bean>

 ...

</beans>

The above example will test each DirContext before it is passed to the client application and test
DirContext s that have been sitting idle in the pool.

9.5. Known Issues

Custom Authentication

The PoolingContextSource assumes that all DirContext objects retrieved from
ContextSource.getReadOnlyContext() will have the same environment and likewise that
all DirContext objects retrieved from ContextSource.getReadWriteContext() will have
the same environment. This means that wrapping a LdapContextSource configured with an
AuthenticationSource in a PoolingContextSource will not function as expected. The pool
would be populated using the credentials of the first user and unless new connections were needed
subsequent context requests would not be filled for the user specified by the AuthenticationSource
for the requesting thread.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 42

10. User Authentication using Spring LDAP

10.1. Basic Authentication

While the core functionality of the ContextSource is to provide DirContext instances for use
by LdapTemplate, it may also be used for authenticating users against an LDAP server. The
getContext(principal, credentials) method of ContextSource will do exactly that;
construct a DirContext instance according to the ContextSource configuration, authenticating the
context using the supplied principal and credentials. A custom authenticate method could look like this:

public boolean authenticate(String userDn, String credentials) {

 DirContext ctx = null;

 try {

 ctx = contextSource.getContext(userDn, credentials);

 return true;

 } catch (Exception e) {

 // Context creation failed - authentication did not succeed

 logger.error("Login failed", e);

 return false;

 } finally {

 // It is imperative that the created DirContext instance is always closed

 LdapUtils.closeContext(ctx);

 }

}

The userDn supplied to the authenticate method needs to be the full DN of the user to authenticate
(regardless of the base setting on the ContextSource). You will typically need to perform an LDAP
search based on e.g. the user name to get this DN:

private String getDnForUser(String uid) {

 Filter f = new EqualsFilter("uid", uid);

 List result = ldapTemplate.search(DistinguishedName.EMPTY_PATH, f.toString(),

 new AbstractContextMapper() {

 protected Object doMapFromContext(DirContextOperations ctx) {

 return ctx.getNameInNamespace();

 }

 });

 if(result.size() != 1) {

 throw new RuntimeException("User not found or not unique");

 }

 return (String)result.get(0);

}

There are some drawbacks to this approach. The user is forced to concern herself with the DN of the
user, she can only search for the user's uid, and the search always starts at the root of the tree (the
empty path). A more flexible method would let the user specify the search base, the search filter, and
the credentials. Spring LDAP 1.3.0 introduced new authenticate methods in LdapTemplate that provide
this functionality:

• boolean authenticate(Name base, String filter, String password);

• boolean authenticate(String base, String filter, String password);

Using one of these methods, authentication becomes as simple as this:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 43

boolean authenticated = ldapTemplate.authenticate("", "(uid=john.doe)", "secret");

Example 10.1 Authenticating a user using Spring LDAP.

Note
As described in below, some setups may require additional operations to be performed in order
for actual authentication to occur. See Section 10.2, “Performing Operations on the Authenticated
Context” for details.

Tip
Don't write your own custom authenticate methods. Use the ones provided in Spring LDAP 1.3.x.

10.2. Performing Operations on the Authenticated Context

Some authentication schemes and LDAP servers require some operation to be performed on the created
DirContext instance for the actual authentication to occur. You should test and make sure how your
server setup and authentication schemes behave; failure to do so might result in that users will be
admitted into your system regardless of the DN/credentials supplied. This is a naïve implementation
of an authenticate method where a hard-coded lookup operation is performed on the authenticated
context:

public boolean authenticate(String userDn, String credentials) {

 DirContext ctx = null;

 try {

 ctx = contextSource.getContext(userDn, credentials);

 // Take care here - if a base was specified on the ContextSource

 // that needs to be removed from the user DN for the lookup to succeed.

 ctx.lookup(userDn);

 return true;

 } catch (Exception e) {

 // Context creation failed - authentication did not succeed

 logger.error("Login failed", e);

 return false;

 } finally {

 // It is imperative that the created DirContext instance is always closed

 LdapUtils.closeContext(ctx);

 }

}

It would be better if the operation could be provided as an implementation of a callback interface, thus
not limiting the operation to always be a lookup. Spring LDAP 1.3.0 introduced the callback interface
AuthenticatedLdapEntryContextCallback and a few corresponding authenticate methods:

• boolean authenticate(Name base, String filter, String password,

AuthenticatedLdapEntryContextCallback callback);

• boolean authenticate(String base, String filter, String password,

AuthenticatedLdapEntryContextCallback callback);

This opens up for any operation to be performed on the authenticated context:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 44

AuthenticatedLdapEntryContextCallback contextCallback = new

 AuthenticatedLdapEntryContextCallback() {

 public void executeWithContext(DirContext ctx, LdapEntryIdentification

 ldapEntryIdentification) {

 try {

 ctx.lookup(ldapEntryIdentification.getRelativeDn());

 }

 catch (NamingException e) {

 throw new RuntimeException("Failed to lookup " +

 ldapEntryIdentification.getRelativeDn(), e);

 }

 }

};

ldapTemplate.authenticate("", "(uid=john.doe)", "secret", contextCallback));

Example 10.2 Performing an LDAP operation on the authenticated context using Spring LDAP.

10.3. Retrieving the Authentication Exception

So far, the methods have only been able to tell the user whether or not the authentication succeeded.
There has been no way of retrieving the actual exception. Spring LDAP 1.3.1 introduced the
AuthenticationErrorCallback and a few more authenticate methods:

• boolean authenticate(Name base, String filter, String password,

AuthenticationErrorCallback errorCallback);

• boolean authenticate(String base, String filter, String password,

AuthenticationErrorCallback errorCallback);

• boolean authenticate(Name base, String filter,

String password, AuthenticatedLdapEntryContextCallback callback,

AuthenticationErrorCallback errorCallback);

• boolean authenticate(String base, String filter,

String password, AuthenticatedLdapEntryContextCallback callback,

AuthenticationErrorCallback errorCallback);

A convenient collecting implementation of the error callback interface is also provided:

public final class CollectingAuthenticationErrorCallback implements

 AuthenticationErrorCallback {

 private Exception error;

 public void execute(Exception e) {

 this.error = e;

 }

 public Exception getError() {

 return error;

 }

}

The code needed for authenticating a user and retrieving the authentication exception in case of an
error boils down to this:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 45

import org.springframework.ldap.core.support.CollectingAuthenticationErrorCallback;

...

CollectingAuthenticationErrorCallback errorCallback = new

 CollectingAuthenticationErrorCallback();

boolean result = ldapTemplate.authenticate("", filter.toString(), "invalidpassword",

 errorCallback);

if (!result) {

 Exception error = errorCallback.getError();

 // error is likely of type org.springframework.ldap.AuthenticationException

}

Example 10.3 Authenticating a user and retrieving the authentication exception.

10.4. Use Spring Security

While the approach above may be sufficient for simple authentication scenarios, requirements in this
area commonly expand rapidly. There is a multitude of aspects that apply, including authentication,
authorization, web integration, user context management, etc. If you suspect that the requirements might
expand beyond just simple authentication, you should definitely consider using Spring Security for your
security purposes instead. It is a full-blown, mature security framework addressing the above aspects
as well as several others.

http://static.springsource.org/spring-security/site/

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 46

11. LDIF Parsing

11.1 Introduction

LDAP Directory Interchange Format (LDIF) files are the standard medium for describing directory data
in a flat file format. The most common uses of this format include information transfer and archival.
However, the standard also defines a way to describe modifications to stored data in a flat file format.
LDIFs of this later type are typically referred to as changetype or modify LDIFs.

The org.springframework.ldap.ldif package provides classes needed to parse LDIF files and deserialize
them into tangible objects. The LdifParser is the main class of the org.springframework.ldap.ldif package
and is capable of parsing files that are RFC 2849 compliant. This class reads lines from a resource
and assembles them into an LdapAttributes object. The LdifParser currently ignores changetype LDIF
entries as their usefulness in the context of an application has yet to be determined.

11.2 Object Representation

Two classes in the org.springframework.ldap.core package provide the means to represent an LDIF
in code:

• LdapAttribute - Extends javax.naming.directory.BasicAttribute adding support for LDIF options as
defined in RFC2849.

• LdapAttributes - Extends javax.naming.directory.BasicAttributes adding specialized support for DNs.

LdapAttribute objects represent options as a Set<String>. The DN support added to the LdapAttributes
object employs the org.springframework.ldap.core.DistinguishedName class.

11.3 The Parser

The Parser interface provides the foundation for operation and employs three supporting policy
definitions:

• SeparatorPolicy - establishes the mechanism by which lines are assembled into attributes.

• AttributeValidationPolicy - ensures that attributes are correctly structured prior to parsing.

• Specification - provides a mechanism by which object structure can be validated after assembly.

The default implementations of these interfaces are the org.springframework.ldap.ldif.parser.LdifParser,
the org.springframework.ldap.ldif.support.SeparatorPolicy, and the
org.springframework.ldap.ldif.support.DefaultAttributeValidationPolicy, and the
org.springframework.ldap.schema.DefaultSchemaSpecification respectively. Together, these 4 classes
parse a resource line by line and translate the data into LdapAttributes objects.

The SeparatorPolicy determines how individual lines read from the source file should be interpreted
as the LDIF specification allows attributes to span multiple lines. The default policy assess lines in the
context of the order in which they were read to determine the nature of the line in consideration. control
attributes and changetype records are ignored.

The DefaultAttributeValidationPolicy uses REGEX expressions to ensure each attribute conforms
to a valid attribute format according to RFC 2849 once parsed. If an attribute fails validation, an
InvalidAttributeFormatException is logged and the record is skipped (the parser returns null).

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 47

11.4 Schema Validation

A mechanism for validating parsed objects against a schema and is available via the Specification
interface in the org.springframework.ldap.schema package. The DefaultSchemaSpecification does
not do any validation and is available for instances where records are known to be valid and not
required to be checked. This option saves the performance penalty that validation imposes. The
BasicSchemaSpecification applies basic checks such as ensuring DN and object class declarations
have been provided. Currently, validation against an actual schema requires implementation of the
Specification interface.

11.5 Spring Batch Integration

While the LdifParser can be employed by any application that requires parsing of LDIF files, Spring
offers a batch processing framework that offers many file processing utilities for parsing delimited files
such as CSV. The org.springframework.ldap.ldif.batch package offers the classes necessary for using
the LdifParser as a valid configuration option in the Spring Batch framework.

There are 5 classes in this package which offer three basic use cases:

• Use Case 1: Read LDIF records from a file and return an LdapAttributes object.

• Use Case 2: Read LDIF records from a file and map records to Java objects (POJOs).

• Use Case 3: Write LDIF records to a file.

The first use case is accomplished with the LdifReader. This class
extends Spring Batch's AbstractItemCountingItemSteamItemReader and implements its
ResourceAwareItemReaderItemStream. It fits naturally into the framework and can be used to read
LdapAttributes objects from a file.

The MappingLdifReader can be used to map LDIF objects directly to any POJO. This class requires an
implementation of the RecordMapper interface be provided. This implementation should implement the
logic for mapping objects to POJOs.

The RecordCallbackHandler can be implemented and provided to either reader. This handler can be
used to operate on skipped records. Consult the Spring Batch documentation for more information.

The last member of this package, the LdifAggregator, can be used to write LDIF records to a file. This
class simply invokes the toString() method of the LdapAttributes object.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 48

12. Object-Directory Mapping (ODM)

12.1. Introduction

Relational mapping frameworks like Hibernate and JPA have offered developers the ability to
use annotations to map database tables to Java objects for some time. The Spring Framework
LDAP project now offers the same ability with respect to directories through the use of the
org.springframework.ldap.odm package (sometimes abbreviated as o.s.l.odm).

12.2. OdmManager

The org.springframework.ldap.odm.OdmManager interface, and its implementation, is the
central class in the ODM package. The OdmManager orchestrates the process of reading objects from
the directory and mapping the data to annotated Java object classes. This interface provides access to
the underlying directory instance through the following methods:

• <T> T read(Class<T> clazz, Name dn)

• void create(Object entry)

• void update(Object entry)

• void delete(Object entry)

• <T> List<T> findAll(Class<T> clazz, Name base, SearchControls

searchControls)

• <T> List<T> search(Class<T> clazz, Name base, String filter, SearchControls

searchControls)

A reference to an implementation of this interface can be obtained through
the org.springframework.ldap.odm.core.impl.OdmManagerImplFactoryBean. A basic
configuration of this factory would be as follows:

<beans>

 ...

 <bean id="odmManager"

 class="org.springframework.ldap.odm.core.impl.OdmManagerImplFactoryBean">

 <property name="converterManager" ref="converterManager" />

 <property name="contextSource" ref="contextSource" />

 <property name="managedClasses">

 <set>

 <value>com.example.dao.SimplePerson</value>

 </set>

 </property>

 </bean>

 ...

</beans>

Example 12.1 Configuring the OdmManager Factory

The factory requires the list of entity classes to be managed by the OdmManager to be explicitly declared.
These classes should be properly annotated as defined in the next section. The converterManager
referenced in the above definition is described in Section 12.4, “Type Conversion”.

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 49

12.3. Annotations

Entity classes managed by the OdmManager are required to be annotated with the annotations in the
org.springframework.ldap.odm.annotations package. The available annotations are:

• @Entry - Class level annotation indicating the objectClass definitions to which the entity maps.
(required)

• @Id - Indicates the entity DN; the field declaring this attribute must be a derivative of the
javax.naming.Name class. (required)

• @Attribute - Indicates the mapping of a directory attribute to the object class field.

• @Transient - Indicates the field is not persistent and should be ignored by the OdmManager.

The @Entry and @Id attributes are required to be declared on managed classes. @Entry is used to
specify which object classes the entity maps too. All object classes for which fields are mapped are
required to be declared. Also, in order for a directory entry to be considered a match to the managed
entity, all object classes declared by the directory entry must match be declared by in the @Entry
annotation.

The @Id annotation is used to map the distinguished name of the entry to a field. The field must be an
instance of javax.naming.Name or a subclass of it.

The @Attribute annotation is used to map object class fields to entity fields. @Attribute is required
to declare the name of the object class property to which the field maps and may optionally declare
the syntax OID of the LDAP attribute, to guarantee exact matching. @Attribute also provides the
type declaration which allows you to indicate whether the attribute is regarded as binary based or string
based by the LDAP JNDI provider.

The @Transient annotation is used to indicate the field should be ignored by the OdmManager and
not mapped to an underlying LDAP property.

12.4. Type Conversion

The OdmManager relies on the org.springframework.ldap.odm.typeconversion package
to convert LDAP attributes to Java fields. The main interface in this class is
the org.springframework.ldap.odm.typeconversion.ConverterManager. The default
ConverterManager implementation uses the following algorithm when parsing objects to convert
fields:

1. Try to find and use a Converter registered for the fromClass, syntax and toClass and use it.

2. If this fails, then if the toClass isAssignableFrom the fromClass then just assign it.

3. If this fails try to find and use a Converter registered for the fromClass and the toClass ignoring
the syntax.

4. If this fails then throw a ConverterException.

Implementations of the ConverterManager interface can be obtained from the
o.s.l.odm.typeconversion.impl.ConvertManagerFactoryBean. The factory bean requires
converter configurations to be declared in the bean configuration.

The converterConfig property accepts a set of ConverterConfig classes, each
one defining some conversion logic. A converter config is an instance

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 50

of o.s.l.odm.typeconversion.impl.ConverterManagerFactoryBean.ConverterConfig.
The config defines a set of source classes, the set of target classes, and an implementation
of the org.springframework.ldap.odm.typeconversion.impl.Converter interface which
provides the logic to convert from the fromClass to the toClass. A sample configuration is provided
in the following example:

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 51

<bean id="fromStringConverter"

 class="org.springframework.ldap.odm.typeconversion.impl.converters.FromStringConverter" /

>

<bean id="toStringConverter"

 class="org.springframework.ldap.odm.typeconversion.impl.converters.ToStringConverter" /

>

<bean id="converterManager"

 class="org.springframework.ldap.odm.typeconversion.impl.ConverterManagerFactoryBean">

 <property name="converterConfig">

 <set>

 <bean class="org.springframework.ldap.odm.\

 typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">

 <property name="fromClasses">

 <set>

 <value>java.lang.String</value>

 </set>

 </property>

 <property name="toClasses">

 <set>

 <value>java.lang.Byte</value>

 <value>java.lang.Short</value>

 <value>java.lang.Integer</value>

 <value>java.lang.Long</value>

 <value>java.lang.Float</value>

 <value>java.lang.Double</value>

 <value>java.lang.Boolean</value>

 </set>

 </property>

 <property name="converter" ref="fromStringConverter" />

 </bean>

 <bean class="org.springframework.ldap.odm.\

 typeconversion.impl.ConverterManagerFactoryBean$ConverterConfig">

 <property name="fromClasses">

 <set>

 <value>java.lang.Byte</value>

 <value>java.lang.Short</value>

 <value>java.lang.Integer</value>

 <value>java.lang.Long</value>

 <value>java.lang.Float</value>

 <value>java.lang.Double</value>

 <value>java.lang.Boolean</value>

 </set>

 </property>

 <property name="toClasses">

 <set>

 <value>java.lang.String</value>

 </set>

 </property>

 <property name="converter" ref="toStringConverter" />

 </bean>

 </set>

 </property>

</bean>

Example 12.2 Configuring the Converter Manager Factory

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 52

12.5. Execution

After all components are configured, directory interaction can be achieved through a reference to the
OdmManager, as shown in this example:

public class App {

 private static Log log = LogFactory.getLog(App.class);

 private static final SearchControls searchControls =

 new SearchControls(SearchControls.SUBTREE_SCOPE, 100, 10000, null, true, false);

 public static void main(String[] args) {

 try {

 ApplicationContext context = new

 ClassPathXmlApplicationContext("applicationContext.xml");

 OdmManager manager = (OdmManager) context.getBean("odmManager");

 List<SimplePerson> people = manager.search(SimplePerson.class,

 new DistinguishedName("dc=example,dc=com"), "uid=*", searchControls);

 log.info("People found: " + people.size());

 for (SimplePerson person : people) {

 log.info(person);

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Example 12.3 Execution

please define productname in your docbook file!

Spring LDAP - Reference
Documentation 53

13. Utilities

13.1. Incremental Retrieval of Multi-Valued Attributes

When there are a very large number of attribute values (>1500) for a specific attribute, Active Directory
will typically refuse to return all these values at once. Instead the attribute values will be returned
according to the Incremental Retrieval of Multi-valued Properties method. This requires the calling part
to inspect the returned attribute for specific markers and, if necessary, make additional lookup requests
until all values are found.

Spring LDAP's
org.springframework.ldap.core.support.DefaultIncrementalAttributesMapper

helps working with this kind of attributes, as follows:

Attributes attrs = DefaultIncrementalAttributeMapper.lookupAttributes(ldapTemplate, theDn,

 new Object[]{"oneAttribute", "anotherAttribute"});

This will parse any returned attribute range markers and make repeated requests as necessary until all
values for all requested attributes have been retrieved.

http://www.watersprings.org/pub/id/draft-kashi-incremental-00.txt

	Spring LDAP - Reference Documentation
	Table of Contents
	Preface
	1. Introduction
	1.1. Overview
	1.2. Packaging overview
	1.3. Package structure
	org.springframework.transaction.compensating
	org.springframework.ldap
	org.springframework.ldap.core
	org.springframework.ldap.core.support
	org.springframework.ldap.core.simple
	org.springframework.ldap.pool
	org.springframework.ldap.pool.factory
	org.springframework.ldap.pool.validation
	org.springframework.ldap.support
	org.springframework.ldap.authentication
	org.springframework.ldap.control
	org.springframework.ldap.filter
	org.springframework.ldap.transaction.compensating
	org.springframework.ldap.transaction.compensating.manager
	org.springframework.ldap.transaction.compensating.support
	org.springframework.ldap.ldif
	org.springframework.ldap.ldif.batch
	org.springframework.ldap.ldif.parser
	org.springframework.ldap.ldif.support
	org.springframework.ldap.odm

	1.4. Support

	2. Basic Operations
	2.1. Search and Lookup Using AttributesMapper
	2.2. Building Dynamic Filters
	2.3. Building Dynamic Distinguished Names
	2.4. Binding and Unbinding
	Binding Data
	Unbinding Data

	2.5. Modifying
	Modifying using rebind
	Modifying using modifyAttributes

	2.6. Sample applications

	3. Simpler Attribute Access and Manipulation with DirContextAdapter
	3.1. Introduction
	3.2. Search and Lookup Using ContextMapper
	The AbstractContextMapper

	3.3. Binding and Modifying Using DirContextAdapter
	Binding
	Modifying

	3.4. A Complete PersonDao Class

	4. Adding Missing Overloaded API Methods
	4.1. Implementing Custom Search Methods
	4.2. Implementing Other Custom Context Methods

	5. Processing the DirContext
	5.1. Custom DirContext Pre/Postprocessing
	5.2. Implementing a Request Control DirContextProcessor
	5.3. Paged Search Results

	6. Transaction Support
	6.1. Introduction
	6.2. Configuration
	6.3. JDBC Transaction Integration
	6.4. LDAP Compensating Transactions Explained
	Renaming Strategies

	7. Java 5 Support
	7.1. SimpleLdapTemplate

	8. Configuration
	8.1. ContextSource Configuration
	LDAP Server URLs
	Base LDAP path
	DirContext Authentication
	Custom DirContext Authentication Processing
	TLS

	Custom Principal and Credentials Management
	Default Authentication

	Native Java LDAP Pooling
	Advanced ContextSource Configuration
	Alternate ContextFactory
	Custom DirObjectFactory
	Custom DirContext Environment Properties

	8.2. LdapTemplate Configuration
	Ignoring PartialResultExceptions

	8.3. Obtaining a reference to the base LDAP path

	9. Pooling Support
	9.1. Introduction
	9.2. DirContext Validation
	9.3. Pool Properties
	9.4. Configuration
	Validation Configuration

	9.5. Known Issues
	Custom Authentication

	10. User Authentication using Spring LDAP
	10.1. Basic Authentication
	10.2. Performing Operations on the Authenticated Context
	10.3. Retrieving the Authentication Exception
	10.4. Use Spring Security

	11. LDIF Parsing
	11.1 Introduction
	11.2 Object Representation
	11.3 The Parser
	11.4 Schema Validation
	11.5 Spring Batch Integration

	12. Object-Directory Mapping (ODM)
	12.1. Introduction
	12.2. OdmManager
	12.3. Annotations
	12.4. Type Conversion
	12.5. Execution

	13. Utilities
	13.1. Incremental Retrieval of Multi-Valued Attributes

